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Abstract: In this study, the challenges of load variations, input voltage fluctuations, and reference voltage devi-
ations for a DC-DC buck converter system are addressed. A composite voltage controller, founded on a model
predictive control (MPC) integrated with a reduced-order state observer (RESO), is introduced to ameliorate the
tracking performances of such converters. Disturbances, both matched and mismatched, are conceptualized as
total disturbances within an innovatively proposed error tracking model. Subsequently, a RESO is meticulously
developed to estimate and attenuate these disturbances. In parallel, an MPC is crafted to ensure enhanced system
robustness and superior steady-state performances. Comparative simulations indicate that this innovative composite
controller exhibits a rapid settling time and smoother response curve compared to traditional MPC. Furthermore,
it is observed that when exposed to disturbances, the proposed methodology demonstrates heightened disturbance
rejection capabilities, accelerated voltage tracking, and improved steady-state performance.

Keywords: DC-DC conversion; Buck converter; MPC; RESO; Disturbance rejection

1 Introduction

Amid the escalating demand for DC power supply and DC grids, DC-DC converters have been extensively
studied and employed across various DC circuits, encompassing renewable energy sources (RESs), energy storage
systems (ESSs), and interfacing devices. A pivotal role in these applications is played by DC-DC converters,
primarily serving as a nexus between the DC bus and DC load, each having diverse voltage or power specifications.
Of all the DC-DC converters, the DC-DC buck converter stands as one of the most fundamental and emblematic.
However, it has been observed that such converters inevitably encounter both internal and external disturbances,
collectively termed as total disturbances [1]. These disturbances have been identified to comprise uncertainties in
power generation equipment, electromagnetic noise, and variations in load [1]. Moreover, challenges posed by input
variations have been perceived to be more intricate compared to load changes [1]. Such complications are believed
to escalate risks of power loss and potential equipment damage [2].

For buck converters, achieving optimal dynamic and static performance in the face of these disturbances and
varying operational conditions has been deemed imperative. Previous research findings have indicated the potential
benefits of refining circuit topology or control strategy to bolster the DC converter’s anti-disturbance rejection
capability and voltage tracking performance [3]. In numerous practical scenarios, the introduction of cutting-edge
control strategies has been recognized as a straightforward and viable solution [4]. Yet, achieving desired control
outcomes has been achieved by overhauling existing DC converter circuits, often accompanied by significant costs
and extended developmental cycles [4]. A myriad of controllers, including proportional-integral (PI) control,
model predictive control (MPC), sliding mode control (SMC), fuzzy control, and active disturbance rejection
control (ADRC), have been explored for electrical power converters [5–7]. A notable approach, the fuzzy SMC,
was designed to supplant the traditional PI controller, primarily to curtail chattering phenomena and heighten
robustness [5]. Furthermore, an enhanced linear ADRC was suggested to address the pronounced degradation of
power quality during microgrid disturbances [6]. Thus, a comprehensive analysis of advanced control strategies
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is believed to facilitate effortless parameter tuning and promote superior dynamic and static performance of power
converter systems.

Renowned for its adeptness in managing multiple-input-multiple-output (MIMO) systems with diverse con-
straints, MPC has been extensively employed, particularly within the power electronics realm, owing to its robustness
and commendable steady-state performance [7]. Typically, the core components of MPC encompass a predictive
model, a cost function designated for weight tuning, and a receding horizon for periodic amendments [8]. A recent
study proposed an MPC-based scheme tailored for a dual active bridge DC-DC converter to elevate its dynamic
performance while adhering to current stress limitations [8]. An intriguing revelation in this field has been the frac-
tional order of real-world inductance and capacitance, implying that the current and voltage derivative relations for
these components deviate from the integer order [9]. Nevertheless, the intrinsic ability of MPC to adjust its horizon
periodically has been postulated to exhibit commendable resilience against non-linearities and system uncertainties
[10]. Consequently, MPC emerges as a promising alternative control technique for the DC-DC buck converter,
aiming to mitigate external disturbances and model uncertainties.

Historical models of the DC-DC buck converter were conceptualized with capacitance voltage and inductance
current as primary states. These models were often accompanied by both matched and mismatched disturbances [11].
The emergence of mismatched disturbances is suspected to potentially prolong convergence time, suggesting that
disturbance capabilities might be compromised by these mismatched disturbances [11]. Traditional physical test-
ing systems have found the differentiation of output voltage challenging. However, observer-based soft sensing
technology was identified as an optimal solution in practical engineering contexts [12]. Consequently, an output
error tracking model has been proposed to address these challenges, given its capability to reclassify mismatched
disturbance as matched disturbance [13].

Furthermore, observer-based control methods such as extended state observer (ESO), disturbance observer (DO),
and generalized proportional-integral observer (GPIO) have been acknowledged as efficacious methodologies for
disturbance estimation and compensation, rooted in the inner model theory. Predominantly, these control techniques
are observed to mitigate both internal and external disturbances through a feed-forward channel in real-world control
systems [14]. For instance, a robust DO-based adaptive SMC strategy was conceptualized for humanoid support
robots, aiming to stabilize tracking errors within a stipulated timeframe [14]. Similarly, an ESO focused on the
state model was developed to address both external and internal disturbances and uncertainties [15]. In another
endeavor, a GPIO-aligned super-twisting SMC was crafted to enhance the tracking precision of the permanent
magnet synchronous motor (PMSM) speed regulation system [16]. However, potential challenges for these observer
methods, such as lagging observer convergence rates or overwhelming observer computations when paired with
MPC, have been highlighted.

In the context of DC-DC buck converters, the disturbances - both internal and external - have been meticulously
examined and subsequently categorized as total disturbances. The primary impetus behind this study revolves around
the development of an optimized voltage tracking strategy for DC-DC buck converters, especially in light of input
fluctuations and load variations. Consequently, an RESO integrated with a model predictive controller has been
proposed, aiming to expedite the voltage tracking process of the DC-DC buck converter. The adoption of the MPC
approach facilitates a cohesive design methodology, ensuring adherence to physical constraints while maintaining
optimal steady and dynamic performances. Furthermore, a discrete average model has been introduced to both design
and predict the continuous conduction mode (CCM), solidifying system stability and bolstering its anti-disturbance
capabilities.

The notable contributions of this research can be distilled into the following points:
• A novel model has been formulated that amalgamates both matched and mismatched disturbances under the

umbrella of total disturbances. It was observed that the rate of convergence remained uninhibited by the presence of
mismatched disturbances.

• The implementation of RESO showcased an enhanced anti-disturbance capacity, particularly in response to
deviations in input voltage and load resistance, demonstrating a more rapid convergence compared to the conventional
ESO.

The structure of this article is organized systematically. In Section II, the innovative state-space system model,
focused on the tracking error of the buck converter, is elucidated. The underlying principles of the proposed RESO-
MPC are explored in depth in Section III. Performance assessments, grounded in simulation cases, are presented in
Section IV. The article culminates in Section V, drawing conclusions from the research undertaken.

2 Buck Converter Modeling

Within the context of CCM, the average state equation of the buck converter has been introduced, as depicted in
Figure 1. Subsequently, an error-tracking state equation was derived based on this average state equation.

As illustrated in Figure 1, the circuit topology of the buck converter encompasses several key components: A
MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) switch denoted as S, a diode labeled D, an inductance
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L with its associated resistance rL and a capacitance C. Here V in and R are representative of the input voltage and
the load’s equivalent resistance, respectively.

Figure 1. Circuit topology of the buck converter

Drawing from Kirchhoff’s current and voltage theorems, the average state equation of the buck converter in CCM
can be represented as: {

iL = µVin

L − vo
L

v̇o = iL
C − vo

CR

(1)

where, iL and vo denote the inductor current and capacitor voltage, in that order. The duty ratio is defined by µ.
Output error tracking states are subsequently defined as:{

x1 = vo − Vr

x2 = ẋ1
(2)

where, x1 captures the variance between the output voltage vo and the reference output voltage Vr, whereas x2 is
indicative of the differentiation of x1, effectively representing the differentiation of output voltage vo.

Building upon Eq. (1), the output voltage error tracking state equation can be formulated as:{
ẋ1 = x2

ẋ2 = ẍ1 = µVin−vr
LC − x1

LC − x2

RC

(3)

Given that the real input voltage and resistive load may diverge from their nominal counterparts, the discrepancies
between real and nominal values can be perceived as disturbances. This insight allows for the reconstruction of the
error tracking state model, as seen in Eq. (4):{

ẋ1 = x2

ẋ2 = ẍ1 = µVin0−vr
LC − x1

LC − x2

R0C
+ d(t)

(4)

where, Vin0 and R0 are the nominal values of Vin and R, respectively. The encompassing disturbances are described
by d(t) = µ

LC (Vin − Vin0) + ẋ1(
1

R0C
− 1

RC ). It should be noted that other forms of disturbances exhibit a linear
dependence on R and Vin, suggesting their equivalence to the total disturbances.

3 The RESO-MPC Approach: Conceptualization and Design

Figure 2. Structural blueprint of the RESO-MPC strategy
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In this section, the architectural design of the RESO for state and disturbance estimation is elucidated. Parallelly,
the fundamentals of MPC are laid down, affirming its role as the primary controller.

As demonstrated in Figure 2, the intricate design of the RESO-MPC architecture emerges. It can be discerned
that the RESO is formulated primarily for estimating state variables and the collective disturbances. Utilizing the
output voltage data, alongside the RESO-estimated values, the MPC is then assembled. Culminating this process, a
PWM signal is sculpted based on the controller’s output, steering the buck converter’s switch.

3.1 The Blueprint of the RESO

Considering the intrinsic challenges in measuring the state variable x2 using conventional physical sensors,
observer-based soft sensor techniques are employed for x2 estimation. This method offers the luxury of concurrently
estimating both x2 and the aggregate disturbances, denoted as d. Viewing the total disturbances as a novel state
variable for ESO, the state space equation can be expanded as:

ẋ1 = x2

ẋ2 = ẍ1 = µVin0−vr
LC − x1

LC − x2

R0C
+ x3

ẋ3 = ḋ

(5)

From this, an ESO stemming from Eq. (5) is architectured as:
ż1 = z2 − l1 (z1 − x1)

ż2 = µVin0−vr
LC − x1

LC − 1
R0C

z2 + z3 − l2 (z2 − x1)

ż3 = −l3 (z2 + β1z1)

(6)

where, l1, l2, l3 are recognized as the observer gains. The parameters z1, z2, z3 serve as the estimated values for
x1, x2, x3, respectively. The convergence rate, dictated by the observer gain, is intriguing: a more substantial
observer gain accelerates the ESO convergence rate. However, caution is mandated, as a surge in gain might induce
oscillations. Thus, ADRC parameter selection becomes pivotal. Given that the ESO foundation is rooted in state
feedback, the value of the state variable becomes essential. A noteworthy observation is the tight relationship between
the estimation discrepancies of z2, z3 and x2, x3 with the precision of estimated values of z1 and x1. Moreover, z1
is designed to shadow x1, and the latter can be measured directly via a voltage sensor. Consequently, the RESO,
backed by the measured value x1, can be garnered at a rate outpacing the ESO. The RESO is thus expressed as:

ż2 =
µVin0 − vr

LC
− x1

LC
− 1

R0C
(z2 + β1x1) + z3 + β2x1 − β1 (z2 + β1x1) ,

ż3 =− β2 (z2 + β1x1) ,

x̂2 =z2 + β1x1, x̂3 = z3 + β2x1

(7)

where, β1, β2 signify the RESO gains. Outputs from RESO, x̂2, x̂3 reflect the estimated values.
To dissect the disturbance sensitivity innate to the proposed RESO, transform functions rooted in Eq. (7) are

computed, resulting in:

∆x̂2

∆x1
=

∆z2 + β1∆x1

∆x1
=

dz2
dt
dx1

dt

x1

z2
+ β1 ≃

(
µVin0−vr

LC − x1

LC + z3 + β2x1

z2 + β1x1
− 1

R0C
− β1

)
x1

z2
+ β1 (8)

∆x̂3

∆x1
=

∆z3 + β3∆x1

∆x1
=

dz3
dt
dx1

dt

x1

z3
+ β2 = −β2

x1

z3
+ β2 (9)

From a synthesis of Eqs. (8)-(9), a remarkable observation can be made: a disturbance impact on x1 precipitates
a swift surge in x̂2 and x̂3. Additionally, a more pronounced disturbance effect on x1 magnifies the volatility in the
ranges of x̂2 and x̂3.

3.2 MPC: Design and Framework

In the context of this study, x1 is selected as the output variable, from which the state space equation is derived
as:

Ẋ = AcX +Bcuu+Bcdd

y = CcX
(10)
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where, X =
[
x1 x2

]T
, u = µVin0−vr

LC , d = 1
LC (Vin − Vin0) + ẋ1(

1
R0C

− 1
RC ), Ac =

[
0 1

− 1
LC − 1

R0C

]
,

Bcu =
[
0 1

]T , Bcd =
[
0 1

]T , Cc =
[
1 0

]
. The continuous time state space represented in Eq. (4)

is transformed into the discrete time state space equation as illustrated in Eq. (11), achieved using the Euler
approximation depicted in Eq. (12):

X(k + 1) = AdX(k) +Bduu(k) +Bddd(k)

y(k) = CdX(k)
(11)

where, Ad = I + AcTs, Bdu = BcuTs, Bdd = BcdTs, Cd = Cc. The matrix symbol I and time notation Ts are
unit matrix and sampling time. The Euler approximation equation developed in the paper can be shown as follows:

dx(t)

dt
=

x(k + 1)− x(k)

Ts
(12)

Transitioning from the discrete state space equation, Eq. (11) is adapted into its incremental form by invoking
the incremental equation, Eq. (14), resulting in Eq. (13):

∆X(k + 1) = Ad∆X(k) +Bdu∆u(k) +Bdd∆d(k)

y(k) = Cd∆X(k) + y(k − 1)
(13)

∆X(k + 1) = X(k + 1)−X(k) (14)

where, ∆d(k) = x̂3(k) − x̂3(k − 1) is the defined parameter. Consequently, the augmented state space equation
emerges as:

X̄ (ki + 1 | ki) = AX̄ (ki) +B∆u (ki) +Bd∆d (ki)

y (ki + 1 | ki) = CX̄ (ki + 1 | ki)
(15)

where, X̄(ki) =

[
∆X(k)

y(k)

]
denotes augmented state vector, X̄(ki + 1|ki) and y(ki + 1|ki) denote the prediction of

the state quantity and system output at ki + 1 steps at moment ki, respectively. The output matrix Y , as following
Eq. (16), can be obtained after a series of derivations of future state quantities and output predictions, by defining
∆u(k + i) = 0, i = Nc, Nc + 1, Nc + 2, ..., Np − 1 and ∆d(k + i) = 0, i = 1, 2, ..., Np − 1.

Y = FX̄ (ki) + Φ∆U +D∆d (ki) (16)

where,

F =


CA
CA2

...
CANp

,

Φ =


CB 0 0 0
CAB CB 0 0
... ... ... CANp−Nc-1B

CANp−1B CANp−2B ... CANp−NcB

,

D =
[
CBd CABd . . . CANp−1Bd

]
,

Y =
[
y(ki + 1|ki) y(ki + 2|ki) . . . y(ki +Np|ki)]T ,

∆U =
[
∆u(ki) ∆u(ki + 1) . . . ∆u(ki +Nc − 1)]

T .

The parameter matrixes are defined as A =

[
Ad 0Tm

CdAd 1

]
, B =

[
Bdu

CdBdu

]
, Bd =

[
Bdd

CdBdd

]
, C =

[
0m 1

]
.

The cost function can be defined as follows:

J = (Rs − Y )
T
(Rs − Y ) + ∆UT R̄∆U (17)

where, RT
s = [1 1 ..... 1]︸ ︷︷ ︸

Np

r(ki) denotes the reference of matrix Y . The notation R̄ = rwINc×Nc
is the weighting

coefficients of the cost function. The coefficients rw and INc×Nc
mean feedback factor and the unit matrix ofNc×Nc
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order. Considering the output as the difference between the output voltage and its actual expectation, the expectation
should converge to 0, which means r(ki) = 0. The partial derivative of Eq. (16) should be equal to 0, so the solution
can be obtained as follows:

∆U =
(
ΦTΦ+ R̄

)−1
ΦT (−Fx (ki)−D∆d (ki)) (18)

Given that the MPC necessitates receding in the time domain and recalculates per sample, the control variable
for each output emerges as:

∆u =
[
1 0 · · · 0

]︸ ︷︷ ︸
Nc

∆U (19)

However, due to the modulation wave’s width constraints u, on the control law µ, a constraint is deduced,
encapsulated in Eq. (20):

µ =
uLC + vr

Vin0
, µ ∈ (0, 1) (20)

This constraint on u is further depicted in:

u ∈
(
−vr
LC

,
Vin0 − vr

LC

)
(21)

Consequently, the control law u(t) is articulated as:

u(t) =


− vr

LC , ∆u(t) + u(t− 1) ≤ − vr
LC

∆u(t) + u(t− 1), − vr
LC < ∆u(t) + u(t− 1) < Vin0−vr

LC
Vin0−vr

LC , ∆u(t) + u(t− 1) ≥ Vin0−vr
LC

(22)

4 Convergence and Stability Analysis

This section delves into the convergence properties of RESO and the stability characteristics of the closed-loop
system, explored under a specific set of assumptions and lemmata.

4.1 Convergence Attributes of ESO

Given the potential abrupt surges in total disturbance from the input voltage and load resistance, coupled with
the error tracking state equation, Assumption 1 and Lemma 4.1 are posited:

Assumption 1. For the above DC-DC buck system (4), The total disturbances d(t) can be supposed to be
bounded and satisfied lim

t→0
ḋ(t) = 0.

Lemma 4.1. [17] Considering that a nonlinear system ẋ = F (x,w) is satisfied input-to-state stable (ISS), the
state variable condition lim

t→0
x(t) = 0 is satisfied, if the input condition lim

t→0
w(t) = 0 is satisfied.

Proof. Errors arising between the observer estimated values and the actual system state variables can be expressed
as ξ2 = x̂2 − x2, ξ3 = x̂3 − x3, leading to the subsequent relation expressed in Eq. (23):

ξ̇2 = −
(
β1 +

1
R0C

)
ξ2 + ξ3

ξ̇3 = −β2ξ2 − ḋ
ξ2 = x̂2 − x2, ξ3 = x̂3 − x3

(23)

where, d encapsulates the total disturbances. The integration of observer errors, portrayed in Eq. (24), can be
executed as:

ξ̇ = AESOξ +BESOḋ (24)

where, ξ = [ξ2, ξ3]
T , AESO =

[
−(β1 +

1
R0C

) 1

−β2 0

]
, BESO = [ll0− 1]. Then, the eigenvalues of system matrix

AESO can be calculated from characteristic equation:

det (λI −AESO) = λ2 +

(
β1 +

1

R0C

)
λ+ β2 = 0 (25)

where, in alignment with prior definitions, β1 +
1

R0C
> 0, β2 > 0 represents the eigenvalue. It becomes evident

that the system pole resides within the left half plane. Thus, in alignment with Lemma 4.1, and ensuring that the
disturbance under consideration conforms to Assumption 1, it is inferred that the observer exhibits convergence.
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4.2 Stability Analysis for Closed-loop

To demonstrate the stability of closed-loop, Lemma 4.2 is necessary to introduce based on Lyapunov function.
Lemma 4.2. [18] Consider a closed-loop system under MPC scheme asymptotically stable. If there exists

Lyapunov functionV (x) satisfies the following equation and inequation, then the closed-loop system is asymptotically
stable:
1) V (X(k)) ≥ 0 for all x and V (0) = 0,
2) ∆V (x) = V (f(x))− V (x) for all x.

Proof. Substituting Eq. (16) in Eq. (17) and sort it out:

∆u =
[
1 0 · · · 0

]︸ ︷︷ ︸
Nc

(
ΦTΦ+ R̄

)−1
ΦT (−Fx (ki)−D∆d (ki))

= −KMPCx (ki)−Kd∆d (ki)

(26)

where, KMPC and Kd are state feedback control gain using MPC and feedback control gain related to ∆d (ki)
respectively. Then, by substituting the Eq. (26) into Eq. (15), the closed-loop state-space equation of the system can
be obtained as follows:

X̄ (ki + 1 | ki) = (A−BKMPC) X̄ (ki) + (Bd −BKd)∆d (ki) (27)

The Lyapunov function can be given as following Eqs. (27)-(28), to introduce the analysis the stability of the
closed-loop system:

V (x(k)) = x2(k) (28)

∆V (X̄(k)) = X̄2(k + 1 | k)− X̄2(k)

=
(
BcloseX̄(k) +Bdclose∆d(k)

)2 − (X̄(k))2

≃
(
I −B2

close

)
(X̄(k))2 +B2

dclose(∆d(k))2

(29)

where, Bclose = (A−BKMPC). In addition, matrix Bdclose = (Bd −BKd) are control matrixes and disturbance
matrixes of the closed-loop system. If the disturbance satisfies Assumption 4.1, the following inequality can be
satisfied:

−
(
I −B2

close

)
X̄2(k) +B2

dclose(∆d(k))2 ≤ 0 (30)

Obviously, the following inequation (31) can be deduced:

∆V (X̄(k)) ≤ −
(
I −B2

close

)
(X̄(k))2 +B2

dclose(∆d(k))2 (31)

Thus,

∆V (X̄(k)) ≤ 0,∀X̄2(k) ≥
(
I −B2

close

)2
B2

dclose(∆d(k))2 (32)

As a result, by substituting the value of BMPC and Bd, inequation (32) means that the closed-loop system (26)
is stable with respect to bounded ∆d (k).

5 Simulation Results and Analysis

Within this section, the parameters pertaining to the DC-DC buck converter, as well as the resultant simulation
data, are detailed. Emphasis is placed on discerning the robustness and steady-state efficacy of the proposed RESO-
MPC scheme through comparative simulations against the conventional MPC. For the purpose of these simulations,
the buck converter was operated in a CCM to ensure its alignment with the desired model. MATLAB/Simulink
was employed for these simulations, with initial conditions being configured to match desired input voltage levels.
Essential component parameters of the DC-DC buck converter are delineated in Table 1.

Figures 3, 4, and 5 illustrate the performance metrics of the RESO-MPC, ESO-MPC, and the conventional
MPC in scenarios encompassing variations in input voltage, output load, and reference output voltage, respectively.
Specifically:

• Figure 3 captures the scenario wherein the input voltage undergoes a decline from 10 V to 9 V, subsequently
surging to 10.5 V.

• Figure 4 documents the condition wherein resistance undergoes a significant reduction, decreasing from 300 Ω
to 150 Ω.

• Figure 5 chronicles the event where the reference descends from 6 V to 8 V, followed by an elevation to 5 V.
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Table 1. Parameters of the DC-DC buck converter

Parameters Symbol Value
Input voltage E 10 V

Desire input voltage Vr 5 V
Inductance L 4.7mH

Capacitance C 4.7µF
Load resistance R 300Ω

Figure 3. Comparative response dynamics under RESO-MPC and MPC during input voltage variation

Figure 4. Comparative response dynamics under RESO-MPC and MPC during load resistance adjustments

Figure 5. Comparative response dynamics under RESO-MPC and MPC with variations in reference output

Drawing from Figures 3 and 4, it is observed that the settling time for output voltage governed by the RESO-MPC
controller is accelerated by margins of 0.03s and 0.01s compared to the MPC controller, during input voltage and load
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resistance alterations, respectively. Further insights from Figure 5 indicate that during transitions of output voltage
from 6 V to 8 V and from 8 V to 5 V, the RESO-MPC-controlled system demonstrated a swifter settling time by
0.01s and 0.005s, respectively, compared to its MPC counterpart. Additionally, a discernable reduction in response
curve variance of the output voltage, amounting to 0.12 V and 0.8 V, is noted under the RESO-MPC controller, as
contrasted with the MPC controller during input voltage fluctuations.

The analyzed simulation outcomes underscore the superior anti-disturbance and dynamic performance inherent
to the RESO-MPC controller relative to the traditional MPC. Figures 3 and 4 corroborate the enhanced disturbance
rejection capability of the RESO-MPC controller in the presence of external perturbations. Figure 5 further
accentuates the proficiency of the RESO-MPC controller in swiftly achieving target values devoid of overshoots,
while the conventional MPC exhibited a more protracted approach with noticeable overshoots. In essence, for DC-
DC buck converters, the RESO-MPC controller emerges as a paradigm demonstrating commendable steady-state
and dynamic performance coupled with an elevated anti-disturbance capacity.

6 Conclusions

The disturbance attenuation challenge within the context of the input and output of the DC-DC buck converter has
been meticulously explored. An RESO was meticulously designed to estimate both state and disturbance variables.
Convergence and stability were rigorously assessed using input-to-state stability criteria combined with Lyapunov
theory. Through simulation, the efficacy of the presented control strategy was confirmed.

The following salient observations emerged from the simulation and experimental results:
• Firstly, the RESO exhibited an enhanced capability for tracking and resisting disturbances stemming from

alterations in input voltage and load resistance.
• Secondly, the introduced RESO-MPC controller demonstrated superior dynamic performance in comparison

to traditional MPC.
These findings corroborate the premise that a buck converter governed by a RESO-MPC controller can sustain

high-quality outputs and efficiently counteract disturbances, even in the presence of sub-optimal circuit conditions.
The application of the proposed RESO-MPC strategy to converters boasting intricate topologies and diverse

functionalities warrants further exploration, particularly in navigating multifaceted disturbances. Concurrently,
further refinements and computational optimizations remain imperative for enhancing the MPC’s performance.

Future research endeavors may extend the present study by examining the applicability and robustness of the
RESO-MPC strategy across a wider array of converters and operational scenarios, thereby broadening its scope and
potential utility.
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