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Abstract: This study explores dynamic simulation and integrated control in a space robotic arm system characterized
by a fully-flexible arm and an elastic base. The elastic base is modeled as a lightweight spring, and the modal shapes
of a simply-supported beam are selected via the assumed mode method to represent the bending vibrations of the
flexible arm. Dynamic equations for the system are formulated by integrating Lagrangian mechanics with momentum
conservation principles. The approach involves reducing the system into two lower-order subsystems using a dual-
time-scale singular perturbation method. The first subsystem, exhibiting slow variation, accounts for the joint’s rigid
motion, while the second, fast-varying subsystem addresses the vibrations of the base and arm. Estimation of joint
velocities is conducted through a Luenberger observer, complemented by the use of an Radial Basis Function (RBF)
neural network to approximate parameter uncertainties within the system. This facilitates the control of rigid motion
in the slow-varying subsystem. Subsequently, the fast-varying subsystem’s vibration is actively controlled based on
linear system optimal control theory. Numerical simulations validate the integrated control approach’s effectiveness
in managing both motion and vibration, demonstrating its potential in enhancing the operational precision and
stability of space robot systems.

Keywords: Space robot; Fully-flexible arm; Elastic base; Active vibration mitigation; Neural network; Luenberger
observer

1 Introduction

The field of space robotic arms has significantly advanced the application of novel space technologies, capturing
the attention of the global research community [1–5]. Operating in the unique challenges of space, characterized
by high vacuum, microgravity, substantial temperature fluctuations, intense radiation, and dim illumination, space
robotic arm systems differ markedly from their terrestrial counterparts [6, 7]. The inherent nonlinearity and strong
coupling in space robotic arms preclude the straightforward application of control methods used for terrestrial robots.
A substantial body of research has thus focused on the dynamics and control of space robotic arms under varied
operational conditions [8–12]. For instance, Huang and Chen [10] have explored kinematic control of rigid space
robotic arms using bidirectional mapping neural networks, developing a method for convergent inverse kinematics
control. Zhang and Chen [11] have tackled trajectory tracking and vibration suppression in space robotic arm systems
with mixed rigid-flexible arms, proposing an adaptive fuzzyH∞ control algorithm for systems encountering external
disturbances. Further, Jing and Li [12] have investigated the effects of collisions and subsequent stable control in
dual-arm space robot systems during satellite capture operations.

In light of the need to economize on expensive launch energy and prolong the lifespan of orbital missions, the
weight of space robotic arms is a critical consideration. Characteristically featuring long arms and substantial loads,
these arms exhibit notable flexibility. This flexibility demands thorough consideration due to its substantial impact
on the overall system. Presently, a diverse range of research and practical applications are directed at terrestrial
robotic arm systems with flexible components [13, 14]. Halalchi et al. [13] addressed the challenges in modeling
and controlling flexible-link robots using Linear Parameter-Varying (LPV) approaches. Additionally, Shawky et

https://doi.org/10.56578/jisc020402

197

https://www.acadlore.com/journals/JISC
https://crossmark.crossref.org/dialog/?doi=10.56578/jisc020402&domain=pdf
https://orcid.org/0009-0008-2180-8996
https://orcid.org/0000-0003-0351-8393
https://doi.org/10.56578/jisc020402
https://doi.org/10.56578/jisc020402


al. [14] devised a controller for space robotic arms with limited output torque, achieving joint trajectory tracking
while concurrently suppressing flexibility-induced vibrations.

The dynamics and control mechanisms of multi-flexible arm space robotic arm systems present greater complexity
compared to their terrestrial counterparts. A critical challenge in these systems is the rapid attenuation of vibrations
induced by the flexible arms once joint positioning is accomplished. Consequently, the investigation into the dynamic
characteristics of flexible arms and the formulation of effective control strategies are essential in the realm of space
robotic arm research and applications [15, 16]. Additionally, the mounting of space robotic arms on mobile truss
rails, while expanding operational range, invariably leads to vibration within these rails. Primarily, these vibrations
stem from the robust coupling between the space robotic arm and its carrier, as well as the movement of the large-mass
arm along the rails. In the unique damping-free environment of outer space, mitigating these rail vibrations poses a
significant challenge [17–19].

In light of these discussions, there is a pressing need to delve into the dynamics and control challenges of
fully-flexible arm space robotic arm systems influenced by base elasticity. This research simplifies the rail elasticity
of the space robotic arm to a lightweight spring for initial analysis. The assumed mode method is strategically
employed to select the modal shapes of a simply-supported beam, representing the bending vibration modes of
the flexible arm. The dynamic equations for a dual flexible-rod space robotic arm system, influenced by base
elasticity, are then formulated, incorporating the system’s positional geometric relations, conservation of momentum
principles, and Lagrangian equations. To achieve integrated control over the joint motion and vibration of the space
robotic arm system, a dual-time-scale singular perturbation method is utilized. This method effectively reduces the
system into two lower-order subsystems: the first, a slow-varying subsystem, encapsulates the joint’s rigid motion,
and the second, a fast-varying subsystem, addresses the base and arm vibrations. Joint velocities are estimated
using a Luenberger observer, complemented by an RBF neural network which approximates uncertainties in system
parameters, thus facilitating control over the rigid motion of the slow-varying subsystem. Active vibration control in
the fast-varying subsystem is subsequently implemented based on linear system optimal control theory. Numerical
simulations validate the efficacy of the proposed controllers in managing joint motion, arm vibration, and base
vibration.

2 System Dynamics Modeling

This section elucidates the dynamic modeling of a fully-flexible arm space robot system, operating under the
influence of a planar motion elastic base, as delineated in Figure 1. An inertial coordinate system, designated as
O −XY , is established, choosing an arbitrary point O in space as the origin. This system encompasses an elastic
base, referred to as B0, and a flexible arm rod, labeled Bi(i = 1, 2, · · · , n). The latter is conceptualized as an
Euler-Bernoulli cantilever beam, exclusively generating transverse vibrations. The components Bi−1 and Bi are
interconnected via rigid joints, marked as Oi(i = 1, 2, · · · , n).

For simplification in this study, the elasticity of the base, symbolized by the rail, is modeled as a spring with
a constant stiffness coefficient. In the context of the substantial mass of both the space robot and its base relative
to the rail, their weight is deemed negligible. According to vibration theory, the primary direction of vibration
is perpendicular to the rail. In this simplified model, a lightweight spring connects the rotational hinge, denoted
as O1, with the elastic base, identified as B0. This spring substitutes for the elastic vibration of the base, under
the assumptions that: a) the spring is massless; b) it undergoes only extension and compression movements; c) its
elasticity coefficient, labeled Kx, remains constant. Additionally, x′ signifies the elastic displacement of the base.

Inertial coordinate systems, marked as O−XY , along with the principal axis body coordinate systems for each
subsystem Bi, identified as Oi−xiyi, are instituted. The symbol C represents the total center of mass of the system.
The flexible arm rod, tagged as Bi, possesses a uniform mass density per unit length, annotated as ρi, and a uniform
bending stiffness, marked as EIi.

The bending vibration modes of the flexible arm, referred to as Bi(i = 1, 2, · · · , n), are ascertained using the
assumed mode method. The transverse elastic deformation wi (Xi, t) of the flexible arm rod Bi at the longitudinal
coordinate Xi (0 < Xi < li) and at time t is expressed as:

wi (xi, t) =

ni∑
j=1

φij (xi) δij(t) (1)

where, φij (Xi) symbolizes the j-th order mode function of the flexible arm Bi(i = 1, 2, · · · , n), with φij (Xi) =
sin (jπXi/li), denoting the selection of simply-supported beam modal functions for computing the coefficients and
free terms of elastic deformation in the fully-flexible arm space robot system. The cutoff order is ni, with δij(t)
signifying the vibrational modal coordinates of φij (Xi). Considering that lower-order modes exert a dominant
influence on the vibration of the flexible arm rod, higher-order modal terms in Eq. (1) are omitted, focusing on the
initial two lower-order modes, i.e., ni = 2(i = 1, 2, · · · , n).
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Figure 1. Space robot with elastic base and flexible arms

2.1 Kinematic Fundamental Equations

The derivation of the kinematic fundamental equations for a fully-flexible arm space robot system, influenced by
an elastic base as depicted in Figure 1, proceeds as follows. Drawing on the findings from references [20–22] and the
model presented in Figure 1, the vector of any point on each flexible arm rod of the space robot system, relative to the
origin O of the inertial coordinate system O-XY, is articulated. This vector, denoted as rδi(i = r + 1, r + 2, · · · , n)
is expressed in Eq. (2):

rδi = r0 + x′ex0 +

i−1∑
j=0

ljexj +Xiexi + wi (Xi, t) eyi (2)

where, exj =
[
cos
(∑j

k=0 qk

)
, sin

(∑j
k=0 qk

)]T
, eyj =

[
− sin

(∑j
k=0 qk

)
, cos

(∑j
k=0 qk

)]T
(j = 0, 1, 2, · · ·

, i).
The derivation continues by differentiating Eq. (2) with respect to time , yielding the velocity vector of any point

on each flexible arm rod relative to the origin O of the inertial system O-XY. This velocity vector, represented as
ṙδi(i = r + 1, r + 2, · · · , n), is captured in Eq. (3):

ṙδi = ṙ0 + x′ėx0 +

i−1∑
j=0

lj ėxj +Xiėxi + wi (Xi, t) ėyi + ẇi (Xi, t) eyi (3)

where, ėxj =
(∑j

k=0 q̇k

) [
− sin

(∑j
k=0 qk

)
, cos

(∑j
k=0 qk

)]T
, ėyj =

(∑j
k=0 q̇k

) [
− cos

(∑j
k=0 qk

)
,− sin(∑j

k=0 qk

)]T
(j = 0, 1, 2, · · · , i).

In the context of outer space, where the system exists in a state of weightlessness, the fully-flexible arm space
robot system under the influence of an elastic base adheres to a conservation of momentum relationship relative to
the inertial coordinate system O-XY. This relationship is encapsulated in Eq. (4):

m0ṙ0 +

n∑
i=1

(
ρi

∫ li

0

ṙδi dXi

)
= M ṙC (4)

Substituting Eq. (3) into Eq. (4), the resultant expression is provided in Eq. (5):

ṙ0 = ṙC +

n∑
j=0

Lxj ėxj +

n∑
j=r+1

(
ni∑
k=1

Lyjkδjk

)
ėyj +

n∑
j=r+1

(
ni∑
k=1

Lyjk δ̇jkk

)
eyj (5)

where, Lxj and Lyjk are identified as combined functions of the system’s inertial parameters.
Further substitution of Eq. (5) into Eq. (3) leads to the derivation of Eq. (6).

ṙδi =ṙC +

n∑
j=0

Lxj ėxj +

n∑
j=r+1

(
ni∑
k=1

Lyjkδjk

)
ėyj +

n∑
j=r+1

(
ni∑
k=1

Lyjk δ̇jkk

)
eyj + x′ėx0

+

i−1∑
j=0

lj ėxj +Xiėxi + wi (Xi, t) ėyi + ẇi (Xi, t) eyi

(6)
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2.2 Fundamental Dynamics Equations

Expanding upon the kinematic fundamental equations delineated in section 2.1 for the fully-flexible arm space
robot system under the influence of an elastic base, the fundamental dynamics equations are derived here by
integrating the principles of Lagrangian mechanics. As illustrated in Figure 1, the kinetic energy, represented as T0,
of the elastic base within the fully-flexible arm space robot system is formulated in Eq. (7):

T0 =
1

2

(
m0ṙ0 + J0q̇

2
0

)
(7)

The kinetic energy of each flexible arm rod, denoted as Tδi(i = 1, 2, · · · , n), is articulated in Eq. (8):

Tδi =
1

2
ρi

∫ li

0

ṙ2δidXi (8)

Consequently, the total kinetic energy of the system, expressed as T, is encapsulated in Eq. (9):

T = T0 +

n∑
i=r+1

Tδi (9)

In the unique weightless environment of outer space, the total potential energy of the system, labeled as U,
emanates from the combined bending strain energy of the flexible arms and the elastic potential energy of the elastic
base, as defined in Eq. (10):

U =
1

2

n∑
i=1

(
(EI)i

∫ li

0

(
∂2wi (Xi, t)

∂2Xi

)2

dXi

)
+

1

2
Kxx

′2 (10)

The system’s rigid generalized coordinates are defined as θr = [q0, q1, q2, · · · , qr]T ∈ R(r+1)×1, while
the flexible arm rod’s generalized coordinates are denoted as θδ = [δ11, · · · , δ1n1

, δ21 · · · , δ2m1
, · · · , δmn

]
T ∈

R(
∑n

i=+1 ni)×1, withθ =
[
θT
r ,θ

T
δ ,x

′
]T

∈ R(r+2+
∑n

ix+1 ni)×1. Employing the second kind of Lagrange’s equations
L = T −U , the fundamental dynamics equation of the system with uncontrolled base position but controlled attitude
is derived, incorporating the total kinetic energy Eq. (9) and total potential energy Eq. (10):

D(θ)

 θ̈r
θ̈δ

ẍ′

+H(θ, θ̇)

 θ̇r

θ̇δ

ẋ′

+

 0(n+1)×1

Kδθδ

Kxx
′

 =

 τ
0nin×1

01×1

 (11)

where, D(θ) represents the positive definite and symmetric inertia matrix pertaining to (n+2+nin)×(n+2+ nin).
C
(
θrδ, θ̇rδ

)
is the matrix vector that includes centrifugal and Coriolis forces of (n+1+nin)×(n+1+nin). τ =[

τ0, τ
T
r

]T
= [τ0, τ1, τ2, · · · , τn]T denotes the system’s control input torque vector, and Kδ = diag [Kδ1,Kδ2, · · · ,

Kδn] and Kδi = diag [ki1, ki2, · · · , kini
] are the stiffness coefficient matrices of the flexible arm.

3 System Dynamics Singular Perturbation Modeling

In addressing the impact of vibrations induced by the elastic base and flexible arms during operational movements
on both the accuracy of position control and overall system stability, a dual-time-scale singular perturbation model
is developed. This model, founded on the concept of integral flow, serves to bifurcate the system dynamics model of
the fully-flexible arm space robot system under elastic base influence into two distinct subsystems characterized by
fast and slow variations.

From the dynamic model as delineated in Eq. (11), the system under the influence of an elastic base is elaborated
upon. The model is expressed in Eq. (12).[

D11 D12

D21 D22

] [
θ̈r

θ̈δx

]
+

[
H11 H12

H21 H22

] [
θ̇r

θ̇δx

]
+

[
θ(n+1)×1

Kδxθδx

]
=

[
τ

0(nin+1)×1

]
(12)

where, θδx =
[
θT
δ ,x

′
]T

, and Kδx = diag [Kδ,Kx] is the composite stiffness matrix; D11 ∈ R(n+1)×(n+1),
D12 ∈ R(n+1)×(nin+1),D21 ∈ R(nin+1)×(n+1), and D22 ∈ R(nin+1)×(nin+1) are the corresponding sub-matrices
of D(θ); similarly, H11 ∈ R(n+1)×(n+1), H12 ∈ R(n+1)×(nin+1), H21 ∈ R(nin+1)×(n+1), and H22 ∈
R(nin+1)×(nin+1) are respective sub-matrices of H(θ, θ̇). Given that D(θ) is a symmetric and positive definite
inertia matrix of the system, its inverse is formulated as G(θ) in Eq. (13):

200



G(θ) =

[
G11 G12

G21 G22

]
=

[
D11 D12

D21 D22

]−1

(13)

where, G11 =
(
D11 −D12D

−1
22 D21

)−1
, G22 =

(
D22 −D21D

−1
11 D12

)−1
, G21 = −G22D21D

−1
11 ,

G12 = −G11D12D
−1
22 . Consequently, Eq. (12) undergoes a transformation, leading to the formulations in Eqs.

(14) and (15):

θ̈r = G11τ −G12Kδxθδx −G11

[
H11θ̇r +H12θ̇δx

]
−G12

[
H21θ̇r +H22θ̇δx

]
(14)

θ̈δx = G21τ −G22Kδxθδx −G21

[
H11θ̇r +H12θ̇δx

]
−G22

[
H21θ̇r +H22θ̇δx

]
(15)

With an assumption that the smallest stiffness in the composite stiffness matrix Kδx is kmin, with µ2kmin = 1,
a singular perturbation factor is defined as µ. Let µ2ζδx = θδx and Kµ = µ2Kδx, Eqs. (14) and (15) evolve into
Eqs. (16) and (17):

θ̈r = G11τ −G12Kµζδx −G11

[
H11θ̇r +H12µ

2ζ̇δx

]
−G12

[
H21θ̇r +H22µ

2ζ̇δx

]
(16)

µ2ζ̈δx = G21τ −G22Kµζδx −G21

[
H11θ̇r +H12µ

2ζ̇δx

]
−G22

[
H21θ̇r +H22µ

2ζ̇δx

]
(17)

In scenarios where µ → 0 is applicable, Eqs. (16) and (17) can be simplified to:

θ̈r =
(
G11 s −G12 sG

−1
22 sG21 s

) (
−H11 sθ̇r + τ s

)
(18)

O = G21 sτs −G22 sKµζδ1 s −G21 sH11 sθ̇r −G22 sH21 sθ̇r (19)

In these expressions, the subscript signifies corresponding matrices or vectors when µ is equated to zero, leading
to the derivation of the slow-varying (rigid) subsystem dynamic equation as shown in Eq. (20):

Dsθ̈r +Csθ̇r = τ s (20)

where, Ds =
(
N11 s −N12 sN

−1
22 sN21 s

)−1
,Cs = C11 s.

Defining the fast time scale tδx (µtδx = t− t0) and the boundary layer correction terms E1 = ζδx − ζδx s and
E2 = µζ̇δx, Eq. (17) undergoes a transformation, leading to:

µĖ2 = G21τ −G22Kµ (E1 + ζδrs)−G21

[
H11θ̇r +H12µE2

]
−G22

[
H21θ̇r +H22µE2

]
(21)

From this transformation, the following deductions are made:

dE1

dtδx
= E2 − µζ̇δx s (22)

dE2

dtδx
= G21τ −G22Kµ (E1 + ζδx s)−G21

(
H11θ̇r +H12µE2

)
−G22

(
H21θ̇r +Hδδ̇µE2

)
(23)

When controlling the attitude of the elastic base, the definition is as follows:

τ δx = τ − τ s (24)

By setting µ = 0 and applying Eqs. (22) and (23), the fast-varying subsystem is effectively derived:

dE1

dtδx
= E2 (25)

dE2

dtδx
= G21 sτ δx −G22 sKµE1 (26)

These equations are further elaborated upon as:

Ė = AδxE +Bδxτ δx (27)
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where, E =
[
ET

1 ,E
T
2

]T
, Aδx =

[
0nin×nin Inin×nin

−N22 sKµ 0nin×nin

]
, and Bδx =

[
0nin×(n+1)

N21 s

]
, τ δx represents

the control schemes deployed within the fast-varying subsystem.
The control objective for the fully-flexible arm space robot system, under the influence of an elastic base, is

meticulously formulated. The aim is to design precise control inputs that facilitate the accurate tracking of desired
trajectories by the robotic arm’s joints, alongside controlling the vibration of the partially decoupled system as
represented in Eq. (12). The culmination of this objective is a comprehensive control scheme for the fully-flexible
arm space robot. This scheme synergistically combines the control strategies τ s and τ δx for both the slow-varying
and fast-varying subsystems. The application of the singular perturbation reduction method concurrently stabilizes
the trajectory tracking of joint hinges and attenuates system vibrations. The total control torque expression, tailored
for systems with controlled base attitudes, is captured in:

τ = τ s + τ δx (28)

4 Control Scheme Design

In alignment with the findings from Section 3, the fully-flexible arm space robot system, influenced by an
elastic base and analyzed through singular perturbation theory, is segregated into two subsystems: a slow-varying
subsystem, which encapsulates joint rigid motion, and a fast-varying subsystem, which accounts for vibrations of the
elastic base and flexible arms. These subsystems, being temporally independent, allow for the formulation of distinct
control schemes, which are then amalgamated to establish an integrated control framework for the entire system.

4.1 Control Scheme Design for the Slow-Varying Subsystem

In real-world space robot systems, perturbations in system parameters due to measurement errors, environmental
fluctuations, and load variations are a given. Consequently, the parameter matrix, as delineated in Eq. (20), is
characterized thus: {

Ds = Ds0 +∆Ds

Cs = Cs0 +∆Cs
(29)

where, Ds0 andCs0 signify the nominal components of the parameters, and∆Ds and∆Cs represent the uncertainty
aspects of parameter perturbations.

Setting x1 = θr and x2 = θ̇r, with x =
[
xT
1 ,x

T
2

]T, and considering a specific desired trajectory xd =

[qd0, qd1, qd2, · · · , qdn]T, Eq. (20) can be reformulated as: ẋ1 = x2

ẋ2 = f(x) + g(x)τs +∆
y = βx

(30)

where, f(x) = −D−1
s0 Cs0θ̇r, g(x) = D−1

s0 , β = [1, 0], and ∆ = −D−1
s0

(
∆Dsθ̈r +∆Csθ̇r

)
quantifies the

uncertainty within the parameters of the slow-varying subsystem.
The primary goal is to address the joint trajectory tracking challenge within the system, where only joint positions

are measurable, and joint velocities are not required to be measured. Utilizing the dynamics equation of the slow-
varying subsystem from Eq. (20), a design approach involving a Luenberger nonlinear observer [23, 24] is proposed.
This observer aims to provide estimates of the arm joint angular velocities, as described in:

˙̂x1 = x̂2 +L1 (x1 − x̂1)
˙̂x2 = f(x̂) + g(x̂)τs +∆+L2 (x1 − x̂1)
ŷ = βx̂

(31)

An RBF neural network is applied within the observer Eq. (31) to estimate the system parameter uncertainties
∆. The unknown continuous nonlinear function is represented through a neural network composed of ideal weights
W and a sufficient number of basis functions ξ(x):

∆ = W ∗ξ(x) + ε(x) (32)

where, ε(x) symbolizes the neural network approximation error.
Assuming the ideal weights W ∗ are bounded, i.e. ∥W ∗∥F ≤ WM, an adaptive law for neural network weights

is defined:

˙̂
W = Ξ

(
ξzT − σŴ

)
(33)
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where, Ξ is a reversible and positive matrix, σ > 0 serves as a modification factor, Ŵ represents the estimated value
of the ideal weight matrix W ∗ of the RBF neural network, and W̃ = Ŵ −W ∗ is the weight estimation error.

A Gaussian function is selected as the radial basis function for the neural network:

ξ = exp

(
−∥x− c∥2

2b2

)
(34)

where, c and b, respectively, are the center vector and width of the basis.
Upon defining z̃1 = x1 − x̂1 and z̃2 = x2 − x̂2, the subsequent formulation is derived:{

˙̃z1 = x2 − x̂2 −L1 (x1 − x̂1)
˙̃z2 = f(x)− f(x̂) + [g(x)− g(x̂)]τ s −L2 (x1 − x̂1)

(35)

where, L = [L1,L2]
T represents the gain of the Luenberger observer, a parameter that can be strategically configured

in accordance with Luenberger observer theory.
The following definitions are set forth:

f =

[
f1
f2

]
=

[
x2 − x̂2

f(x)− f(x̂)

]
(36)

g =

[
0

g(x)− g(x̂)

]
(37)

A selection of L = [L1,L2]
T is made such that ∂f

∂x

∣∣∣
x=0

− L · ∂y
∂x

∣∣∣
x=0

is established as a Hurwitz matrix.
L1 = diag (L11, L12, · · · , L1n) and L2 = diag (L21, L22, · · · , L2n) are identified as the gain matrices pertinent to
the Luenberger observer.

When f ′ =

[
x2

f(x)

]
and g′ =

[
0

g(x)

]
are stipulated, leading to the linearization of the formula, the ensuing

relationship is:

˙̃zi = Az̃i +Bτ s −Kz̃1 = Az̃i +Bτ s −Lβz̃1, i = 1, 2 (38)

Applying the principles of Luenberger observer theory and selecting L = [L1,L2]
T to ensure that A−Lβ is a

Hurwitz matrix, the designed Luenberger observer’s convergence is validated. The consequent equation is:

A =
∂f ′

∂x

∣∣∣∣
x=0

=

[
∂f ′

1

∂x1

∂f ′
1

∂x2
∂f ′

2

∂x1

∂f ′
2

∂x2

]
, Lβ = L · ∂y

∂x

∣∣∣∣
x=0

= [L1,L2]
T
[I,0] =

[
L1 0
L2 0

]
.

Integrating the various inertial parameters of the fully-flexible arm space robot under the elastic base influence,
the eigenvalues of A−Lβ are positioned in the left half of the plane s, resulting in the determination of L1 and L2

values.
A Proportional-Derivative (PD) control scheme is devised for tracking the desired joint position, as delineated

in:

τs = Kpe+Kdė+Ds0ẍd +Cs0ẋd (39)

where, Kp symbolizes the proportional feedback coefficient, and Kd the velocity feedback coefficient. e = x̂1−xd

denotes the estimated joint angle error, while ė = x̂2 − ẋd represents the estimated joint angular velocity error.
Through appropriate adjustments of Kp and Kd, the motion tracking error is engineered to converge to zero.

4.2 Control Scheme Design for the Fast-Varying Subsystem

For the fast-varying subsystem, as explicated in Eq. (27), the adoption of a Linear Quadratic Regulator (LQR)
control scheme is proposed to regulate the system states E effectively. This approach is aimed at reducing these
states to zero, actively mitigating the vibrations instigated by the base and arm rods. To facilitate this, a system
performance index function is established, as follows:

Jδx =
1

2

∫ ∞

0

(
τT
δxRδxτ δx +ETQδxE

)
dt (40)

where, Rδx and Qδx serve as the weighting matrices for the control vector τ δx and the state vector E, respectively.
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The unique solution to the Riccati equation, essential for the optimal functioning of this subsystem, is identified
as P δx:

P δxAδx +AT
δxP δx − P δxBδxR

−1
δx B

T
δxP δx +Qδx = 0 (41)

Subsequently, the optimal control scheme for the fast-varying subsystem is articulated:

τ δx = −R−1
δx B

T
δxP δxE (42)

5 Numerical Simulation Example

A dynamic numerical simulation was conducted on a space robotic arm system featuring two flexible arms and
influenced by an elastic base in plane motion. The simulation spanned a total duration of t=15s. Parameters of this
two-flexible-rod space robotic arm system, under the elastic base influence, are detailed in Table 1.

In this simulation, the number of flexible arms was set as n=2. The estimated values for the bending interface
modulus were selected as EÎ1 = 0.5EI1 and EÎ2 = 0.5EI2. Other computational parameters in the simulation
include: a modification factor σ = 0.1, a basis function width b = 2, uniformly distributed initial node centers
c within [−2,+2], observation gains L1 = diag[5, 5, 5] and L2 = diag[4, 4, 4], a proportional feedback
coefficient Kp = diag[50, 50, 50], a velocity feedback coefficient Kd = diag[64, 64, 64], and a reversible positive
gain matrix E = diag[0.5, 0.5, 0.5, 0.5, 0.5, 0.5],R = diag[1, 1, 1], and Q = 100 · diag[1, 1, 1, 1, 1, 1, 1, 1, 1, 1].

Table 1. System parameters of the space robot with elastic base and flexible arms

Parameters Values
Base inertial parameters m0 = 200 kg, l0 = 1.5 m, j0 = 70 kg ·m2

Arm rod B1 l1 = 3 m, ρ1 = 1.1 kg/m, EI1 = 50 N ·m2

Arm rod B2 l2 = 3 m, ρ2 = 1.1 kg/m, EI2 = 50 N ·m2

Base Kx = 50 N/m

The desired motion trajectories for the system’s carrier and each joint angle were established as:

qd0 =
π

2
rad, qd1 =

7π

16
rad, qd2 =

3π

8
rad,

The initial motion position of the system was set as:

q0(0) = 1.68rad, q1(0) = 1.25rad, q2(0) = 1.25rad,x′(0) = 0 m, δ11(0) = δ12(0) = 0 m, δ21(0) = δ22(0) = 0 m.

Figure 2. Position tracking of the elastic base’s attitude and joint angles
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Figure 3. Position tracking errors of the elastic base’s attitude and joint angless

Figure 4. First-order vibration modal coordinates of the flexible arm rod B1

Figure 5. Second-order vibration modal coordinates of the flexible arm rod B1
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Figure 6. First-order vibration modal coordinates of the flexible arm rod B2

Figure 7. Second-order vibration modal coordinates of the flexible arm rod B2

Figure 8. Displacement of the elastic base
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The simulation results, illustrated in Figures 2 to 8, encompass various aspects of system behavior. Figure 2
displays the position tracking of the elastic base’s attitude angle and the arm rod joint angles, while Figure 3 shows
the tracking errors of these angles. Figures 4 and 6 present the first-order vibration modal coordinates of the flexible
arms B1 and B2, and Figures 5 and 7 depict the second-order vibration modal coordinates. Figure 8 provides a
visualization of the displacement of the elastic base. Notably, from Figures 4 to 8, it is observed that the activation of
the fast-varying subsystem control scheme, indicated by solid lines, compared to its deactivation, shown by dashed
lines, not only rapidly converges the system’s tracking error to zero but also effectively suppresses the flexible
vibrations of the system. This result underscores the precision and stability of the system’s trajectory tracking within
the joint space.

6 Conclusion

In this study, an established model of a fully-flexible arm space robot system, operating under the influence
of an elastic base, was meticulously examined. Challenges such as the vibrations of the elastic base and flexible
arms, parameter uncertainties, and the non-necessity of measuring joint velocities were addressed through several
strategic steps. Initially, the system’s dynamics model underwent a decoupling process using a dual-scale singular
perturbation method, resulting in the division of the system into two subsystems: a slow-varying subsystem,
characterizing joint rigid motion, and a fast-varying subsystem, focusing on the vibrations of the elastic base and
flexible arms. Subsequently, a composite control scheme was developed. This scheme combined a PD control, based
on the Luenberger observer for the slow-varying subsystem, with a linear optimal control strategy for the fast-varying
subsystem.

Numerical simulations were conducted to evaluate the effectiveness of the proposed composite control scheme.
The results demonstrated that the scheme was capable of precisely controlling the rigid motion of the robotic arm’s
joints while simultaneously and effectively suppressing the vibrations of both the base and arm rods. A significant
advantage of this approach was the utilization of the Luenberger observer for estimating joint velocities. This method
obviated the need for direct measurement and feedback of velocity information pertaining to the system’s base
attitude angle and arm joint angles, thereby offering potential cost savings in the operation of space equipment.
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