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Abstract: For a class of system with nonlinear hysteresis, this paper presents an adaptive hybrid controller based 

on the hybrid backstepping-sliding mode, and describes the controller analytically by the LuGre model. Both 

backstepping and the sliding mode techniques are based on the Lyapunov theory. Drawing on this common point, 

the authors developed a new controller combining the two control techniques with a recursive design. The design 

aims to achieve two effects: assuring the stability of the closed loop system, and improving the continuous 

performance of the tracking position trajectory. The performance of the proposed hybrid controller was verified 

by implementing the identified Piezo model. The results show that our controller can track the system output 

desirably with the reference trajectory. 

Keywords: Hybrid controller; Particle Swarm Optimization (PSO); LuGre model; Piezo-positioning mechanism 

1. Introduction

Precision positioning applications increasingly rely on actuation technologies built on intelligent piezoelectric

materials. They need compact devices or a small footprint for particular operations [1-4]. Their high integrative 

power [5, 6], low heat [7, 8], and low noise levels [9, 10] can provide relatively large efforts, high reliability, and 

biocompatibility [11-14]. Because of these benefits, the piezoelectric actuator has been widely used in a variety of 

industries, including space exploration [15, 16], active shutters, pulsed jets [17-19], vibration control [20-24], 

optical path control [25-28], micro-motorization of instruments [29, 30], valves and pumps for implants [31-36], 

magnetic resonance imaging (MRI) [37, 38], microsurgery [39-42], and other micro-displacement techniques [43-

48]. Position control is severely hindered by the unique piezoelectric actuator structure, nonlinear hysteresis 

behaviors, and additional sources of positioning precision loss, such as creep drift and temperature effects [49-53]. 

Extensive study has been done for the modeling and control of the nonlinearity of hysteresis. Insofar as it enables 

the acquisition of a system representation from the input/output data, experimental modeling leading to a model 

of representation is particularly intriguing [54-58]. 

This work proposes the LuGre model, which represents the effects of the hysteresis of the piezoelectric actuator 

with precision and efficiency, and then identifies the control parameters experimentally by the evolutionary 

algorithm called particle swarm optimization (PSO) [59-65]. The control of piezoelectric actuators has received a 

lot of attention in recent years. A powerful method for stabilizing nonlinear systems and monitoring trajectory is 

called backstepping control. The basic goal of backstepping is to achieve Lyapunov cascade stability in equivalent 

loops in a subsystem of order one, which endows them with robustness and asymptotic overall stability [66-71]. 

Another very well-known control method is sliding mode control, which is noted for its stability, short response 

times, and sensitivity to parameter fluctuations [72-76]. 

A current focus of research is the integration of sliding mode and backstepping control methods within the 

piezoelectric actuator. In this work, adaptive back stepping-sliding mode, one of the hybrid controls, is employed 

to enhance the piezoelectric actuator's trajectory tracking capability. The hybrid control technique is a controller 

design approach that ensures the stability of the control system. The combination between the two control methods 
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is anticipated to result in a novel control algorithm that takes advantage of the strengths of the two methods. 

Simulation results demonstrate the strategy’s advantage in terms of lowering tracking error and improving tracking 

stability. The hybrid control exhibits great performance, compared to sliding mode, and adaptive backstepping. 
 

2. Stage Modeling and Identification 
 

The dynamic model of the piezoelectric actuator can be expressed as [77]: 
 

𝑀𝑥̈ + 𝐷𝑥̇ + 𝐹𝐻 + 𝐹𝐿 = 𝑘𝑒𝑢 (1) 
 

where, M is the equivalent mass of the piezoelectric actuator; x is the displacement of the mechanism; 𝑥
⋅
 is the 

relative velocity; 𝑥̈ is the acceleration; D is the linear friction coefficient of the piezoelectric actuator; FL is the 

external load; FH is the function of the hysteresis friction force; u is the voltage applied to the piezoelectric actuator. 

The hysteresis friction force FH can be described by LuGre model [78]: 
 

𝐹𝐻 = 𝜎0. 𝑥2 − 𝜎1

1

𝑔(𝑥2)
𝑥2|𝑥2| + (𝜎1 + 𝜎2)𝑥2 (2) 

 

where, σ0, σ1, and σ2 are positive constants, which can be equivalently interpreted as the bristle stiffness, bristle 

damping and viscous coefficient, respectively. The Stribeck effect curve can be described by the function g(x2): 
 

𝜎0. 𝑔(𝑥2) = 𝑓𝑐 + (𝑓𝑠 − 𝑓𝑐)𝑒−(
𝑥2

𝑥𝑠
⁄ )

2

 (3) 

 

where, fc is the Coulomb friction; fs is the striction force; xs is the Stribeck velocity. The complete 

electromechanical equations for the model can be expressed as [79]: 
 

𝑥2 =
𝑘𝑒𝑢

𝑀
−

𝜎0. 𝑥2

𝑀
−

𝜎1

𝑀

1

𝑔(𝑥2)
𝑥2|𝑥2| +

(𝜎1 + 𝜎2)

𝑀
+

𝐹𝐿

𝑀
−

𝐷𝑥1

𝑀
 (4) 

 

Eq. (4) shows that the piezoelectric actuator's dynamics is nonlinear as a function of the state variables x1 and 

x2, and that the relationship between position and control voltage must be monitored in order to obtain the 

parameters of the LuGre model. This paper utilizes the PSO-based identification approach, and runs tests to 

optimize the parameters of the algorithm and the model. Table 1 displays the values for the nine parameters. 
 

Table 1. Identification results for the LuGre model 
 

Parameter Value Unit 

M 4.119 g 

ke 93.6 𝑁
𝑣⁄  

σ0 2.176e+06 𝑁
𝑚⁄  

σ1 4.257e+06 𝑁𝑠
𝑚⁄  

σ2 -3.826e+06 𝑁𝑠
𝑚⁄  

Fc 6224 N 

Fs -7.181e+04 𝑁𝑠
𝑚⁄  

xs 0.7621 𝑚
𝑠⁄  

D 10.76 𝑁𝑠
𝑚⁄  

 

 
(a) Sinusoidal signal                                                         (b) Linear signal 

 

Figure 1. Tracking performance with LuGre model 
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Figure 1 compares the tracking performance of LuGre model with that of experiments, when the piezoelectric 

positioning stage is driven by a sinusoidal input or a linear input. The comparison shows that the minimum and 

maximum errors are 4.492 nm and 144.65 nm, respectively. The experimental results agree well with the LuGre 

modeling results. 

 

2.1 Hybrid Control 

 

The control law can be generated according to two sequences. The first sequence adopts the backstepping 

technique to compute the virtual controls and the corresponding stabilization functions. 

 

2.1.1 First sequence 

The nonlinear system can be described by: 

 

𝑥̇1̇ = Ψ1(𝑥1). 𝑥2 + 𝜑1(𝑥1)𝑇 . θ 

𝑥̇2̇ = 𝛹1(𝑥1, 𝑥2). 𝑥3 + 𝜑1(𝑥1, 𝑥2)𝑇 . 𝜃 

𝑥̇𝑛−1 = Ψ𝑛−1(𝑥1, … 𝑥𝑛−1). 𝑥𝑛 + 𝜑𝑛−1(𝑥1, … . , 𝑥𝑛−1)𝑇 . 𝜃 

𝑥̇𝑛 = Ψ𝑛−1(𝑥1, … , 𝑥𝑛−1, … 𝑥𝑛). 𝑢 + 𝜑𝑛−1(𝑥1, … . , 𝑥𝑛−1, … 𝑥𝑛)𝑇 . 𝜃 

(5) 

 

where, φi Ri → Rp is a continuously differentiable vector of known nonlinear functions; θ ∈ RP - a vector of constant 

coefficients (known or unknown); ψn-1 is a function ≠ 0 ∀ x ∈ Rn u the control. To track the desired trajectory xd 

using the state xi, then the backstepping algorithm can be used for the overall asymptotic stabilization of the system 

error e ϵ Rn. To better illustrate this technique, the second-order nonlinear system can be considered in the 

following form:  

 

𝑥̇1̇ = 𝑥2 + 𝜑1(𝑥1)𝑇 . θ 

𝑥̇2̇ = 𝑢 + 𝜑2(𝑥1, 𝑥2)𝑇 . 𝜃 
(6) 

 

With x=[x1, x2], the state vector and system control input u(t), the problem is to determine the control u(t) that 

stabilizes the system at point (x1, x2) = (0,0) [80]. 

To achieve the desired trajectory and stabilize the entire system, it is preferable to use an adaptive law to estimate 

the system parameters by the backstepping technique. Suppose the output variable is denoted by x1 and the certain 

desired trajectory is denoted by x1d, the quantity of the control can be selected in two steps: 

 

A.1 First step 

This first step consists in identifying the error and it is dynamic  

 

𝑒1 = 𝑥1 − 𝑥𝑑  

 

The derivative of the error can be expressed as: 

 

𝑒1̇ = 𝑥1̇ − 𝑥𝑑̇ = 𝑒2 − 𝛼1 

where, 

𝛼1 = −𝑐1𝑒1 

𝑒1̇ = −𝑐1𝑒1 + 𝑒2 

(7) 

 

Considering the Lyapunov function: 

 

𝑉1 =
1

2
𝑒1

2 (8) 

 

The derivative can be obtained as: 

 

𝑉1̇ = 𝑒1𝑒1̇ 

                          = 𝑒1(−𝑐1𝑒1 + 𝑒2) 

                       = −𝑐1𝑒1
2 + 𝑒1𝑒2 

(9) 

 

From Eq. (9), it is known that if e2(t) tends to zero, the derivative of V1(t) will be less than or equal to zero. If 

V1≤0, e1(t) will converge to zero, and x1(t) will converge to the reference point xd. Consequently, the next step will 

design a controller u to make e2(t) converge towards zero. 
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A.2 Second step 

Considering the second system error: e2= x2-α1-𝑥𝑑̇ 

 

𝑒2 = 𝑥2 − 𝛼1 − 𝑥𝑑̇ 

With 

𝑒2̇ = 𝑥2̇ − 𝛼1̇ − 𝑥𝑑̈ 

                                                 =
1𝑢

𝑘0

− 𝑘1𝑥2 − 𝑘2𝑥1 − ℎ(𝑡) − 𝛼1̇ − 𝑥𝑑̈ 

𝑢 = 𝑘̂0𝑢̅ − 𝑘̂3𝑠𝑖𝑛𝑔(𝑒2) 

(10) 

 

Alternatively, 𝑘̂0, 𝑘̂1, 𝑘̂2, and 𝑘̂3 are the estimated values of k0, k1, k2, and k3, 𝑘̃0 = 𝑘̂0 − 𝑘0, 𝑘̃1 = 𝑘̂1 − 𝑘1, 𝑘̃2 =

𝑘̂2 − 𝑘2, and 𝑘̃3 = 𝑘̂3 − 𝑘3, respectively; sign (.) denotes the sign function: 

 

𝑠𝑖𝑔𝑛(𝑒2) = {

1      𝑖𝑓 𝑒2 > 0
0     𝑖𝑓 𝑒2 = 0

−1 𝑖𝑓 𝑒2 < 0
} (11) 

 

The Lyapunov function V2 can be defined as: 

 

𝑉2 =
1

2
𝑒1

2 +
1

2
𝑒2

2 +
1

2𝑘0𝛼0

𝑘̃0
2 +

1

2𝛼1

𝑘̃1
2 +

1

2𝛼2

𝑘̃2
2 +

1

2𝛼3

𝑘̃3
2 (12) 

 

The derivative can be obtained by: 

 

𝑉̇2 = 𝑒1𝑒1̇ + 𝑒2𝑒2̇ +
1

𝑘0𝛼0

𝑘̃0𝑘0̃
̇ +

1

𝛼1

𝑘̃1𝑘1̃
̇ +

1

𝛼2

𝑘̃2𝑘2̃
̇ +

1

𝛼3

𝑘̃3𝑘3̃
̇  (13) 

 

𝑉̇2 = 𝑐1𝑒1
2 + 𝑒1𝑒2 + 𝑒2 (

1𝑢

𝑘0

− 𝑘1𝑥2 − 𝑘2𝑥1 − 𝑘3 − 𝛼1̇) +
1

𝑘0𝛼0

𝑘̃0𝑘0̃
̇ +

1

𝛼1

𝑘̃1𝑘1̃
̇ +

1

𝛼2

𝑘̃2𝑘2̃
̇

+
1

𝑀𝛼3

𝑘̃3𝑘3̃
̇  

(14) 

 

With 

 
1

𝑘0

𝑢 = 𝑢̅ −
1

𝑘0

𝑘0̂𝑢̅ − 𝑘3̂ 𝑠𝑖𝑔𝑛(𝑒2) (15) 

 

𝑉̇2 = 𝑐1𝑒1
2 + 𝑒1𝑒2 + 𝑒2(𝑢̅ + 𝑒1 − 𝑘1𝑥2 − 𝑘2𝑥1 − 𝛼̇1 − 𝑥̈1𝑑) − (𝑘3 − 𝑘̂3𝑠𝑖𝑔𝑛(𝑒2)) +

1

𝑘0𝛼0

𝑘̃0𝑘0̃
̇

+
1

𝛼1

𝑘̃1𝑘1̃
̇ +

1

𝛼2

𝑘̃2𝑘2̃
̇ +

1

𝛼3

𝑘̃3𝑘3̃
̇

= 𝑐1𝑒1
2 + 𝑒1𝑒2 + 𝑒2(𝑢̅ + 𝑒1 − 𝑘1𝑥2 − 𝑘2𝑥1 − 𝛼̇1 − 𝑥̈1𝑑) − (𝑘3 − 𝑘̂3𝑠𝑖𝑔𝑛(𝑒2))

+
1

𝑘0𝛼0

𝑘̃0 (𝛼0𝑒2𝑢̅ + 𝑘̂0
̇ ) +

1

𝛼1

𝑘̃1 (𝛼1𝑥1𝑒2 + 𝑘̂1
̇ ) +

1

𝛼2

𝑘̃2 (𝛼2𝑥2𝑒2 + 𝑘̂2
̇ )

+
1

𝛼3

𝑘̃3 (𝛼3|𝑒2| − 𝑘̂3
̇ ) − 𝑒2𝑢̅𝑘̂0 − 𝑒2𝑥2𝑘̂1 − 𝑒2𝑥1𝑘̂2 − |𝑒2|𝑘̂3𝑥2 

(16) 

 

c1 and c2 are positive defined constants. Then, the control law can be selected as: 

 

𝑢̅ = −𝑐2𝑒2 − 𝑒1 − 𝑒2𝑢̅𝑘̂0 − 𝑒2𝑥2𝑘̂1 − 𝑒2𝑥1𝑘̂2 − |𝑒2|𝑘̂3𝑥2 − 𝜂. 𝑠𝑖𝑔𝑛(𝑒2) − 𝑥̈1𝑑  (17) 

 

With the following adaptation laws: 

 

𝑘̂0
̇ = −𝛼0𝑒2𝑢̅ (18) 

 

𝑘̂1
̇ = 𝛼1𝑒2𝑥2 (19) 
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𝑘̂2
̇ = 𝛼1𝑒2𝑥1 (20) 

 

𝑘̂3
̇ = 𝛼3𝑒2 (21) 

 

Substituting the adaptation laws (17), (18), (19), and (20) into Eq. (16), we have: 

 

𝑉̇2 = −𝑐1𝑒1
2 − 𝑐2𝑒2

2 (22) 

 

This means the equilibrium of the closed-loop system is globally asymptotically stable, and the error variables 

e1 and e2 converge towards zero. 

 

B. Second sequence 

The second sequence highlights the sliding mode technique to calculate the real controls in the final 

backstepping step. The goal is to make the errors between the virtual controls and their desired values converge to 

zero. The introduction of the sliding control reduces the effects of disturbances. The hybridization between the 

backstepping control and the sliding mode control is realized by changing a variable in the last step [81]. 

To being with, the linear sliding surface can be considered as: 

 

𝑆 = 𝜆1𝑒1 + 𝑒̇1 (23) 

 

With λ1 > 0, the derivative of Eq. (23) can be obtained as: 

 

𝑆̇ = 𝜆1𝑒2 + 𝑒̇2 (24) 

 

Therefore, the modified Lyapunov candidate can be expressed as: 

 

𝑉2 =
1

2
𝑒1

2 +
1

2
𝑒2

2 +
1

2𝑘0𝛼0

𝑘̃0
2 +

1

2𝛼1

𝑘̃1
2 +

1

2𝛼2

𝑘̃2
2 +

1

2𝛼3

𝑘̃3
2 +

1

2
𝑆2 (25) 

 

Then, the derivative of V2 can be given by: 

 

𝑉̇2 = −𝑐1𝑒1
2 + 𝑒1𝑒2 + 𝑒2(𝑒̇2) +

1

𝑘0𝛼0

𝑘̃0 (𝛼0𝑒2𝑢̅ + 𝑘̂0
̇ ) +

1

𝛼1

𝑘̃1 (𝛼1𝑥1𝑒2 + 𝑘̂1
̇ ) +

1

𝛼2

𝑘̃2 (𝛼2𝑥2𝑒2 + 𝑘̂2
̇ )

+
1

𝛼3

𝑘̃3 (𝛼3|𝑒2| − 𝑘̂3
̇ ) − 𝑒2𝑢̅𝑘̂0 − 𝑒2𝑥2𝑘̂1 − 𝑒2𝑥1𝑘̂2 − |𝑒2| + 𝑆(𝜆1𝑒2 + 𝑒̇2) 

(26) 

 

Substituting Eq. (10) into Eq. (25), we have: 

 

𝑉̇2 = −𝑐1𝑒1
2 + 𝑒1𝑒2 + 𝑒2(𝑢̅ + 𝑒1 − 𝑘1𝑥2 − 𝑘2𝑥1 − 𝛼̇1 − 𝑥̈1𝑑) − (𝑘3 − 𝑘̂3𝑠𝑖𝑔𝑛(𝑒2))

+
1

𝑘0𝛼0

𝑘̃0 (𝛼0(𝑒2 + 𝑆)𝑢̅ + 𝑘̃0
̇ ) +

1

𝛼1

𝑘̃1 (𝛼1𝑥1(𝑒2 + 𝑆) + 𝑘̂1
̇ )

+
1

𝛼2

𝑘̃2 (𝛼2𝑥2(𝑒2 + 𝑆) + 𝑘̂2
̇ ) +

1

𝛼3

𝑘̃3 (𝛼3(|𝑒2| + 𝑆) − 𝑘̂3
̇ ) − (𝑒2 + 𝑆)𝑢̅𝑘̂0

− (𝑒2 + 𝑆)𝑥2𝑘̂1 − (𝑒2 + 𝑆)𝑥1𝑘̂2 − (|𝑒2| + 𝑆) 

(27) 

 

From Eq. (16), the hybrid control law of the piezoelectric actuator can be expressed as: 

 
1

𝑘0

𝑢 = 𝑢̅ (1 −
1

𝑘0

𝑘̂0) − 𝑘̂3𝑠𝑖𝑔𝑛(𝑒2 + 𝑆) (28) 

 

Thus, 

 

𝑢̅ = −𝑐2𝑒2 − 𝑒1 − (𝑒2 + 𝑆)𝑢̅𝑘̂0 − (𝑒2 + 𝑆)𝑥2𝑘̂1 − (𝑒2 + 𝑆)𝑥1𝑘̂2 − (|𝑒2| + 𝑆)𝑘̂3𝑥2 − 𝜂. 𝑠𝑖𝑔𝑛(𝑒2 + 𝑆)
− 𝑥̈1𝑑 − 𝜆1𝑒2𝑆 

(29) 

 

With the adaptation laws  

 

𝑘̂0
̇ = −𝛼0𝑢̅(𝑆 + 𝑒2) (30) 
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𝑘̂1
̇ = 𝛼1𝑥2(𝑆 + 𝑒2) (31) 

 

𝑘̂2
̇ = 𝛼1𝑥1(𝑆 + 𝑒2) (32) 

 

𝑘̂3
̇ = 𝛼3(𝑆 + 𝑒2) (33) 

 

The control law (29), and the adaptation laws in Eqns. (30-33) can be replaced to obtain: 

 

𝑉̇2 = −𝑐1𝑒1
2 − 𝑐2𝑒2

2 (34) 

 

The relationship (34) shows that, with the law of hybridization control (28) and the adaptation parameters (30-

33), the variables e1(t) and e2(t) converge towards zero, which allows the exit in pursuit of system (1) following 

asymptotically the reference. 

 

3. Results and Discussion 

 

Figures 2-4 respectively display the tracking displacement, tracking voltage control error, and phase diagram of 

the simulations on the proposed hysteresis model of piezoelectric positioning mechanism, with an amplitude of 

the sinusoidal reference of 1 µm and a frequency of 0.5 Hz. It can be seen that the hybrid control managed to 

stabilize the closed-loop system, and the trajectory tracking effect. 

 

 
(a) Tracking output                                                         (b) Tracking error 

 

Figure 2. Simulation results with a tracking signal of 1.0 Hz 
 

 
 

Figure 3. Simulation results for periodic sinusoidal control with frequency 1.0 Hz: Voltage control 
 

 
 

Figure 4. Phase diagram 
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Figure 5 illustrates the convergence of the control parameters (k0, k1, and k2). It is clear that the hybrid controller 

can converge very quickly. 

 

 
 

Figure 5. Evolution of parameters k0, k1 and k2 

 

4. Comparative Analysis 

 

To verify the performance of different control laws for the piezoelectric actuator, a comparative analysis was 

carried out between the hybrid control, the adaptive backstepping control and the sliding mode control under the 

same conditions (e.g., the simulation time, the frequency and the input signal). The comparison criterion was 

defined as a function of the simulation error. 

Figure 6 shows how the tracking error of the three techniques evolves. It can be seen that these techniques are 

valid for the piezoelectric actuator control. The errors suggest that the hybrid controller achieves better results than 

the adaptive backstepping controller and the sliding mode controller. 

Table 2 compares the convergence time for the different control techniques. 

 

Table 2. Convergence time of different controllers 

 
Control technique Convergence time (s) 

Hybrid 0.35 

Adaptive backstepping 0.6 

Sliding mode 0.7 

 

 
 

Figure 6. Evolution of tracking error for the three control techniques 

 

5. Conclusions 

 

This paper proposes the LuGre model and the associated identification procedure, aiming to accurately depict 

the hysteresis behavior of the piezoelectric actuator. Besides, a hybrid control was implemented to validate the 

accuracy of the model. The results show that the proposed method can track the reference trajectory very precisely. 

The proposed control technique was found to improve the control performance, thanks to its merits like flexible 

selection of control gains, and the simplicity of forming the control law. In addition, three techniques were 

compared, including our technique, suggesting that our technique achieves better performance than the contrastive 

methods. 
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