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Abstract: Creating a fair replenishment strategy is one of the most significant instruments in the inventory 
management for automotive spare parts. It is also crucial to controlling the enterprise's inventory level. This study 
considers the significance of retailers' demand forecasting at the conclusion of the sales period to build a lateral 
transfer inventory optimization scheme with high scientific rigor, aiming to ensure the correctness and logic of the 
replenishment strategy. To provide a more scientific direction for the inventory management of an automotive 
spare parts company, this research constructs an upgraded particle swarm optimization (PSO)-backpropagation 
(BP) neural network prediction model, and a lateral transfer inventory optimization method based on demand 
forecasting. Finally, 26 retailers of Company B in Central China's Hunan Province were taken as examples to 
confirm the model's efficacy. The outcomes demonstrate an improvement in the lateral transfer's applicability in 
Company B. 
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1. Introduction

With the yearly growth in car ownership in China, the automotive aftermarket spare parts market has exhibited
a positive development trend [1, 2]. The National Bureau of Statistics of China reports that vehicle spare parts 
businesses have enormous inventories and that managing those inventories has become exceedingly challenging. 
Therefore, a major concern in the automotive spare parts business is the scientific development of the 
replenishment strategy for spare parts products, the acceptable allocation and effective supply of inventory 
resources, and the improvement of the replenishment efficiency of companies. 

This study proposes a multi-criteria spare parts classification strategy based on data analysis for the features of 
automotive spare parts. Drawing on the classification outcomes, a neural network-based spare parts supply demand 
prediction model was proposed to accurately predict the demand quantity of retailers at the end of the sales period. 
The predicted demand quantity is employed as the parameter input, and the demand satisfaction rate is taken as 
the output parameter. Finally, the authors developed the best inventory management plan based on the application 
of the lateral transfer technique. 

2. Background

The inventory of automotive spare parts faces a number of problems, such as low retailer participation in the
early stages of new product launch, ineffective information transfer among supply chain participants, slow supply 
chain response, lack of an effective inventory management mechanism, and unbalanced inventory [3]. This 
research uses the lateral transfer technique to acquire an inventory management solution with high scientificity by 
applying it to the everyday inventory management process of automobile spare parts companies. 

Given the aforementioned problems, this paper develops an improved PSO-BP neural network prediction model, 
and devises a lateral transfer inventory optimization strategy based on demand forecasting, in the light of the 
complexity and rationality of transfer decisions. The purpose is to adjust the unbalanced inventory at the sales 
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terminal, lower the likelihood of inventory backlog and out-of-stock rate, and improve the response time. Figure 
1 depicts the technical flow of this research. 

Figure 1. Technology route 

3. Cluster-Based Classification

When different types of spare parts are categorized by simply taking into account one indicator of capital
ownership, companies experience low inventory turnover, significant inventory backlogs, and the unavailability 
of some spare parts to satisfy consumer needs because they are out-of-stock [4-8]. As shown in Figure 2, this 
research suggests a cluster analysis-based strategy for classifying automotive spare parts. 
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Figure 2. Framework of our classification method 
 

3.1 Phase 1: Preliminary Data Processing 
 
This phase primarily consists of two steps: selecting classification criteria, and data analysis and processing. 

Firstly, identify the spare parts to be classified m∈M, and select multidimensional classification criteria n∈N. Then, 
preprocess the data for the spare parts under each criterion xmn (m∈M, n∈N), get normalized data x*mn, and weigh 
each criterion wn (n∈N), and obtain the combined score of spare parts Qm. 

(1) Data normalization 
The number of spare parts m differs with the criteria. Some data are of the positive type and some are of the 

negative type. The difference may affect the classification effect [9]. To eliminate the difference and obtain xmn 
and x*

mn, the revenue-based criterion and the cost-based criterion can be respectively processed by: 
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(2) Calculating the combined score 
The weight of each criterion wn is obtained through analytical hierarchy process (AHP), based on the survey 

results on the relevant personnel of the case company [10, 11]. Then, the combined score Qm of each spare part m 
can be calculated by: 
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3.2 Phase 2: Initial Classification 

 
In this phase, K-means clustering (KMC) is adopted to classify the spare parts, including determining the 

classification level k∈K and deriving the integrated classification results of spare parts under multiple criteria Pk 
(k∈K) [12, 13]. Firstly, each part is assigned to the closest class randomly, such that the Euclidean distance of 
spare parts in each class is the farthest from the corresponding class center: 
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where, 𝜎 �̂� denotes the class center of the k-th class; SD(𝑃�̂�) is the sum of the distances from the spare parts in the 
k-th class to the corresponding class center. 

Next, the total Euclidean distance of spare parts in all classes to the corresponding class centers can be calculated 
by: 
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Further, the contour coefficient (SC) is introduced to evaluate the clustering effect. The contour coefficient S(m) 

can be calculated by: 
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where, α(m) is the mean distance from spare part m to other spare parts in the same class; β(m) is the mean distance 
from spare part m to spare parts in another class. Eq. (6) suggests that the contour coefficient S(m) ∈[−1,1]. The 
essence of the coefficient is to solve the maximum mean distance from a spare part to spare parts in another class, 
and the relative error of the mean distance from the spare part to the other spare parts in the same class. α(m) and 
β(m) reflect the cohesiveness and separation of the classes, respectively. 
 
3.3 Phase 3: Veto-Based Class Adjustment 
 

The KMC is applied to determine the classes of spare parts under each criterion, aiming to overcome the defects 
of compensatory multi-criteria classification results Pkn(k∈K, n∈N). On this basis, the initial classes are adjusted 
properly to finalize the classes. After the adjustment, an arithmetic analysis is performed on M=30 spare parts of 
a company. The number of classes K was set to 3, and four criteria were selected, including replacement cycle, 
sales, unit price, and criticality. The classification results are displayed in Table 1. 
 

Table 1. Classification results of cluster-based classification and adjustment 
 

Serial number 
Replacement cycle Sales Unit price 

Numerical value Class Numerical value Class Numerical value Class 

1 0.96 A 0.09 C 0.04 C 
2 0.97 A 0.54 B 0.01 C 
3 0.89 A 0.2 B 0.24 B 
4 0.74 A 0.28 B 0.16 B 
5 0.6 B 0.07 C 0.02 C 
6 0.72 B 0.08 C 0.21 B 
... ... ... ... ... ... ... 
27 0.57 B 0.26 B 0.17 B 
28 0.24 C 0.43 B 0.06 C 
29 0.2 C 0.01 C 0.01 C 
30 0.63 B 0.2 B 0.21 B 

Serial number 
Replacement cycle Sales 

Original class 
Numerical value Class Numerical value Class 

1 0.45 B 0.365 B C 
2 0.45 B 0.519 A B 
3 1 A 0.584 A B 
4 0.45 B 0.405 B A 
5 0 C 0.142 C B 
6 0 C 0.204 C C 
... ... ... ... ... ... 
27 1 A 0.531 A B 
28 0.45 B 0.343 B C 
29 0 C 0.045 C C 
30 1 A 0.528 A B 

 
4. Improved PSO-BP Forecasting Model 

 
4.1 Selecting Influencing Factors 

 
Referring to the offline research of several spare parts companies, this paper analyzes and organizes the factors 

that influence the demand forecast of retailers of automotive spare parts, respectively from the angle of suppliers 
and retailers. 

 
4.2 Demand Forecasting Model and Algorithm 

 
Although BP neural networks are frequently employed for prediction tasks, they have disadvantages like 

sluggish convergence, numerous iterations, a propensity for local optimums, and limited global search capabilities. 
The PSO is used to optimize the connection weights and thresholds of the neural network because this swarm 
intelligence optimization algorithm has a great global search ability in the early stages of solving complicated 
problems. 

The parameters of the BP neural network are defined in this work using a three-layer topology, as given in Table 
2. Tanh is selected as the neural network's activation function: 
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Table 2. Parameters of BP neural network 

 
Name Meaning 

i=1, 2, ..., I Number of input layer nodes 
η=1, 2, ..., K Number of data pairs 

Xη={x1η, x2η, ..., xIη} Input vector 
l=1, 2, ..., L Number of hidden layer nodes 

Maη={ma1η, ma2η, ..., maL
η} Input vector of hidden layer 

Mbη={mb1η, mb2η, ..., mbL
η} Output vector of hidden layer 

αl Threshold of hidden layer nodes 
Wil Connection weight between input layer and hidden layer 

Yη={y1η, y2η, ..., yJ
η} Vector of expected outputs 

j =1, 2, ..., J Number of output layer nodes 
Naη={na1η, na2η, ..., naJ

η} Input vector of output layer 
Nbη={nb1η, nb2η, ..., nbJ

η} Output vector of output layer 
βj Threshold of output layer nodes 

Wlj Connection weight between hidden layer and output layer 
λ Number of iterations 

 
The error function is defined as the deviation between the actual and expected outputs for each data pair from 

the training set of the BP neural network: 
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The total error for all data pairs can be calculated by: 
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The input and output of each hidden layer node can be respectively calculated by: 
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The input and output of each output layer node can be respectively calculated by: 
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4.3 PSO Improvement 

 
Suppose there are P particles in the D-dimensional target search space. The position and velocity of a particle 

are denoted by x and v, respectively. Then, the particle is affected by the three components in Figure 3. This study 
tries to improve the inertia weights and adaptive optimal solution jumping strategy for the PSO algorithm [14]. 

(1) Improving inertia weights 
In the initial search phase, the inertia weights are is reduced nonlinearly using a function, which enhances the 

ability for global search and speeds up the start of the local search. After several iterations, the inertia weights 
begin to decline linearly. Then, the algorithm can stably converge to the optimal solution. The PSO algorithm is 
therefore improved. 
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Figure 3. Motion trajectory of particles in PSO 

The inertia weight functions can be expressed as: 
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where, k is the current number of iterations; K is the maximum number of iterations; ωmax and ωmin are the 
maximum and minimum inertia weights, respectively; s1(k) is a nonlinear function; s2(k) is a linear function; ωc is 
the initial inertia weight after a particle completes the search. 

(2) Adaptive optimal solution jumping strategy
Referring to the mutation operation of the genetic algorithm (GA), the mutation factor is introduced to adjust

the position of particles to enter other regions to continue with the search. In this way, the particles will not easily 
fall into the local optimum trap, and the algorithm can find the global optimal solution with a greater probability. 
The mutation operation can be expressed as: 

t t

i ix x s= + (17) 

where, t is the number of iteration falling into the local optimum trap; s is the regulated search length: 
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where, u(0,σu
2) and v(0,1) are equal to 0. The variance can be calculated by: 
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During the position update of particles, the alternation between long and short intervals benefits the algorithm, 
and helps to avoid the local optimum trap and expand the entire search space. 
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4.4 Algorithm Design 

 
The PSO was combined by the above two improvements to produce the improved PSO (IPSO) below. 
 

Algorithm IPSO  
Train (XT) 
Input population size P; particle dimension D; maximum number of iterations K; initial particle position Xid; 
initial particle velocity Vid; initial inertia weights ω; initial local optimal solution Pibest; initial global optimal 
solution Pgbest. 
for k ≤ K do 
update the inertia weight by Eq. (14) and update xi by Eq. (16) 
initialize the Pibest and Pgbest 
calculate the fitness of each new particle 
if f(xi)f(Pibest) do 
Pibest=xi 
end if 
if f(Pibest)f(Pgbest) do 
Pgbest=Pibest 
end if 
update the position of xi 
k=k+1 
endfor 
Output Optimal particle position and particle velocity 

 

 
Figure 4. Flow of IPSO-BP neural network 
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The connection weights and thresholds of the BP neural network are optimized using the IPSO in conjunction 
with the foregoing construction and description of the BP neural network to address the issue that the BP neural 
network is sensitive to the connection weights and thresholds. The flow chart of the optimization algorithm is 
shown in Figure 4. 

The IPSO optimizes the BP neural network in the following manner: 
Step 1: Based on the training samples, determine the architecture of the BP neural network. Next, initialize the 

connection weights and thresholds of the network with random numbers [0, 1]. 
Step 2. The population and dimension of the particle swarm method are combined with the structure of the BP 

neural network, and the initial position and velocity of each particle are set in accordance with the connection 
weights and thresholds initialized by the BP neural network. 

Step 3. Select any pair, Xη={x1
η, x2

η, ..., xI
η} and Yη={y1

η, y2
η, ..., yJ

η} from the training samples. 
Step 4. Calculate the output of hidden layer nodes, and the output of output layer nodes. 
Step 5. Run the IPSO, set the fitness function, and calculate the fitness value, i.e., the error. Then, take the error 

as the termination condition for IPSO operation. If the error is below the set value, terminate the optimization, 
output the velocity and position of the particles, and enter the next step. Otherwise, continue with the optimization 
by the IPSO until the error falls below the set value, or the maximum number of iterations is reached. 

Step 6. Assign the resulting velocity and position of the particles to the BP neural network, serving as the optimal 
connection weights and thresholds. 

Step 7. Determine whether all the samples in the training set have completed training. If yes, go to Step 8. 
Otherwise, take the current successive weights and thresholds of the BP neural network as the initial velocity and 
position of the IPSO, and return to Step 3 for further training. 

Step 8. Calculate the total error of all training samples, and terminate the training based on whether the total 
error is less than the set value. If the termination condition is satisfied, the training is complete. Otherwise, take 
the updated connection weights and thresholds of the current BP neural network as the initial speed and position 
of the IPSO, and return to Step 3 to continue with the training, until reaching the termination condition. 

 
4.5 Example Analysis  

 
The example analysis targets a retailer in a company's regional center. The authors collected inventory data for 

a brand of general-purpose wiper blades made by the company, and divided the samples into a training set and a 
test set. The training samples are used to correct weights and parameters for network training, while the test 
samples determine whether the network is stable and meets the requirements. Table 3 displays the parameters of 
the IPSO-BP neural network prediction model utilized in the case. 
 

Table 3. Model design 
 

Parameter name Parameter value 

Number of input layer nodes 8 
Number of output layer nodes 1 

Number of hidden layers 1 
Number of hidden layer nodes 10 

Activation function of input layer to hidden layer tanh 
Activation function of hidden layer to output layer purelin 

Learning function learngdm 
Training function trainlm 

Data normalization function min

max min
norm

x x
x

x x

−
=

−
 

Mean squared error 
2

1

1 ( ( ) )
N

i i

n

MSE f x y
N =

= −  

Standard deviation 
2

1

1 ( ( ) )
N

i

n

SD f x
N


=

= −  

 
Compared with the traditional PSO-BP model, the IPSO-BP model includes the adaptive optimal solution 

jumping strategy and improved inertia weights. To verify its prediction accuracy and stability, the IPSO-BP was 
compared with three relevant models: BP model, PSO-BP model, and GA-BP model. The four models were run 
20 times independently on the test dataset. The results of these models are compared in Figure 5 and Figure 6. 

As shown in Figure 5, IPSO-BP and PSO-BP converged faster and more accurately than the other two models. 
Meanwhile, IPSO-BP, thanks to PSO improvement, could search through more space in the first iteration. This 
ensures the stable convergence to the global optimal solution, and the accuracy of local search. As shown in Figure 
6, IPSO-BP ended up with fewer prediction errors during sample testing. 
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Figure 5. Fitness of different models 
 

 
 

Figure 6. Prediction errors of different models 
 

5. Optimization Model 
 
5.1 Problem Description 
 

In this section, a lateral transfer inventory optimization system is created for a regional center and several 
retailers. As sales increase after the company's first distribution is complete, certain retailers' inventories reach a 
critical point where they are unable to meet customer demand, creating a critical shortage of products [15-19]. The 
lateral transfer strategy is thus activated in the system. 

 
5.2 Symbols and Parameters 
 

Table 4 lists the model symbols and their definitions. 
 

Table 4. Symbols and definitions 
 

Symbols Definition 

K Retailer set K = {1, 2, ..., k}and i,j∈K 
Di End-of-period spare parts demand of retailer i 
Qij Number of transits for lateral transfers 
Si Emergency replenishment volume of the regional center 
Ii Inventory of retailer i during the launch period of new products 
Ni Current inventory of retailer i 
Vi Maximum storage capacity of retailer i 
xij 0-1 variable about whether lateral transfer occurs 
f Overall demand fulfillment of the regional center 
α Limitation of overall product demand rate of the regional center 
c1 Inventory holding cost per unit of spare parts 
c2 Lateral transfer cost per unit of spare parts 
c3 Emergency replenishment costs per unit of spare parts of the regional center 
c4 Out-of-stock cost per unit of spare parts 
CH Inventory holding costs in lateral transfers 
CT Lateral transfer costs 
Cz Fixed costs of lateral transfer 
CB Out-of-stock costs in lateral transfer 
Cz Emergency transaction costs 
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5.3 Optimization Model 

 
The demand fulfilment rate of the regional center can be expressed as [8]: 
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The inventory holding, lateral transfer, out-of-stock, and emergency replenishment costs of the regional center 

can be respectively calculated by: 
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5.4 Model Building 

 
After the lateral transfer, the total operation cost of the regional center can be minimized by: 

 
1min min( )H T B STC C C C C= + + +  (25) 

 
The lower bound for maximizing the overall satisfaction rate of product demand of the regional center can be 

determined by: 
 

2max min iTC f=  (26) 
 

The out-of-stock retailer cannot receive more than its forecasted demand for spare parts: 
 

1

K

ij ij i i i

j

x Q D r N
=

  + −  (27) 

 
The demand and received inventory of retailer i cannot exceed its maximum inventory capacity: 

 

1

K

ij ij i i

j

x Q N V
=

 +   (28) 

 
If a replenishment retailer meets its own demand and maintains its inventory level, it can transfer the following 

quantity to the out-of-stock side: 
 

1

K

ij ij j j j

i

x Q N D r
=

  − −  (29) 

 
The supply from a replenishment retailer to the out-of-stock side needs to meet the following condition: 

 

1
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  (30) 
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The number of out-of- stock retailers that can receive replenishment must be limited by: 

1,
1

K

ij

j i j

x K
= 

 − (31) 

The lateral transfer volume to meet the demand of out-of-stock retailers can be determined by: 

1

K

i ij ij i i

j

D x Q N S
=

=  + + (32) 

The demand satisfaction for the regional center as a whole must be limited by: 

f  (33) 

The retailers’ demand must be satisfied in the following order: 

0H T B SC C C C    (34) 

The out-of-stock and replenishment sides can be determined by: 

0 1ij jix x +  (35) 

xij must be a 0-1 variable: 

{0,1}ijx  (36) 

After the lateral transfer, the quantity of emergency replenishment from the regional center i cannot be less than 
the actual demand under the demand satisfaction limit: 

1,
[ ( ) / ]

K

i i i ij ij i

j j i

S D N x Q D
= 

 − +  (37) 

The selected parameters in all equations must be all non-negative integers: 

, , , 0it it i ijI N S Q  (38) 

5.5 Inventory Optimization Model Without Lateral Transfer 

The said lateral transfer strategy was compared with an inventory optimization model without lateral transfer 
[20]: 

To ensure economy, the various costs of the inventory strategy must be minimized: 

1min min( )H B STC C C C= + + (39) 

After the optimization, the lower bound of the overall demand satisfaction of the maximized regional center 
should satisfy: 

2max minTC f= (40) 

The replenishment demand of the out-of-stock retailer must be fully satisfied: 

i i iD N S= + (41) 

The retailer’s demand must be satisfied to the minimum level: 

f  (42) 
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The retailers’ demand must be satisfied in the following order: 
 

0H B SC C C    (43) 
 

The quantity of emergency replenishment from the regional center i cannot be less than the actual demand under 
the demand satisfaction limit: 
 

[ / ]i i i iS D N D −  (44) 
 

The selected parameters in all equations must be all non-negative integers: 
 

, , 0i i iI N S   (45) 
 
6. Case Study 

 
6.1 Overview of Company B 

 
To increase the sales market in China, Company B is responsible of the production, sales, and after-sales support 

of BS brand automotive parts. However, the retailers of this company fail to implement sufficient inventory 
management. Thus, the problem of unbalanced inventory is evident, which has a limited positive impact on 
business growth. 
 
6.2 Sample Selection 

 
Representative and universal samples were selected to verify the superiority of the lateral transfer inventory 

optimization model in coordinating the inventory between suppliers of automotive spare parts in the example. The 
demand of all sides concerning the wiper blades of a car brand was covered in the samples. 
 
6.3 Model Parameters 

 
The input parameters for inventory management are 2.0, 2.5, 7.0, and 5.0 for models c1-c4, in turn. Table 5 

summarizes the inventory status of each retailer. 
 

Table 5. Inventory status of each retailer 
 

Retailer 

number K 

Inventory 

points rk 

Available 

inventory Nk 

Retailer 

number K 

Inventory 

points rk 

Available 

inventory Nk 

K01 2 14 K14 2 6 
K02 4 12 K15 4 9 
K03 3 4 K16 5 7 
K04 1 7 K17 6 3 
K05 2 10 K18 4 13 
K06 2 5 K19 5 11 
K07 4 7 K20 2 2 
K08 4 6 K21 3 9 
K09 1 6 K22 2 4 
K10 3 4 K23 2 12 
K11 2 6 K24 4 11 
K12 2 7 K25 1 2 
K13 3 8 K26 3 17 

 
6.4 Lateral Transfer Inventory Optimization  

 
(1) Demand forecasting 
The product demand of each retailer of Company B was predicted by the proposed IPSO-BP neural network, 

based on the sales of each retailer. The network was adopted to forecast the market demand for products the end 
of the sales period for 26 retailers [21, 22]. The forecasting results are listed in Table 6. 

(2) Optimization decisions 
Based on the forecasts by the IPSO-BP, a lateral transfer inventory optimization model was constructed for each 

retailer of Company B, producing a decision plan of inventory optimization for each retailer. Next, the retailer 
demand satisfaction limit α was set to 0.85, and the demand satisfaction of a single retailer was kept above 0.85. 

13



On this basis, the population size was configured as 20 and the maximum number of iterations as 400. Figure 7 
shows the fitness convergence curve of the model solving algorithm. The retailer’s lateral transfer inventory 
optimization scheme is obtained as shown in Figure 8. 

Table 6. Forecasting results 

Retailer K Demand Dk Retailer K Demand Dk 

K01 8 K10 4 
K02 4 K11 7 
K03 7 K12 10 
K04 12 K13 17 
K05 6 K14 3 
K06 5 K15 8 
K07 13 K16 4 
K08 7 K17 14 
K09 6 K18 5 
K19 7 K23 7 
K20 6 K24 9 
K21 4 K25 4 
K22 5 K26 15 

Figure 7. Convergence curve 

Figure 8. Lateral transfer strategy for inventory optimization based on demand forecasting 

6.5 Validity Testing 

(1) Validity of demand forecast
With an average increase of 60.3% in the lower bound of system demand satisfaction, our model exhibits high

superiority in the control of system demand satisfaction, as shown by Table 7. The out-of-stock cost management 
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is impressive in terms of individual cost control, with an average reduction of up to 38.42%. The decrease in out-
of-stock indirectly shows the improvement of decision fairness, which reflects the accuracy and reasonability of 
the plan based on the demand forecast. This is because the out-of-stock cost is positively correlated with the 
demand prediction. In general, the proposed lateral transfer inventory optimization model, which is based on IPSO-
BP demand forecasting, is highly reasonable. 

Table 7. Impact of IPSO-BP-based forecasting 

Demand 

satisfaction 

limit 

With or without 

forecasting 

model 

Total operating costs f1 Total 

operating 

costs f1 

Demand 

satisfaction 
Inventory 

holdings 

Lateral 

transfer 

Out-of-stock 

losses 

Emergency 

replenishment 

0.65 Yes 59.34 109 137.28 158 463.62 0.671 
No 56.82 115.3 204.27 101.45 477.84 0.65 

0.7 Yes 62.45 102.37 116.79 174.86 456.47 0.768 
No 59.64 105.57 162.98 133.53 461.73 0.724 

0.85 Yes 69.41 99.73 113.39 198.56 481.09 0.872 
No 67.04 94.3 156.27 147.18 464.79 0.853 

0.9 Yes 57.83 113.52 53.31 231.76 456.42 1 
No 55.6 116.46 87.65 201.74 461.45 0.951 

(2) Superiority of lateral transfer strategy
As can be seen from Table 8, under the same demand satisfaction limit, the inventory optimization plan that

permits lateral transfers has a lower total cost than the plan that does not [23]. On average, the cost was reduction 
by 63.77%. Thus, the former plan successfully lowers system operating costs and enhances the economy of 
inventory management. 

Table 8. Impact of lateral transfers 

Demand 

satisfaction 

limit 

With or without 

forecasting 

model 

Total operating costs f1 Total 

operating 

costs f1 

Demand 

satisfaction 
Inventory 

holdings 

Lateral 

transfer 

Out-of-

stock losses 

Emergency 

replenishment 

0.65 Yes 59.33 109 137.28 158 463.61 0.671 
No 147.81 - 451.94 167.56 767.31 0.65 

0.7 Yes 62.45 102.37 116.79 174.86 456.47 0.768 
No 167.39 - 432.71 185.54 785.64 0.724 

0.85 Yes 69.41 99.73 113.39 198.56 481.09 0.872 
No 180.92 - 437.85 208.17 826.94 0.853 

0.9 Yes 557.83 113.52 53.31 231.76 456.42 1 
No 158.96 - 436.03 233.95 828.94 0.951 

(3) Analysis of algorithm convergence
With the same number of iterations and population size, Table 9 shows that the computation times of data

experiments for various retailers do not differ significantly, suggesting that the method will perform better when 
the task size is bigger. When the initial population size is 20 and the number of iterations is 300, our method 
performs better in terms of computational efficiency and experimental results. As a result, the parameters for the 
model solution are recommended as 20 for the initial population size and 300 for the number of iterations. 

Table 9. Fitness and running time of different algorithms 

Population size Number of iterations Fitness Running time 

5 50 11657.45 5.37 
10 100 10378.27 19.853 
20 100 9763.48 50.729 
20 300 7077.14 198.634 
30 500 7535.86 368.31 
50 500 7241.57 483.336 
50 1000 6935.1 974.862 

7. Conclusions

This paper provides the optimal replenishment system under the lateral transfer strategy, using the example of 
automotive spare parts. This study examines a lateral transfer inventory optimization system that consists of a 
regional center and various retailers. Specifically, lateral transfer refers to the inventory management strategy that 
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fills the inventory gaps of out-of-stock retailers with the excess inventory of neighboring retailers to satisfy their 
replenishment demand, without harming the regular sales of the replenishment retailers. The formulation of a 
lateral transfer inventory optimization model, the introduction of a new product launch period, and demand 
forecasts for retailers all offer scientific theoretical guidance for the creation of Company B's inventory supply 
program. 

The lateral transfer strategy was incorporated into the supply plan of the inventory optimization model. By 
making this change, it is possible to decrease the overall operating costs of the inventory system, increase the 
economy of replenishment decisions, protect each retailer's fundamental replenishment rights, and raise the level 
of overall demand satisfaction among retailers in the region. When it comes to enterprise inventory management, 
the inclusion of lateral transfer into inventory optimization strategy can increase the overall support to distribution 
network, address retailer inventory imbalance, and offer scientifically sound theoretical guidance for the selection 
of product inventory levels for automotive spare parts. 

Data Availability 

The data used to support the findings of this study are available from the corresponding author upon request. 

Conflict of Interest 

The authors declare that they have no conflicts of interest. 

References 

[1] D. C. Sun, “China's auto parts development strategy and countermeasures research,” MSc Dissertation, Jilin
University, China, 2006.

[2] P. Zhang, X. Xu, V. Shi, and J. Zhu, “Simultaneous inventory competition and transshipment between
retailers,” Int J. Prod. Econ., vol. 230, Article ID: 107781, 2020. https://doi.org/10.1016/j.ijpe.2020.107781.

[3] P. Wan, S. F. Ji, and N. X. Song, “Multi-location inventory optimization model with lateral transshipment
for random defect rate items,” Comput. Integr. Manuf. Syst., vo. 26, no. 9, pp. 2561-2572, 2020.
https://doi.org/10.13196/j.cims.2020.09.025.

[4] F. Qiao and K. Jiang, “Attitudes towards global warming on Twitter: A hedonometer-appraisal analysis,” J.

Glob. Inf. Manag., vol. 30, no. 7, Article ID: 296708, 2021. https://doi.org/10.4018/JGIM.296708.
[5] N. F. Cui and X. Luo, “ABC classification based on AHP in servicing spare part,” Ind. Eng. Manage., vol.

10, no. 6, pp. 33-36, 2004. https://doi.org/10.3969/j.issn.1007-5429.2004.06.008.
[6] F. Qiao and J. Williams, “Topic modelling and sentiment analysis of global warming tweets: Evidence from

big data analysis,” J. Organ. End. User. Com., vol. 34, no. 3, Article ID: 294901, 2022.
https://doi.org/10.4018/JOEUC.294901.

[7] J. Huiskonen, “Maintenance spare parts logistics: Special characteristics and strategic choices,” Int J. Prod.

Econ., vol. 71, no. 1-3, pp. 125-133, 2001. https://doi.org/10.1016/S0925-5273(00)00112-2.
[8] M. Braglia, A. Grassi, and R. Montanari, “Multi-attribute classification method for spare parts inventory

management,” J. Qual. Maint. Eng., vol. 10, no. 1, pp. 55-65, 2004.
https://doi.org/10.1108/13552510410526875.

[9] I. Roda, M. Macchi, L. Fumagalli, and P. Viveros, “A review of multi-criteria classification of spare parts:
From literature analysis to industrial evidences,” J. Manuf. Technol. Mana., vol. 25, no. 4, pp. 528-549, 2014.
https://doi.org/10.1108/JMTM-04-2013-0038.

[10] B. E. Flores and D. C. Whybark, “Multiple criteria ABC analysis,” Int J. Oper. Prod. Man., vol. 6, no. 3, pp.
38-46, 1986. https://doi.org/10.1108/eb054765.

[11] R. Ramanathan, “ABC inventory classification with multiple-criteria using weighted linear optimization,”
Comput. Oper. Res., vol. 33, no. 3, pp. 695-700, 2006. https://doi.org/10.1016/j.cor.2004.07.014.

[12] F. Y. Partovi and J. Burton, “Using the analytic hierarchy process for ABC analysis,” Int J. Oper. Prod. Man.,
vol. 13, no. 9, pp. 29-44, 1993. https://doi.org/10.1108/01443579310043619.

[13] R. Ernst and M. A. Cohen, “Operations related groups (ORGs): A clustering procedure for
production/inventory systems,” J. Oper. Manag., vol. 9, no. 4, pp. 574-598, 1990.
https://doi.org/10.1016/0272-6963(90)90010-B.

[14] J. X. Chen, “Peer-estimation for multiple criteria ABC inventory classification,” Comput. Oper. Res., vol. 38,
no. 12, pp. 1784-1791, 2011. https://doi.org/10.1016/j.cor.2011.02.015.

[15] J. Z. Sun, Y. Xu, and S. Y. Wang, “PSO with reverse edge for multi-objective software module clustering,”
Int J. Perf. Eng., vol. 14, no. 10, pp. 2423-2431, 2018. https://doi.org/10.23940/ijpe.18.10.p18.24232431.

[16] G. Y. Zhu and H. S. Yan, “A kind of demand-forecasting model based on analysis of demand booming and
principle of naive forecasting,” Syst. Eng. Theor. Pract., vol. 24, no. 5, pp. 22-32, 2004.

16



https://doi.org/10.3321/j.issn:1000-6788.2004.05.004. 
[17] C. L. Hu, Y. H. Liu, and J. L. Gao, “Research on prediction method of grain yield based on IPSO-BP model,”

J. Chinese Agr. Mech., vol. 42, no. 3, pp. 136-141, 2021. https://doi.org/10.13733/j.jcam.issn.2095-
5553.2021.03.019.

[18] X. L. Zhang, “Research on a three-level supply chain inventory sharing model considering transshipment
strategy and demand satisfaction level constraints,” MSc Dissertation, Northeastern University, China, 2015.

[19] Y. R. Zeng, L. Wang, and J. He, “A novel approach for evaluating control criticality of spare parts using
fuzzy comprehensive evaluation and GRA,” Int J. Fuzzy. Syst., vol. 14, no. 3, pp. 392-401, 2012.

[20] Y. He, S. Y. Wang, and K. K. Lai, “An optimal production-inventory model for deteriorating items with
multiple-market demand,” Eur. J. Oper. Res., vol. 203, no. 3, pp. 593-600, 2010.
https://doi.org/10.1016/j.ejor.2009.09.003.

[21] P. Zhang, X. Xu, V. Shi, and J. Zhu, “Simultaneous inventory competition and transshipment between
retailers,” Int J. Prod. Econ., vol. 230, Article ID: 107781, 2020.
http://dx.doi.org/10.1016/j.ijpe.2020.107781.

[22] A. Bacchetti and N. Saccani, “Spare parts classification and demand forecasting for stock control:
Investigating the gap between research and practice,” Omega, vol. 40, no. 6, pp. 722-737, 2012.
https://doi.org/10.1016/j.omega.2011.06.008.

[23] C. L. Hu, Y. H. Liu, and J. L. Gao, “Research on prediction method of grain yield based on IPSO-BP model,”
J. Chinese Agric. Mech., vol. 42, no. 3, pp. 136-141, 2021. http://dx.doi.org//10.13733/j.jcam.issn.2095-
5553.2021.03.019.

17




