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Abstract: In this investigation, the robust H∞ control of nonlinear electric vehicles (EVs), powered by permanent
magnet synchronous motors (PMSM), was examined. Emphasis was placed on enhancing the accuracy and robustness
of the vehicle speed regulation by incorporating a meticulous H∞method, supplemented by the proficient integration
of Linear Matrix Inequality (LMI). A solution predicated on the LMI approach was devised, encompassing two distinct
H∞ controllers for both current and speed control. Subsequent to an extensive analysis of the mathematical and
control model of the EV, weighting functions were judiciously selected to optimize stability and performance. The
proposed methodology offers significant advancements in the domain of EV control strategies and proffers insights
into the application of robust control methods. Through comprehensive simulations, the effectiveness of the outlined
method was validated, revealing impeccable speed control and ensuring steadfast performance when applied to the
dynamic model of an EV equipped with a PMSM motor. This research elucidates the progressive strides made in
the realm of EV control tactics and offers profound understandings of robust control methodologies.

Keywords: Electric vehicle (EV); Permanent magnet synchronous machine (PMSM); H-infinity robustness; Linear
matrix inequality (LMI); Speed tracking

1 Introduction

Over the past several decades, challenges within control systems have been the focus of extensive research.
Such challenges, including the introduction of undesirable variables like modeling uncertainty, the influence of
measurement noise, and effects stemming from overlooked nonlinear dynamics, have necessitated the development
of highly effective synthesis techniques. It has been observed that these techniques necessitate the synthesis of
controllers which strike a balance between robust loop system stability and optimal performance [1]. Importantly,
this balance is not merely restricted to the nominal operating speed of the system under control but also extends to
numerous conditions wherein the synthetic model’s parameters can exhibit significant variability.

Prominent among the applied robust methodologies, the H∞ control utilizing RICATTI equations and those
leveraging the Linear Matrix Inequalities (LMI) approach have been cited [2–6]. It was in the early 1980s that this
robust methodology found its origins, primarily attributed to the pioneering efforts of researchers like DOYLE and
SAFONOV, wherein novel mathematical tools were introduced. Currently, this method stands as a primary research
direction, particularly within the domain of robust techniques [2, 3, 5].

The central challenge identified in this study pertains to the development of more efficient control laws, especially
concerning trajectory tracking, disturbance negation, stability, and robustness vis-a-vis parameter uncertainty [7, 8].

An EV, typically characterized by an electric motor operating exclusively on electrical energy, has at its core a
PMSM. This motor, while bringing benefits like a substantial reduction in weight and volume for a specific output
power (high power density), also offers increased efficiency and effective heat dissipation. However, challenges such
as pitch disturbance, augmented torque, vibration, and noise serve as significant impediments, particularly impacting
EV performance in road-speed contexts [9, 10].
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For ensuring consistent vehicular speed without frequent adjustments, and considering the aforementioned
challenges, the cruise control system was designed, primarily focusing on facilitating safety, comfort, and ease of
drive for users. In this context, the robust H-infinity control, implemented via the LMI approach, was utilized for
designing a controller specific to EVs powered by a PMSM [11]. Through this approach, stabilization and effective
speed tracking were achieved.

Subsequent sections are structured as follows: Section 2 delves into the longitudinal mathematical model of
EVs. Sections 3 and 4 focus on the design approach and its subsequent implementation for speed tracking control
specific to EVs. Performance evaluations of the controller, facilitated by comprehensive numerical simulations, are
presented in Section 5, with concluding remarks featured in Section 6.

2 Problem Description

As depicted in Figure 1, the dynamics of the EV system can be primarily segmented into two components: motor
system dynamics and vehicle dynamics. The motor system is interfaced with the EV system through a transmission
unit, encompassing the transmission system. In a standard EV setup, accelerator/brake pedals are employed by the
driver to relay acceleration/deceleration command signals to the controller. A PMSM motor, which is integrated
with the EV system through a transmission unit equipped with a gear system, is utilized to propel the aforementioned
EV system. In essence, the speed of the PMSM motor is modulated to control the overall EV system [9, 12].

Figure 1. Configuration of the EV

2.1 Vehicle Dynamics Modeling

The dynamic model of the vehicle, based on the cumulative forces exerted upon it (refer to Figure 2), is governed
by Newton’s second law [9, 10, 13–16].

Figure 2. Applied forces on a vehicle

The summation of all active forces yields the total resultant force, given by:

F = Mgfr cos(α) +
1

2
ρAfCDV 2 +Mg sin(α) +M

dV

dt
(1)
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(1) The gravitational force, which acts upon a vehicle during incline traversal, is determined by the slope angle
and is proportional to the vehicle’s mass. It is represented as:

Fg = Mg sin(α) (2)

(2) The aerodynamic resistance force, created by air flowing over the moving vehicle’s body, is influenced by the
vehicle’s frontal area orientation. Its mathematical representation is:

Faero =
1

2
ρAfCDV 2 (3)

(3) The primary source of rolling resistance arises from the friction between the vehicle’s tires and the road
surface, opposing the direction of vehicle movement. This force is defined by:

Fr = Mgfr cos(α) (4)

The resultant force, F, produced due to the friction between the vehicle tires and the road, generates a torque that
impacts the drive motor. Termed as the traction force, it plays a pivotal role in vehicle propulsion and is expressed
as:

TL = F × Rwheel

Kgear
(5)

The association between the motor’s angular velocity, Ωmot, and the EV’s linear speed, V , is elucidated as:

V =
Rwheel

Kgear
Ωmot (6)

where, TL is the torque generated by the driving motor, Rwheel is the wheel radius, and Ωmot is the rotation speed
of the motor.

• Gearbox
The inclusion of a gearbox in an EV is noted to augment engine efficiency by modulating the relationship between

engine velocity and wheel speed. Such modulation of torque in alignment with driving conditions contributes
to an enhanced driving range and experience. The mechanical conversion value is procured from the ensuing
equation [17, 18]: {

Tgear = Kgear × Tmot
Ωmot = Kgear × Ωgear

(7)

where, Tgear and Ωgear are torque and speed rotation after reduction, Ωmot is the motor rotation speed and Kgear is
the gearbox reduction coefficient.

• Differential mechanical
The mechanical differential in EVs is imperative for power distribution between wheels, ensuring optimal

traction and stability. Moreover, it modulates wheel rotation speeds during turns to prevent skidding. The even
torque distribution to both the left and right wheels is depicted in Eq. (8) [17, 18]: Tdiff left =

1
2Tgear

Tdiff right =
1
2Tgear

Tdiff Tot = Tdiff right + Tdiffleft

(8)

where, Tdiff left , Tdiff right and Tdiff Tot are left, right and total torques after differential, respectively.
• The traction forces
Using wheel rotation, differential torque, and vehicle speed, the traction forces can be calculated:

Fleft = 1
Rwheel

Tdiff left

Wleft = 1
Rwheel

Vveh left

Fright = 1
Rwheel

Tdiff right

Wright = 1
Rwheel

Vveh right

(9)

where, Rwheel is the wheel radius, Tdiff right and Tdiff Tot
are left, right and total torques after differential, respectively.
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2.2 Model of the Traction Motor

The representation of the equations describing the PMSM model is situated in the rotor frame (d-q) [19–21].
The subsequent equations can be derived:

did
dt = −Rs

L id + Ppiq +
1
Lud

diq
dt = −Rs

L iq − PpΩmotid − PpΦ
L Ωmot +

1
Luq

dΩmot

dt =
3PpΦ
2J iq − B

J Ωmot +
TL

J

(10)

where, the terms ud, uq, id and iq are defined as stator voltages and currents in the d-q frame respectively. Rs

signifies the stator resistance, while L denotes the inductance in the d-q frame. Pp stands for the pole pairs and Φ is
the permanent magnet flux. J represents the rotor moment of inertia, B is the viscous friction coefficient, and TL is
the load torque.

By incorporating Eq. (1), Eq. (5), and Eq. (6) into Eq. (10), the dynamic model of the entire EV system is
defined. This integration combines the PMSM model with the vehicle dynamics model, given by:
with Jv =

JKgear
2+MRwheel

2

Rwheel Kgear
. The state vector x assumes the forms of x = [x1, x2, x3]

T
= [id, iq, V ]

T .
From Eq. (10), it can be discerned that the model is nonlinear. However, for effective tracking of the desired

vehicle speed with the robust H∞ controller, a linear model is imperative. To mitigate this challenge, non-linear
effects, such as friction, were neglected, and a compensation method that simplifies torque control was applied. This
approach involved the linearization of the relationship between torque and current, thus establishing a linear and
single-input model for the permanent magnet synchronous machine.

Subsequent computations yielded the transfer functions for the d-axis current and the speed system:

Gid =
1

Rs + sL
(11)

GV =
3PpΦKgear

(JvRwheel s+BKgear ) (Ls+Rs) + 3P 2
pΦ

2Kgear 2
(12)

3 H∞ Control Analysis

H∞ techniques have been recognized as robust control approaches, prominently designed to bolster stability
while optimizing performance. Their significance, particularly within dynamic systems such as EV speed control,
cannot be overstressed [22, 23].

LMI techniques were employed in the design of the H∞ suboptimal controllers. Within the paradigm of H∞
control design, the LMI strategy was adopted to discern controller gains, ensuring the stability of the closed-loop
system and concurrently minimizing a defined H∞ norm from disturbance input to the output signal. The efficacy
of the LMI technique in transforming the H∞ control issue into a LMI set was substantiated through numerical
methods [11, 21, 24].

A schematic representation incorporating the envisaged H∞ controller can be discerned in Figure 3 [2, 3, 5, 25].
Within this configuration:

• P(s) typifies the generalized plant.
• K(s) delineates the controller.
• Variables ω, Z, y and u represent exogenous inputs, minimized output signals, measurement outputs, and

control signals, respectively.

Figure 3. H∞ control framework
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Generalized plant P (s) encompasses the plant model G(s), the interconnection structure, and the weighting
functions predetermined by the designer, formulated as: ẋ(t)

e(t)
y(t)

 =

 A B1 B2

C1 D11 D12

C2 D21 D22

 x(t)
ω(t)
u(t)

 (13)

Given the variables x ∈ ℜn, ω ∈ Rnω , u ∈ ℜnu , e ∈ ℜne , y ∈ ℜny , the system’s stabilizability of (A,B2) and
the detectability of (C2, A) were taken into account. The transfer matrix in a closed loop from ω to the performance
output Z is articulated as:

Hzw(s) = Cc (sI −Ac)
−1

Bc +Dc (14)

The crux of the H∞ control issue lies in identifying a controller that ensures the H∞ norm of the Hzw(s) transfer
function remains below γ. The bounded lemma, integral to the H∞ evaluation, establishes that the H∞ norm of
Hzw(s) is less than γ if, and only if, a positive definitive matrix P meets the prescribed criteria. AT

c P+ PAc PBc CT
c

BT
c P −γI DT

c

Cc Dc −γI

 < 0

The solvability of the H∞ control dilemma is contingent upon the existence of symmetric matrices R, S that
satisfy the prescribed LMI system [11, 21, 24, 25]:

(1) LMI (
NT

X 0
0 I

)T
 AX +XAT XCT

1 B1

C1X −γI D11

BT
1 DT

11 −γI

(
NX 0
0 I

)
< 0 (15)

Has a positive definite solution X .
(2) LMI [

NT
Y 0
0 I

] Y A+ATY Y B1 CT
1

BT
1 Y −γI DT

11

C1 D11 −γI

(
NY 0
0 I

)
< 0 (16)

Has a positive definite solution Y .
(3) Moreover, X and Y are bound by specific conditions.(

X I
I Y

)
≥ 0, rank

(
X I
I Y

)
≤ nK + n

rank

(
X I
I Y

)
≤ n+ r ⇔ rank(I −XY ) ≤ r

(17)

In which nK is the degree of controller K(s).
Where NX and NY respectively represents bases of the null spaces of

(
BT

2 DT
12

) (
BT

2 , DT
inf2

)
and(

C2 D21

)
(C2, D01).

In crafting a suboptimal controller, two pivotal steps were followed [26]. Firstly, the aforementioned triad of
LMIs was resolved. Then, using the identified matrices R and S in conjunction with the plant state-space data, the
controller was calculated.

Consequently, a stabilizing suboptimal controller was realized that ensures ∥Hzw(s)∥∞ ≤ γ. By streamlining
the controller LMI formula and adhering to stipulated assumptions, a suboptimal controller was derived [26]. This
controller can be expressed as:

K =

[
Ak Bk

Ck Dk

]
(18)

where,
Ak = A+ γ−2B1B

T
1 X∞ −B2B

T
2 X∞ −

(
I − γ−2Y∞X∞

)−1
Y∞CT

2 C2

Bk =
(
I − γ−2Y∞X∞

)−1
Y∞CT

2

Ck = −BT
2 X∞

It is noteworthy that the derivation of the H∞ controller can be efficiently executed utilizing Matlab’s LMI
toolbox.
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4 Application

In Figure 4, the overarching structure of the nonlinear EV drive system, predicated on the permanents magnets
synchronous motor (PMSM), is illustrated. The motor’s control strategy, which was investigated in this study, is also
highlighted therein.

Figure 4. Block diagram of the proposed controller

The synthesis of controller design commenced with the selection of weight functions, as depicted in Figure 5 [7,
27, 28]. A paramount challenge associated with H∞ control pertains to the proper frequency-based selection of
transfer functions and the order of weighting. It is understood that these weighting functions serve the purpose of
defining system performance prerequisites, disturbance impacts, actuator boundaries, and system uncertainties.

Two distinctive loops can be discerned within the proposed control schema:
• The stator direct current control loop focuses on flux control. This loop is governed by an H∞ regulator.

Through this regulator, the system’s nonlinearity is sought to be negated by maintaining the direct current id at a null
value.

• Another loop, managed by an H∞ regulator, is dedicated to speed control, specifically overseeing the speed
and torque.

With the operation of the PMSM being under the purview of field-oriented control, its modeling, analogous to a
DC motor, is evident.

4.1 Speed Loop Controller

Figure 5 delineates the speed loop block diagram encompassing weighting filters. Notably, the weight functions,
symbolized as W1V (s), W2V (s), W3V (s), play a pivotal role in fine-tuning the controller’s performance and
robustness. Such functions can either represent a gain or be frequency-dependent.

Figure 5. H∞ for the speed loop with weighting filters

Adherence to the foundational precepts of mixed design is witnessed in the weighting functions W1, W2 and W3.
Given that W1 pertains to the objective of error sensitivity function performance S, it is fundamentally designed as a
low pass filter to diminish error sensitivity in lower range frequencies for mitigating output disturbances. Conversely,
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W2 is integral for ascertaining the controlled system’s stability across varying operations, rendering it as a high-pass
filter. An auxiliary disturbance weighting function, W3, delineates the disturbance limits, allowing it to be chosen
as a high pass filter or retained as a constant.

For the issue at hand, which is speed control, the selected weighting functions aimed at crafting a controller that
adheres to stipulated specifications (pertaining to tracking performance, anti-disturbance properties, and robustness)
are defined as: 

W1V (s) =
0.5556s+500

s+0.005

W2V (s) =
1.378×10−7s+6.2×10−5

0.001538s+1

W3V (s) = 0.01

(19)

Upon utilizing the design showcased in Figure 5, the KV (s) controller can be derived by addressing the H-infinity
problem via the LMI method. The ensuing expression for the controller is:

KV (s) =
5.373×108s3+3.646×1011s2+1.028×1013s+1.862×1014

s4+53970s3+3970s2+1.067×108s+4.759×1010s+2.38×108

4.2 Current Loop Controller

As Figure 6 demonstrates, the synthesis of the direct current loop controller uses weighting functions that are
reminiscent of those in speed tracking synthesis. These functions are formulated as:

W1i(s) =
0.5556s+500

s+0.005

W2i(s) =
0.0001375s+0.825

0.001538s+1

W3i(s) = 0.01

(20)

Figure 6. H∞ for the current loop with weighting filters

The H-infinity controller, represented by KI(s) for the current loop, takes the form:
Kid(s) =

1.027×106s2+7.244×109s+3.698×1012

s3+1.019×106s2+6.382×109s+3.191×107

5 Simulation Results

To assess the perturbation rejection capabilities of the proposed H∞ controller, simulations were performed on
an EV, utilizing the PMSM and EV parameters outlined in Table 1 and Table 2.

Initiating from a static state, the vehicle was observed to steadily accelerate to a reference speed of 80 km/h.
Within this phase, two directional changes were enacted: the initial leftward shift occurred at t = 38.89 s, followed
by a rightward shift at t = 83.33s. A return to the original trajectory was recorded at t = 111.11s, as visualized in
Figure 7. Throughout these tests, the evolution of several electrical and mechanical variables, including currents,
voltages, torque, and velocity, was monitored.

The results presented in Figure 8 depict the longitudinal speed of the vehicle. It was evident that the vehicle’s
speed remained stable, illustrating an agile performance devoid of overshoot, with no persistent errors identified.
Notably, the system consistently matched the reference signal with remarkable precision.

During the turning phases, it was observed in Figure 9 that each wheel responded differently, rotating at
varying speeds in the same direction. The H∞ controller’s critical role was apparent, as it facilitated precise,
real-time adjustments to the motor during these maneuvers, ensuring vehicular stability. Concurrently, a mechanical
differential was engaged to equilibrate the speed disparity between wheels. This mechanism slowed the inner
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Table 1. Parameters of the selected PMSM

The Parameter Symbol Value Unit
d-axis Inductances Ld 0.17 mH
q-axis Inductances Lq 0.29 mH

Flux linkage Φ 0.071 wb
Stator-winding resistance Rs 0.0083 Ω

Number of poles Pp 8
Moment of inertia J 0.089 Kg ·m2

Moment of inertia B 0.005 Nm/rad/s

Table 2. Specifications of the vehicle used in the simulations

The Parameter Symbol Value Unit
The mass of the vehicle M 1450 Kg

Vehicle frontal area Af 2.711 m2

Wheel radius Rwheel 0.29 m
Aerodynamic drag coefficient CD 0.29 Kg/m3

Air density ρ 1.204
Rolling resistance coefficient fr 0.013 Kg ·m2

Total inertia 5.209
Total gear ratio Kgear 8.75

Figure 7. Steering angle representation

wheel, allowing the exterior wheel to rotate more rapidly, thus preventing skidding and control loss. This combined
strategy enhanced traction, stability, and overall vehicle performance during turns. Evidently, the robust H∞ control
mechanism presented superior tracking and control capabilities.

Figure 10 reveals the d-axis current response of the PMSM under two distinct control methods. Rapid alignment
of the d-axis current response with the reference was noted across all trajectories.

The q-axis current responses and the electromagnetic torque of the PMSM in the vehicle system were highlighted
in Figure 11 and Figure 12. The q-axis current component, proportional to the requisite torque, exhibited outstanding
dynamic response. The required electromagnetic torque was efficiently developed by the PMSM motor at different
speed reference stages, emphasizing the efficacy of the H∞ technique in PMSM control systems.

Figure 13 and Figure 14 present the phase voltages and phase currents throughout the operation. Both were
observed to maintain a sinusoidal pattern, with frequency alterations in response to speed fluctuations.

Lastly, Figure 15 demonstrates the tractive forces exerted by the wheels. Strong tractive forces were observed
initially, a necessary condition to overcome resistive forces opposing vehicle movement. Notably, a disparity in
tractive forces was registered during the vehicle’s navigations through turns, signifying the requirement for varied
traction levels to facilitate efficient vehicle maneuvering during trajectory shifts.
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Figure 8. Vehicle’s linear speed

Figure 9. Speed variations during left and right turns

Figure 10. Id-axis current
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Figure 11. Iq-axis current

Figure 12. Electromagnetic torque

Figure 13. Phase currents of the motor
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Figure 14. Phase voltages of the motor

Figure 15. Tractive force generated by the wheels

6 Conclusions

In this investigation, an LMI-based solution for robust H∞ control of a nonlinear EV model powered by a PMSM
was elucidated. The primary objective of this study was identified as the mitigation of interference effects, aiming
to enhance the overall system performance.

Distinctively, the focus was on the peculiar attributes of EVs equipped with PMSM using robust H∞ control.
The integration of control methodologies tailored for non-linearities, in conjunction with linear matrix inequalities,
was found to be more adeptly matched to the demands of EVs than traditional techniques.

Within the proposed methodology, two H∞ controllers were employed: the first was identified as pivotal for the
Id current loop control, and the second was crucial for precise speed regulation. Through the application of the vector
control technique and judicious selection of weight functions, the stability and performance of the comprehensive
system were observed to be enhanced.

The robust H∞ controller’s efficacy was assessed through simulations utilizing a longitudinal model of the
EV. The outcomes depicted superior dynamic and steady-state performances, thereby indicating the controller’s
competency in managing disturbances and ensuring meticulous velocity control.

The adoption of LMI-based synthesis for robust H∞ control in EVs revealed multiple benefits, encompassing
augmented performance, stability, and robustness. Such findings suggest this method holds promise in refining EV
control tactics, presenting a viable solution for practical implementations.

Future explorations may consider additional optimizations and parameter adjustments to further bolster the
control system’s efficacy. It would be beneficial to conduct experimental validations on tangible EV platforms to
corroborate the effectiveness of the proposed strategy. Extending this methodology to diverse control targets and
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system configurations may pave the way for addressing varied EV control conundrums, aiming to elevate the overall
system operation.

Data Availability
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