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Abstract: This study introduces a new ten-term 5-D hyperchaotic system, derived from the 3-D Sprott C system.
The proposed system has coexisting two attractors: the self-excited and hidden attractors. This system exhibits a
rich array of characteristics, taking inspiration from various forms of equilibrium points, stable focus-nodes, saddle-
focus, and non-hyperbolic unstable points. These features are shown to be dependent on parameter adjustments. The
coexistence of chaotic and hyperchaotic attractors within a 5-D system coupled with three types of equilibrium points
is an intriguing phenomenon. A spectrum of numerical methodologies, including phase portraits, computation of
Lyapunov exponent, estimation of Lyapunov dimension, and multistability analysis, have been employed to effectively
illustrate the diverse attractors. The stability theory is utilized for investigating the synchronization problem, a
topic that is elucidated in depth. An assortment of dynamical behavior, such as hyperchaotic, hyperchaotic with
2-tours, chaotic, and chaotic with 2-tours, is recognized. Validation of the primary findings is conducted via
theoretical and numerical simulations, fortifying the theoretical conclusions, with numerical simulations executed
using MATLAB2021.
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1 Introduction

Chaotic and hyperchaotic systems have garnered significant attention from the scientific community in the recent
past, due to their promising applicability in diverse areas, including but not limited to, cryptosystems, data encryption
[1–4], neural networks [5], synchronization [6], robotics [7], and electronic circuits [8]. The concept of a hidden
attractor was first unveiled by Kuznetsov et al. in 2010, but it remained relatively unnoticed until the development of
Chua’s circuit by Leonov et al. [9] in 2011. Consequently, systems are now generally classified as possessing either
self-excited or hidden attractors. Notably, renowned classical 3-D systems such as the Lorenz system [10], Rosslers
system [11], and most Sprott systems (with the exception of the Sprott A system) [12], harbor self-excited attractors.

Hidden attractors in dynamical systems can be categorized into three types [13–24], whereas self-excited attractors
conform to one type [25–30], as depicted in Figure 1. However, the existence of systems incorporating both self-
excited and hidden attractors has largely been overlooked in prior research [31]. This gap in knowledge prompted
the unveiling of a unique, relatively simple 5-D system showcasing coexistence of multiple attractors and a spectrum
of behaviors. A tabulated summary of various 5-D systems with self-excited and hidden attractors is presented in
Table 1. This study contributes to the field by introducing:

• A novel 5-D hyperchaotic system, derived from the 3-D Sprott C system.
• This system harbors two fundamental types of multi-attractors (self-excited and hidden).
• The presence of two equilibria points, stable and unstable, lends to a variety of attractors.
• Simplicity is showcased in this system through its composition of merely ten terms, as exhibited in Table 1.
• It bears three positive Lyapunov exponents and possesses a higher Largest Kaplan-York Dimension in comparison

to ten other systems, as elucidated in Table 1.
• The system comprises three types of equilibria points: focus-nodes, saddle-focus, and non-hyperbolic.
• Implementation of anti-synchronization is demonstrated.

https://doi.org/10.56578/jisc020205

110

https://www.acadlore.com/journals/JISC
https://crossmark.crossref.org/dialog/?doi=10.56578/jisc020205&domain=pdf
https://orcid.org/0000-0002-8198-8035
https://orcid.org/0000-0002-2243-0963 
https://doi.org/10.56578/jisc020205
https://doi.org/10.56578/jisc020205
https://doi.org/10.56578/jisc020205


Figure 1. Classification of the attractors of nonlinear dynamical systems

Table 1. Summary of various types of 5-dimensional dynamic systems

No. System
Behavior

No. +ve LEs No.
Term

Lyapunov
Dimension DL

Attractors
Behavior

References

1 Hyperchaotic n-3 17 3.9785 Self-excited 2018 [32]
2 Hyperchaotic n-3 17 3.0011 Hidden 2019 [18]
3 Hyperchaotic n-2 15 4.0502 Hidden 2015 [33]
4 Chaotic n-4 13 - Hidden 2020 [16]
5 Hyperchaotic n-3 13 4.0216 Hidden 2018 [34]
6 Hyperchaotic n-3 13 4.0216 Hidden 2019 [35]
7 Hyperchaotic n-2 12 4.0669 Self-excited 2009 [36]
8 Hyperchaotic n-3 11 3.1899 Hidden 2021 [37]
9 Chaotic n-4 9 4.002 Hidden 2022 [38]
10 Hyperchaotic n-2 13 4.189 Self-excited 2022 [39]
11 Hyperchaotic n-2 10 4.3801 Multi-Attractors

(Hidden & Self-excited)
This work

2 Derivation of the Novel 5D Hyperchaotic System

In his seminal work in 1994, Sprott presented nineteen simple chaotic systems, inclusive of the Sprott C system,
which can be represented as follows [12]:

 ẋ1 = x2x3

ẋ2 = x1 − x2

ẋ3 = 1− x2
1

(1)

where, x1, x2, and x3 are variables of the system. This system presents two equilibria points E1,2(±1,±1, 0). With
Lyapunov exponents of the chaotic system LE i = (0.163, 0,−1.163), and the corresponding Lyapunov dimension
(DL = 2.140). The roots λ1 = −1, λ2 = ∓1.4142i, therefore, classify the system’s equilibrium points as non-
hyperbolic and unstable.

Expanding upon system (1) and leveraging the principles of the state feedback control [39, 40] and coupling
strategy [40–42], a new 5D hyperchaotic system was devised, expressed as follows:


ẋ1 = x2x3 − cx5

ẋ2 = x1 − x2

ẋ3 = 1− x2
1

ẋ4 = ax1x3 + bx4

ẋ5 = x1 + px2x3

(2)

This system (2) encompasses ten terms, with x1, x2, x3, x4, x5 as variables, a, b, and c, p are coupling and control
parameters, respectively (c, b ̸= 0). It can be observed in Figure 2 that the 5-D system (2) demonstrates hyperchaotic
behavior when parameters and initial conditions (ICs) from Eq. (3) and Eq. (4) are applied:


a = 1
b = 0.3
c = 0.006
p = 1

(3)

X(0) = (0.1, 0.1, 0.2, 0.1, 0.2) (4)
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Figure 2. Phase portrait illustrating the behavior of the system (2)

3 Dynamic Properties of New System

The dynamic characteristics of the newly proposed system, System (2), were investigated. By solving the
following equations, derived from System (2):


x2x3 − cx5 = 0
x1 − x2 = 0
1− x2

1 = 0
ax1x3 + bx4 = 0
x1 + px2x3 = 0

(5)

Two equilibrium points, denoted E1,2, were determined to be

E1,2

(
±1,±1,−1

p
,± a

bp
,∓ 1

cp

)
(6)

System (2)’s Jacobian matrix at point E1 is given by

J (E1) =


0 −1/p 1 0 −c
1 −1 0 0 0
−2 0 0 0 0

−a/p 0 a b 0
1 −1 p 0 0

 (7)

The corresponding characteristic equation via the law |J − λI| = 0 is

λ5 + (1− b)︸ ︷︷ ︸
A1

λ4 +

(
2− b+ c+

1

p

)
︸ ︷︷ ︸

A2

λ3 +

(
2− 2b− bc− 2cp− b

p

)
︸ ︷︷ ︸

A3

λ2 + (2bcp− 2b− 2cp)︸ ︷︷ ︸
A4

λ+ 2bcp︸︷︷︸
A5

= 0 (8)

System (2) can be characterized as either conservative or dissipative, contingent upon the trace of Matrix (7),
which is parameterized by b, as given by

tr =
∂ẋ1

∂x1
+

∂ẋ2

∂x2
+

∂ẋ3

∂x3
+

∂ẋ4

∂x4
++

∂ẋ5

∂x5
= −1 + b (9)

System (2) manifests as a dissipative system for b < 1, conservative for b = 1, and unbounded if b > 1. Crucial
roles in dictating the system’s stability are played by parameters b and c, as illuminated by Theorem 1.
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Theorem 1. Stability of System (2) can be adjudicated by parameters b and c, given that p is set to 1, as follows:
• System (2) achieves stability if b ∈ (−∞, 0) and c ∈ (−0.26376, 0).
• System (2) is unstable and non-hyperbolic for b = 0.
• System (2) is unstable and unbounded for b ∈ (0, 1).
The proof was derived by solving the characteristic Eq. (8) to attain the following equation:

(b− λ) (λ4 + (1)︸︷︷︸
A

λ3 + (3 + c)︸ ︷︷ ︸
B

λ2 + (2− 2c)︸ ︷︷ ︸
C

λ− 2c︸︷︷︸
D

)

︸ ︷︷ ︸
fourth order system

= 0 (10)

where, A = 1, B = 3 + c, C = 2− 2c, and D = −2c.
Based on Routh–Hurwitz criterion for a fourth order system [43], several conditions must be met from Eq. (10)

to ensure system stability. 
A > 0
D > 0
(AB − C)C −A2D > 0
AB − C > 0

•→ A = 1 > 0
•→ D > 0 ⇒ −2c > 0 ⇒ c < 0
•→ AB − C > 0 ⇒ 3 + c− (2− 2c) > 0 ⇒ c > − 1

3
•→ (AB − C)C − A2D > 0 ⇒ (1 + 3c)(2 − 2c) − (−2c) > 0 ⇒ 1 + 3c − 3c2 > 0 ⇒ −0.2637 < c <

1.2637 ⇒ c ∈ (−0.2637, 1.2637)
The intersecting conditions c < 0, c > −1/3, and c ∈ (−0.2637, 1.2637) yield the range c ∈ (−0.2637, 0).

Under these conditions, the stability of system (2) is assured given a parameter value of b within the range (−∞, 0).
Notably, an instability is introduced to system (2) when b equals 0, due to the presence of a non-hyperbolic root.
Additionally, system (2) presents instability for parameter values within the range b ∈ (0, 1) as the presence of a
positive root results in unbounded instability.

Remark 1. The insertion of b = −1 and p = 1 into Eq. (8) enables a classification of the attractors for system
(2). The characteristic Eq. (8), with a substituted value of c = −0.1 within the range of (-0.2637,0), results in the
equation:

(−1− λ)
(
λ4 + λ3 + 2.9λ2 + 2.2λ+ 0.2

)
= 0

This equation yields the roots: λ1 = −1, λ2 = −0.1050, λ3 = −0.7121, λ4,5 = −0.0915 ∓ 1.6332i. The
negative nature of the roots λ directs the system’s orbits towards the fixed point, thus stabilizing system (2). The
roots thereby classify the system as Focus-node, indicative of hidden attractors.

In contrast, the insertion of c = −0.3, which falls outside the range (-0.2637,0), into the characteristic Eq. (8)
yields:

(−1− λ)
(
λ4 + λ3 + 2.7λ2 + 2.6λ+ 0.6

)
= 0

Solving the equation gives the roots: λ1 = −1, λ2 = −0.3423, λ3 = −0.6999, λ4,5 = 0.0211 ∓ 1.5824i. Due
to the positive real part of the complex roots λ4,5, the system classifies as Saddle-Focus, leading to the instability of
system (2), thus, suggesting a Self-excited system.

In the mathematical field of differential equations and dynamical systems, one encounters various types of
equilibrium points, namely saddle-focus, node-focus, and non-hyperbolic points.

• A Saddle-Focus point, a critical juncture, presents a unique characteristic within the linearized system: it
contains one eigenvalue with a positive real part and two complex conjugate eigenvalues with a non-zero real part.
Geometrically, the trajectories proximal to a saddle-focus point demonstrate a blend of saddle-like and spiral-like
behaviour.

• On the other hand, a Node-Focus point emerges as a critical juncture wherein the linearized system possesses
two complex conjugate eigenvalues with negative real parts and non-zero imaginary parts. The distinguishing factor
here is the trajectory behaviour, which solely exhibits a spiral-like movement without any semblance of saddle-like
behaviour.

• Lastly, non-hyperbolic points are critical junctures in the linearized system, bearing at least one eigenvalue
with a zero real part. The geometric behaviour observed near non-hyperbolic points tends to be more multifaceted,
potentially including phenomena like bifurcations, limit cycles, and various types of attractors.
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The significance of these classifications is underscored in the qualitative analysis of dynamical systems. They
shed light on the stability and behaviour of solutions in proximity to these critical points. By analysing the linearized
system around these junctures, it becomes feasible to infer aspects about the local dynamics and the potential
existence of various orbit or trajectory types within the system.

Remark 2. Table 2 elucidates the root types, stability, and attractors of system (2) as determined by Eq. (8)
when the parameters b = −1 and p = 1 are substituted. Depending on the parameter c, the system oscillates between
stability and instability.

Table 2. Shows the system (2) stability and attractors

c Roots Type points Stability Attractors

0.006

λ1 = −1

λ2 = 0.006

λ3 = −0.7154

λ4,5 = −0.1453∓ 1.6682i

Saddle-Focus Unstable Self-excited

-0.27

λ1 = −1

λ2 = −0.3046

λ3 = −0.7027

λ4,5 = 0.0036∓ 1.5885i

Saddle-Focus Unstable Self-excited

-0.2637

λ1 = −1

λ2 = −0.2967

λ3 = −0.7032

λ4,5 = ∓1.5898i

Non-hyperbolic Critical case Self-excited
Or

Hidden

-0.006

λ1 = −1

λ2 = −0.006

λ3 = −0.7151

λ4,5 = −0.1395± 1.6641i

Node- Focus Stable Hidden

Remark 3. From a differential equation standpoint, critical cases in the stability theory refer to scenarios where
all the eigenvalues of the characteristic polynomial exhibit negative real parts, with at least one eigenvalue possessing
a real part equal to zero.

3.1 Lyapunov Exponential and Lyapunov Dimension

The rate of divergence or convergence of nearby trajectories in a dynamical system is effectively quantified by
the Lyapunov exponent. This metric provides insights into the long-term behaviour and stability of a system. A
dynamical system is suggested to be unstable or exhibit chaotic behaviour when the Lyapunov exponent is positive,
while a negative exponent indicates convergence towards a stable equilibrium. Conversely, the Lyapunov dimension
aids in identifying the fractal dimension of a chaotic system and evaluating its effective dimensionality by analysing
the scaling properties of the Lyapunov exponents.

The Lyapunov dimension, with its ability to capture the complexity and intricacy of the system’s attractor, offers
significant insight into the nature of the system. Higher Lyapunov dimensions typically suggest more complex
systems with an increased number of degrees of freedom.

Based on numerical simulations conducted using the Wolf Algorithm [44], Figure 3 represents the Lyapunov
exponent’s spectrum for typical parameters (3) & IC (4):

LE1 = 0.3049
LE2 = 0.1218
LE3 = 0.0027
LE4 = −0.0002
LE5 = −1.1293

⇒
5∑

i=1

LEi = −0.7001

The sum of the first five exponents is
∑5

i=1 LEi = −0.7001, which is approximately equal to tr (J (E1)) = −0.7.
This implies that system (2) displays dissipative behaviour. System (2) features a greater Maximum Lyapunov
Exponent (MLE) (LE1 = 0.3049) compared to system (1) (LE1 = (0.163)), highlighting its distinctness and higher
efficiency. The presence of two positive Lyapunov exponents in system (2) is indicative of its hyperchaotic nature.
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Figure 3. The system’s three positive Lyapunov exponents (2) with typical parameters (4), and IC (5)

The Lyapunov dimension of a system is crucial in characterizing the degree of chaotic behaviour. According to
the Kaplan-Yorke conjecture [45], the Lyapunov dimension is defined as:

DL = J +
1

|LEJ+1|

J∑
i=1

LEi ⇒ DL = 4 +

∑4
i=1 LEi

|LE5|
= 4.3801

With taking different values for control parameters and initial condition, in Table 3 and Table 4. Different types
of chaotic were obtained.

Table 3. LES of the system (2) for a different initial condition with parameters (3)

IC LE1 LE2 LE3 LE4 LE5 Sign of LES Behavior
0.1, 0.1, 0.3, 0.4, 0.5 0.3049 0.0302 0.0011 0.0001 -1.0362 (+,+, +, 0, -) Hyperchaotic
0.01, 0.2, 0, 0.7, 0.8 0.2994 0.1583 0.0017 -0.0009 -1.1585 (+,+, +, 0, -) Hyperchaotic
0.3, 0.1, 0.2, 0.1, 0.7 0.3046 0.1274 0.0006 -0.0053 -1.1273 (+,+,0, -, -) Hyperchaotic
0.1, 0.1, 0.2, 0.1, 0.4 0.3049 0.0893 0.0001 0.0008 -1.0952 (+,+, 0, 0, -) Hyperchaotic 2-tours

Table 4. LES of the system (2) for different b with parameters (3) and IC (4)

b LE1 LE2 LE3 LE4 LE5 Sign of LES Behavior
0.8 0.7991 0.1401 0.0031 0.0007 -1.1430 (+,+,+, 0,−) Hyperchaotic

0.02 0.1506 0.0146 −0.0002 -0.0026 -1.1423 (+,+, 0,−,−) Hyperchaotic
0.94 0.9397 0.1394 0.0001 −0.0005 -1.1387 (+,+, 0, 0,−) Hyperchaotic 2-tours
0.002 0.1003 −0.0007 -0.0016 -0.0031 -1.0929 (+, 0,−,−,−) Chaotic

0.0029 0.1101 0.0001 0.0001 -0.0019 -1.1055 (+, 0, 0,−,−) Chaotic 2-tours

3.2 Multistability

Multistability, a hallmark of complex systems like nonlinear systems or systems with feedback loops, is an
underpinning concept across multiple fields, including physics, biology, economics, and engineering. It is essential
for elucidating phenomena such as phase transitions, cell differentiation, decision-making processes, and pattern
formation. The significance of understanding and analyzing multistability in dynamical systems cannot be understated
as it offers deep insights into the behavior of the system, enables accurate predictions of system responses to
perturbations, and aids in the design of control strategies aimed at guiding the system towards specific attractors or
states.

Evidence of multistability in system (2) is presented in this section, showcasing how various attractors can coexist
within the same parameter region, provided the initial conditions are varied. These findings, encapsulated in Table 5,
highlight the diverse dynamical behavior the system can display under different initial conditions.
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Figure 4 further reinforces these observations, illustrating the coexistence of distinct dynamical behaviors within
the new system.

Table 5. Multistability with parameter a, p = 1, different b, c and IC

Figure 4 Parameters Initial Conditions Color
Figure 4 (a) b=0.002 (0.1, 7, 9, 0.2, 0.2) Red

c=0.002 (12, 5, 5, 0.5, 0.2) Blue
(-12, 6.5, 6, 0.2, 0.9) Magenta

Figure 4 (b) b=0.3 (0.5, 0.3, 2, 2, 0.2) Red
c=0.006 (-0.1, 1, 1, 1, 1) Blue

(0.1, 0.1, 1, 2,2) Magenta
Figure 4 (c) b=0.9 (30, 0.1, 0.1, 0.1, 0.1) Red

c=0.004 (-30,- 0.1, -0.1, -0.1, -0.1) Blue

Figure 4. The system’s (3) coexistence attractor in (a) x3 − x4 − x1 space. (b) x3 − x2 − x1 space, (c) x1 − x2

plane

4 Discussion

Insights gleaned from Table 6 underscore the enhanced efficacy of the newly implemented system (2), particularly
when contrasted against the performance of the original system (1).

5 Anti-Synchronization

Projective synchronization bifurcates into two distinctive types: Complete Synchronization (CS) and Anti-
Synchronization (AS). The possibility of synchronization was initially doubted until its existence was first observed
by Fujisaka and Yamada in 1983 [46]. However, it was not until 1990 when the phenomenon received notable
attention, following Pecora and Carrol’s discovery of this occurrence between two identically chaotic systems bearing
different initial values [47]. This discovery was subsequently christened Complete Synchronization (CS).

The phenomenon known as Anti-Synchronization (AS) is characterized by the asymptotic reduction of the sum
of the drive and response systems to zero. In other words, Anti-Synchronization can manifest between a drive
system and a response system when the states of the synchronized systems share the same absolute values, yet
display opposite signs, implying that all elements of (α = −1) [48]. In this section, a systematic process for the
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Table 6. Comparison between the new 5D system and 3D Sprott C system

Details 3D Sprott C System New 5D system (2)
Equilibria points E1,2 (±1,±1, 0)

(
±1,±1,− 1

p ,±
a
bp ,∓

1
cp

)

Sign of LEs (+, 0,-) chaotic

(+,+,+, 0,−) hyperchaotic
(+,+, 0,−,−) hyperchaotic
(+,+0, 0,−) hyperchaotic 2-torus
(+, 0,−,−,−) chaotic
(+, 0, 0,−,−) chaotic 2-torus

Type point • Non-hyperbolic unstable
• → Stable focus-nodes
• → Saddle-focus unstable
• → Non-hyperbolic unstable

Attractors behavior Self-excited Hidden & Self-excited
Max. LEs 0.163 0.3049

Lyapunov dimension DL 2.140 4.3801

anti-synchronization of chaos is proposed. The drive systems are represented by system (2), and the corresponding
response system is described as follows:


ẏ1 = y2y3 − cy5 + u1

ẏ2 = y1 − y2 + u2

ẏ3 = 1− y21 + u3

ẏ4 = ay1y3 + by4 + u4

ẏ5 = y1 + py2y3 + u5

(11)

The error dynamics in Anti-Synchronization (AS) are defined as: ei = yi−αxi, where i = 1, 2, 3, 4, 5, α = −1,
fulfilling the condition:

lim
t→∞

∥ei(t)∥ = ∥yi − αxi∥ = 0.

The error dynamical system is as follows:


ė1 = −ce5 + e2e3 − x2e3 − x3 (y2 − x2) + u1

ė2 = e1 − e2 + u2

ė3 = 2− e21 + 2x1y1 + u3

ė4 = be4 + ae1e3 − ax1e3 − ax3 (y1 − x1) + u4

ė5 = e1 + pe2e3 − px2e3 − px3 (y2 − x2) + u5

(12)

Theorem 2. If designed nonlinear control as follows:


u1 = −e1 − e2 + e1e3 − e5 − ae3e4 + x3 (y2 − x2)
u2 = −e1e3 − pe3e5
u3 = −e3 − 2 + ax1e4 + x2e1 − 2x1y1 + px2e5
u4 = −2be4 + ax3 (y1 − x1)
u5 = ce1 − e5 + px3 (y2 − x2)

(13)

Then the error dynamical system (12) is asymptotically stable.
Proof. By inserting the proposed controller (13) into Eq. (12), we obtain


ė1 = −e1 − e2 − (c+ 1)e5 + e2e3 − x2e3 + e1e3 − ae3e4
ė2 = e1 − e2 − e1e3 − pe3e5
ė3 = −e3 − e21 + ax1e4 + x2e1 + px2e5
ė4 = −be4 + ae1e3 − ax1e3
ė5 = −e5 + pe2e3 − px2e3 + (c+ 1)e1

(14)

In accordance with Lyapunov stability theory, we choose a Lyapunov function as follows: V (ei) = eTPe, i =
1, 2, . . . , 5, P = diag{0.5, 0.5, . . . , 0.5}, i.e.,
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V (ei) =
[
e1 e2 e3 e4 e5

]


0.5 0 0 0 0
0 0.5 0 0 0
0 0 0.5 0 0
0 0 0 0.5 0
0 0 0 0 0.5


︸ ︷︷ ︸

P


e1
e2
e3
e4
e5

 (15)

and their derivative Lyapunov as:

V̇ (ei) = e1ė1 + e2ė2 + e3ė3 + e4ė4 + e5ė5 (16)

V̇ (ei) = e1 [−e1 − e2 − (c+ 1)e5 + e2e3 − x2e3 + e1e3 − ae3e4]

+e2 [e1 − e2 − e1e3 − pe3e5] + e3
[
−e3 − e21 + ax1e4 + x2e1 + px2e5

]
+e4 [−be4 + ae1e3 − ax1e3] + e5 [−e5 + pe2e3 − px2e3 + (c+ 1)e1]

(17)

V̇ (ei) = −e21 − e22 − e23 − be24 − e25 ⇒ V̇ (ei) = − [e1 e2 e3 e4 e5]


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 b 0
0 0 0 0 1


︸ ︷︷ ︸

Q1


e1
e2
e3
e4
e5



where, Q1 = diag(1, 1, 1, b, 1), b = 0.3, this yields that Q1 > 0, thus V̇ (ei) is negative definite matrix on R5. The
corresponds law limt→∞ ∥ei(t)∥ = 0 satisfied and he drive and response systems is anit-synchronize. Time series
of anti-synchronization for error dynamical system (12) are depicted in Figure 5, with the ICs (0.5, 0.1, -0.2, 0.3,
-0.3), and (0.1, -0.2, 0.4, 0.2, 0.1), Figure 6 provides a numerical explanation of the anti-synchronization between
(2) and (11), this demonstrates that the theoretical results Theorem 2.

Figure 5. Time series of anti-synchronization for error dynamical system (12) with controller (13)

6 Conclusions

In this study, a novel five-dimensional hyperchaotic system has been introduced, composed of ten terms and
evolved from a three-dimensional Sprott C system. This unique system is characterized by the exhibition of two
coexisting attractors: a self-excited attractor and a hidden attractor. Various attributes derived from diverse types of
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Figure 6. The anti-synchronization (AS) with controller (13)

equilibrium points, such as stable focus-nodes, saddle-focus, and non-hyperbolic unstable points, are incorporated into
the system, the presence of which is dictated by the system parameters. The occurrence of chaotic and hyperchaotic
attractors coexisting within a single five-dimensional system that accommodates three types of equilibrium points
presents a compelling phenomenon.

A plethora of numerical methods, including phase portraits, Lyapunov exponents, Lyapunov dimensions, and
Multistability, have been utilized to elucidate the distinct attractors. Furthermore, the synchronization issue of the
proposed system is scrutinized extensively in the study by employing stability theory. A myriad of dynamic behaviors,
including hyperchaotic, hyperchaotic with 2-tours, chaotic, and chaotic with 2-tours, have been documented. Both
theoretical proofs and numerical simulations, executed with MATLAB 2021, have confirmed the legitimacy of these
theoretical findings.

This study’s impact extends beyond the establishment of the new hyperchaotic system. By unveiling the
complexity and richness of the dynamical behaviors within the five-dimensional system, it provides insights for a
deeper understanding of chaotic dynamics. Additionally, the identification of different types of equilibrium points
under various parameters underscores the role of parameter values in shaping a system’s behavior. The coexistence
of different types of attractors in the same system also offers a valuable case study of the complex dynamics of
hyperchaotic systems. Future research could further explore the implications of these findings for system control
and synchronization, potentially opening new avenues for practical applications in secure communication, signal
processing, and complex network dynamics.
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