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Abstract: This study presents the two-stage cubature Kalman filter (TSCKF), which is a sophisticated technique
designed to address the issue of variations in system models in real-life scenarios, and utilises nonlinear two-
stage transformations to reorganise covariance matrices into a block-diagonal structure, effectively overcoming the
limitations of conventional augmented methods. This technique effectively eliminates the need to calculate the
cross-covariance between state variables and biases. This leads to a substantial reduction in computational load and
facilitates seamless operation of the filter. The TSCKF design is underpinned by a robust theoretical framework,
which ensures optimal computational efficiency while also ensuring precise estimations. This work demonstrates
the mathematical equivalence between the TSCKF and the standard cubature Kalman filter (CKF) by utilising
updated information equivalent transformations, and empirically verifies the equivalence through trajectory tracking
experiments conducted on two-wheeled robotic systems subjected to random perturbations, thus affirming the greater
accuracy and dependability of the TSCKF in tracking scenarios. Moreover, comparison evaluations offer further
proof of the same performance between both methodologies. This study introduces a highly efficient approach in the
domain of nonlinear systems and provides a dependable remedy for scenarios where traditional filtering procedures
may be inadequate due to deficiencies in the system model.

Keywords: Nonlinear systems; Two-stage cubature Kalman filter algorithm; Nonlinear two-stage transformation;
Matrix block diagonalization

1 Introduction

Introduced in 2009 by Arasaratnam and Haykin [1], the CKF is a nonlinear filtering methodology, and accurately
estimates the posterior mean and covariance of nonlinear function transmission using the third-order spherical-radial
cubature rule. Different from the unscented Kalman filter, this approach entails careful mathematical calculations to
estimate the values of the five Gaussian integrals in nonlinear Gaussian filtering. Theoretical resilience is achieved
by guaranteeing that the cubature points within the filter have positive weights, thereby successfully inhibiting the
occurrence of covariance matrices that are not positive definite. The CKF, considered the most optimal approach
for approximating Gaussian integrals [2, 3], quickly received extensive recognition in several disciplines due to
its simplicity, superior estimate accuracy, and numerical stability in solving a variety of nonlinear estimating
problems [4, 5].

Precise system models and accurate random information are required for the standard CKF. However, system
models often contain unknown random biases in practical applications. A common solution for this is to treat the
biases as part of the system state, augment the state, and then utilise Kalman filter while estimating both the system
state and biases, which is known as the augmented state Kalman filter (ASKF) algorithm. However, it creates a
substantial computational demand as system dimensions increase. Thus, this often leads to computational overflow
and failures in digital implementations [6–9].

To address the aforementioned challenges, researchers worldwide have made various improvements. The square
root CKF algorithm was updated by Zhong [10] using the Huber method for nonlinear statistical regression. In
the presence of anomalous noise interference in the observed system values, Huber’s robust filtering method was
proposed by intersecting the observation values and modifying the affected data. Zhao et al. [11] developed

https://doi.org/10.56578/jisc020405

230

https://www.acadlore.com/journals/JISC
https://crossmark.crossref.org/dialog/?doi=10.56578/jisc020405&domain=pdf
https://orcid.org/0000-0002-2880-8306
https://orcid.org/0000-0002-6232-2772
https://orcid.org/0000-0003-0079-1327
https://doi.org/10.56578/jisc020405
https://doi.org/10.56578/jisc020405


an integrated algorithm combining factor graphs and CKF, enabling the effective use of historical information for
measurement updates to overcome uncertainties in the observation environments. Zhang et al. [12] proposed an
adaptive H∞ CKF algorithm, based on a fading factor. This algorithm prevents a reduction in estimation accuracy
in the face of uncertainty in system models. Huang et al. [13] introduced a filter algorithm based on variational
Bayesian methods to determine state information in complex maritime conditions with erroneous inputs. Zhang
et al. [14] proposed an adaptive Kalman filter algorithm based on variational Bayesian methods. This approach
is specifically designed to simultaneously estimate the variables that represent the current state of the system, the
matrices that describe the uncertainty in future predictions, and the matrices that represent the uncertainty in the
measurements, thereby effectively dealing with the complex relationships that naturally exist in state estimation and
predictive covariance matrices.

The TSCKF algorithm is introduced in this study. Utilizing nonlinear T-transform, the TSCKF algorithm
applies matrix diagonalization to effectively diagonalize the state error covariance matrix. This methodological
advancement circumvents the need for additional computation of cross-covariance between the state and biases,
significantly reducing the computational burden. Such an approach not only streamlines the filtering process but
also assures the uninterrupted and efficient operation of the system.

2 System Model

The primary emphasis is placed on a model of a discrete stochastic system that is nonlinear and includes random
biases of unknown kind. The model is described in the following manner:

xk+1 = f (xk) +Bkbk + ωx
k

bk+1 = bk + ωb
k

zk = h (xk) + Fkbk + vk

(1)

Let xk ∈ Rn represent the state vector, zk ∈ Rm represent the observation vector, and bk ∈ Rp represent
the system bias vector. The nonlinear functions f(·) and h(·), which represent the state transition and observation
functions respectively, are continuously differentiable at point xk. The matrices Dk and Fk are the coefficient
matrices for the bias state equation and observation equation, respectively, with the correct dimensions. The noise
sequences ωx

k , ω
b
k and vk are independent zero-mean Gaussian white noise sequences with variances as indicated:

E


 ωx

k

ωb
k

vk

 ωx
j

ωb
j

vj

T
 =

 Qx
k 0 0
0 Qb

k 0
0 0 Rk

 δkj (2)

Given that Qx
k, Q

b
k and Rk are positive definite symmetric matrices, and δkj represents the Kronecker function.

The starting state values x0 and b0 are supposed to be uncorrelated white noise processes, with each being a
Gaussian random variable possessing defined features.

E [x0] = x̂0, E
[
(x0 − x̂0) (x0 − x̂0)

T
]
= P x

0 > 0

E [b0] = b̂0, E

[(
b0 − b̂0

)(
b0 − b̂0

)T]
= P b

0 > 0

The subsequent parts utilise the augmented state cubature Kalman filter (ASCKF) algorithm to initially estimate
the system states and biases. An analysis is conducted on the limits of this augmented technique, which is then followed
by the introduction of the TSCKF algorithm and its subsequent algorithmic analysis. Ultimately, experimental
validation is performed.

3 ASCKF Algorithm

Let

Xk+1 =

[
xk+1

bk+1

]
, f (Xk) =

[
f (xk) +Bkbk

bk

]
, ωk =

[
ωx
k

ωb
k

]
, h (Xk) = h (xk) + Fkbk

The Eqs. (2)-(36) can be reformulated as:

Xk+1 = f (Xk) + ωk

Zk = h (Xk) + vk
(3)
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where, E
(
ωk, ω

T
j

)
=

[
Qx

k 0
0 Qb

k

]
δkj

bk is incorporated into the current state of the system, and both xk and bk are considered as additional dimensions
of the expanded state. The ASCKF algorithm operates in the following manner:

Step 1: Time update
(a) The Cholesky decomposition for Pk−1|k−1 is applied to the posterior density function p (xk−1 | Dk−1) =

N (xk−1; x̂k−1, Pk−1) at time k − 1 to obtain:

Pk−1|k−1 = Sk−1|k−1S
T
k−1|k−1 (4)

(b) Determine the cubature points (i = 1, 2, . . . ,m = 2nx):

Xi,k−1|k−1 = Sk−1|k−1ξi + X̂k−1|k−1 (5)

(c) Calculate the propagated cubature points (i = 1, 2, . . . ,m):

X∗
i,k|k−1 = f

(
Xi,k−1|k−1, uk−1

)
(6)

(d) Calculate the anticipated state at time k:

x̂k|k−1 =
1

m

m∑
i=1

X∗
i,k|k−1 (7)

(e) Calculate the estimated covariance of the state error at time k:

Pk|k−1 =
1

m

m∑
i=1

X∗
i,k|k−1X

∗T
i,k|k−1 − x̂k|k−1x̂

T
k|k−1 +Qk−1 (8)

Step 2: Measurement update
(a) Compute the Cholesky decomposition:

Pk|k−1 = Sk|k−1S
T
k|k−1 (9)

(b) Determine the cubature points (i = 1, 2, . . . ,m):

Xi,k|k−1 = Sk|k−1ξi + X̂k|k−1 (10)

(c) Calculate the propagated cubature points (i = 1, 2, . . . ,m):

Zi,k|k−1 = h
(
Xi,k|k−1, uk

)
(11)

(d) Calculate the anticipated value of the measurement at time k:

ẑk|k−1 =
1

m

m∑
i=1

Zi,k|k−1 (12)

(e) Calculate the covariance of the measurement error at time k:

Pzz,k|k−1 =
1

m

m∑
i=1

Zi,k|k−1Z
T
i,k|k−1 − ẑk|k−1ẑ

T
k|k−1 +Rk (13)

(f) Calculate the cross-covariance at time k:
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Pxz,k|k−1 =
1

m

m∑
i=1

Xi,k|k−1Z
T
i,k|k−1 − x̂k|k−1ẑ

T
k|k−1 (14)

(g) Determine the gain at time k:

Kk = Pxz,k|k−1P
−1
zz,k|k−1 (15)

(h) Calculate the state estimation at time k:

x̂k|k = x̂k|k−1 +Kk

(
zk − ẑk|k−1

)
(16)

(i) Calculate the estimation of the state error covariance at time k:

Pk|k = Pk|k−1 −KkPzz,k|k−1K
T
k (17)

In the algorithm, X̂(·) =
[
x̂(·)
b̂(·)

]
,Kk =

[
Kx

k

Kb
k

]
, P (·) = Cov{X̂(·)} =

 P x
(·) P xb

(·)(
P xb
(·)

)T
P b
(·)

.

The dimensions of the augmented matrix are given by the sum of n and p. When the values of p and n are similar,
the dimension of the new state vector Xk grows greatly in comparison to the dimension of the original state. The
increase in computational burden for the ASCKF filter results in a significant escalation, which might potentially
lead to overflow and system crashes during digital calculation. The main factor contributing to this problem is the
supplementary calculation of P xb

(·) . In response to this, the notion of a two-stage filter was established. Based on
the literature, there are two approaches to execute a two-stage filter. Friedland proposed an approach that suggests
separating the augmented filter into two parallel reduced-order filters: a bias-free filter and a bias filter [15]. The
bias-free filter operates under the assumption that there is no inherent bias in the system. On the other hand, the
bias filter generates an estimation of the bias vector, which is subsequently employed to rectify the output of the
bias-free filter. This process allows for the estimation of both the state and bias vectors. Friedland’s two-stage
method is considered best within specific algebraic constraints. However, these requirements are seldom attainable
in practical scenarios, rendering most conventional two-stage methods less than optimal. Another approach utilises a
matrix transformation technique referred to as the two-stage transformation. This transformation, devoid of algebraic
limitations, can attain optimal performance [16, 17]. In linear systems, the two-stage transformation is observed
as matrix block diagonalization. In nonlinear systems, it is observed as matrix block diagonalization achieved by
deriving the covariance matrix.

4 TSCKF Algorithm

The enhanced Kalman filter employs the Jacobian matrix to calculate the error covariance matrix and the gain
matrix. However, the Jacobian matrix is unnecessary in the CKF calculation. Although the two-stage augmented
Kalman filter methods have been suggested by researchers [18–20], it is not possible for the TSCKF to directly utilise
the framework of the augmented Kalman filter. To produce the effects of matrix block diagonalization observed in
the augmented Kalman filter, it is essential to determine the relationship of matrix block diagonalization inside the
CKF framework. This section presents the matrix block decoupling approach as a means to develop the TSCKF
algorithm, building upon the aforementioned concept.

4.1 TSCKF

The T-transform in linear systems is defined as:

T (G) =

(
In−p G
0 IP

)
(18)

Therefore, the linear two-stage transformation can be represented by the attributes of the T-transform as follows:

233



X̂k|k−1 = T (Uk) X̄k|k−1

X̂k|k = T (Vk) X̄k|k

Pk|k−1 = T (Uk) P̄k|k−1T
T (Uk)

Pk|k = T (Vk) P̄k|kT
T (Vk)

Kk = T (Vk) K̄k

(19)

where, P̄ = diag
{
P̄ 1, P̄ 2

}
.

The nonlinear T-transform and two-stage transformation are obtained for the given Eq. (1). This represents a
nonlinear discrete system with unknown biases. This derivation is based on the linear T-transform and two-stage
transformation from Eq. (18) and Eq. (19).

Lemma 1: By applying techniques from studies [8, 9], the linear system T-transform may be extended to nonlinear
systems, resulting in the following formula for the nonlinear T-transform:

T (F,X) =

[
X1 + F (X2)

X2

]
(20)

where, X =
{(
X1
)T
,
(
X2
)T}T

, X1 ∈ Rn−p, X2 ∈ Rp, F
(
X2
)

are non-linear functions of the sub-state X2.
The nonlinear T-transform properties are used to obtain formulas for a two-stage transformation:

X̂k|k−1 = T
(
Φ, X̄k|k−1

)
(21)

X̂k|k = T
(
Ψ, X̄k|k

)
(22)

Pk|k−1 =
∂T
(
Φ, X̄k|k−1

)
∂X̄k|k−1

P̄k|k−1

(
∂T
(
Φ, X̄k|k−1

)
∂X̄k|k−1

)T

(23)

Pk|k =
∂T
(
Ψ, X̄k|k

)
∂X̄k|k

P̄k|k

(
∂T
(
Ψ, X̄k|k

)
∂X̄k|k

)T

(24)

Kk =
∂T
(
Ψ, X̄k|k

)
∂X̄k|k

K̄k (25)

where, Φ and Ψ represent two specific nonlinear functions.
The lemma concludes.
The lemma has the subsequent characteristics:

∂T
(
Φ, X̄k|k−1

)
∂X̄k|k−1

=

[
In−p Uk

0 Ip

]
≡ T (Uk) (26)

∂T
(
Ψ, X̄k|k

)
∂X̄k|k

=

[
In−p Vk
0 Ip

]
≡ T (Vk) (27)

Therefore, it can be inferred that:

Uk =
∂Φ
(
X̄2

k|k−1

)
∂X̄2

k|k−1

, Vk =
∂Ψ
(
X̄2

k|k

)
∂X̄2

k|k
(28)
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The TSCKF operates as follows for the nonlinear discrete stochastic system with unknown random biases, as
depicted in Eq. (1):

(a) Unbiased filter:

X̄1
k|k−1 =

1

m

m∑
i=1

f1
(
Sk−1|k−1ξi + T

(
Ψ, X̄k−1|k−1

)
, uk−1

)
− Φ

(
X̄2

k|k−1

)
(29)

X̄1
k|k = X̄1

k|k−1 +Φ
(
X̄2

k|k−1

)
+ Vk

(
X̄2

k|k − X̄2
k|k−1

)
−Ψ

(
X̄2

k|k

)
+K̄1

k

(
Zk − 1

m

m∑
i=1

h
(
Sk|k−1ξi + T

(
Φ, X̄k|k−1

)
, uk
)) (30)

P̄ 1
k|k−1 =M11

k−1 +Q11
k−1 − Uk

(
M22

k−1 +Q22
k−1

)
UT
k (31)

P̄ 1
k|k = P̄ 1

k|k−1 + UkP̄
2
k|k−1U

T
k − VkP̄

2
k|k−1V

T
k − K̄1

kPzz,k|k−1

(
K̄1

k

)T
−K̄1

kPzz,k|k−1

(
K̄2

k

)T
V T
k −

(
K̄1

kPzz,k|k−1

(
K̄2

k

)T
V T
k

)T (32)

K̄1
k = N1

k − VkN
2
k (33)

(b) Bias filter:

X̄2
k|k−1 =

1

m

m∑
i=1

f2
(
Sk−1|k−1ξi + T

(
Ψ, X̄k−1|k−1

)
, uk−1

)
(34)

X̄2
k|k = X̄2

k|k−1 + K̄2
k

(
Zk − 1

m

m∑
i=1

h
(
Sk|k−1ξi + T

(
Φ, X̄k|k−1

)
, uk
))

(35)

P̄ 2
k|k−1 =M22

k−1 +Q22
k−1 (36)

P̄ 2
k|k = P̄ 2

k|k−1 − K̄2
kPzz,k|k−1

(
K̄2

k

)T (37)

K̄2
k = N2

k (38)

The interdependence between the two filters:

Uk =
(
M12

k−1 +Q12
k−1

) (
M22

k−1 +Q22
k−1

)−1 (39)

Vk = Uk − K̄1
kPzz,k|k−1

(
K̄2

k

)T (
P̄ 2
k|k−1

)−1

(40)

where, Pk|k−1 =Mk−1 +Qk−1 =

[
M11

k−1 +Q11
k−1 M12

k−1 +Q12
k−1(

M12
k−1 +Q12

k−1

)T
M22

k−1 +Q22
k−1

]
, Kk =

[
K1

k

K2
k

]
.

The nonlinear functions Φ and Ψ can be calculated by utilising Eq. (28) and the backward difference equation.

Φ
(
X̄2

k|k−1

)
= Φ

(
X̄2

k−1|k−2

)
+ Uk

(
X̄2

k|k−1 − X̄2
k−1|k−2

)
Ψ
(
X̄2

k|k

)
= Ψ

(
X̄2

k−1|k−1

)
+ Vk

(
X̄2

k|k − X̄2
k−1|k−1

)
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4.2 Demonstration of Equivalence for the TSCKF Algorithm

The TSCKF algorithm is obtained by applying a non-singular two-stage transformation to the CKF method,
which establishes their mathematical equivalence.

Theorem 1: The TSCKF method is mathematically equivalent to the CKF algorithm, as proven in Eqs. (4)-(14).
Proof: Employing inductive reasoning, let us assume that at time k:

X̂k|k = Xk|k (41)

By applying Eqs. (5), (6), (7), (20), (29), (34), and (41), it can be deduced that:

T
(
ϕ, X̄k+1|k

)
=

(
X̄1

k+1|k + ϕ
(
X̄2

k+1|k

)
X̄2

k+1|k

)
=

1

m

m∑
i=1

f
(
Sk|kξi + T

(
ψ, X̄k|k

)
, uk
)

=
1

m

m∑
i=1

f
(
Sk|kξi + X̂k|k, uk

)
= Xk+1|k

(42)

Subsequently, by utilising Eqs. (16), (22), (25), (30), (35), and (42), it can be deduced that:

X̂k+1|k+1 = X̄1
k+1|k +Φ

(
X̄2

k+1|k

)
+ Vk

(
X̄2

k+1|k+1 − X̄2
k+1|k

)
+K̄1

k+1

(
Zk+1 − 1

m

∑m
i=1 h

(
Sk+1|kξi + T

(
Φ, X̄k+1|k

)
, uk+1

))
X̄2

k+1|k + K̄2
k+1

(
Zk+1 − 1

m

∑m
i=1 h

(
Sk+1|kξi + T

(
Φ, X̄k+1|k

)
, uk+1

))


= T
(
ϕ, X̄k+1|k

)
+

[
K̄1

k+1

K̄2
k+1

](
Zk+1 − Ẑk+1|k

)
+

[
Vk+1

(
X̄2

k+1|k+1 − X̄2
k+1|k

)
0

]

= T
(
ϕ, X̄k+1|k

)
+

[
K̄1

k+1 + Vk+1K̄
2
k+1

K̄2
k+1

](
Zk+1 − Ẑk+1|k

)
= Xk+1|k +Kk+1

(
Zk+1 − Ẑk+1|k

)
= Xk+1|k+1

(43)

Eq. (43) implies that at time k + 1, Eq. (41) remains valid.
Evidence has been established.

5 Experiment and Analysis

This section first provides details about the experimental setup and the simulation system model to assess the
effectiveness of the TSCKF method, and then utilises the TSCKF algorithm for target tracking in this system,
validating the algorithm’s efficacy. Afterwards, a comparison is made between the CKF and TSCKF algorithms in
the identical experimental setting. The purpose is to confirm the equality of both methods.

5.1 Simulation System Model

The TSCKF algorithm is utilised to estimate the posture, velocity, and oscillation of a two-wheeled robot, which
is operated by the use of an inertial sensor and a real-time Kinematic global positioning system (GPS), aiming to
assess the effectiveness of the algorithm. The system model is depicted in the following manner:

xk+1 = f (xk) +Bkbk + ωx
k

bk+1 = bk + ωb
k

zk = h (xk) + bk + vk

where,

f (xk) =


Xk +∆tVl,k cos (θk)−∆tVy,k sin (θk)
Yk +∆tVl,k sin (θk)−∆tVy,k cos (θk)

Vl,k +∆tVy,kγk +∆tαx,k

Vy,k −∆tVl,kγk +∆tαy,k

θk +∆tγm,k
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h (xk) =


Xk

Yk
cos (θk)Vl,k − sin (θk)Vy,k
sin (θk)Vl,k + cos (θk)Vy,k

θk


The state vector xk =

[
Xk Yk Vl,k Vy,k θk

]T is unaffected by the bias vector bk and initially takes on
the value of x0 ∼ N

(
2, 0.052

)
. The measurement vector zk =

[
zX,k zY,k zX′,k zY ′,k zθ,k

]T consists of
the precise values for position, velocity, and angle. The state and measurement noises are both zero-mean Gaussian
white noises that are independent of each other, with the state noise vector being denoted as ωx

k ∼ N
(
0, 0.52

)
, and

the measurement noise vector as vk ∼ N
(
0, 0.052

)
.

The parameter
{
αx,k αy,k γm,k

}
varies over time, reflects the acceleration on the x and y axes and the

orientation at time k, and is obtained via the accelerometer and gyroscope. ∆t represents the sample interval of the
discrete system. The gyroscope is believed to measure the yaw rate, denoted as γk, which is equivalent to γm.

The TSCKF algorithm represents the bias equation as:

bk+1 = bk + ωb
k, ω

b
k ∼ N

(
0, 0.052

)
The computational hardware utilised in this simulation experiment consists of a quad-core Intel Core i5 4258U

2.4 GHz CPU, 4GB RAM, working on a Windows 7 64-bit Professional Edition operating system. The simulation
programme employed is Matlab2013a.

5.2 Evaluation of the Efficacy of the TSCKF Algorithm

The simulation experiment initialised the system with mean values of 2 and a variance of 0.05 for five random
integers, which takes x0 = [2 + 0.05 ∗ rand(5, 1)] as the initial estimated value. The matrix with a variance of
P0 = diag([0.05, 0.05, 0.05, 0.05, 0.05]) was a 5× 5 matrix with diagonal elements of 0.05 . The bias was initially
assigned a value of b0 = [5 + 0.01 ∗ rand(1, 1)], with a variance of 0.05 . The simulation lasted for a duration of
200 seconds, and the TSCKF method underwent 1,000 Monte Carlo simulations.

Figure 1. Comparison of real and estimated state values of Xk

Figure 2. Comparison of real and estimated state values of Yk
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Figure 3. Comparison of real and estimated state values of Vl,k

Figure 4. Comparison of real and estimated state values of Vy,k

Figure 5. Comparison of real and estimated state values of θk

The estimation error for each component of the state vector is defined by Eq. (44), which quantifies the level of
agreement between the estimated and real state values.

ERROR(k) =
∣∣x∗,k − x̂∗,k|k

∣∣ (44)

The Root Mean Square Error (RMSE) is a metric used to evaluate and compare the effectiveness of different
filtering algorithms.

RMSE(k) =

√√√√ 1

M

M∑
i=1

(
x
(i)
∗,k − x̂

(i)
∗,k|k

)2
(45)

where, M indicates the number of Monte Carlo simulations, whereas x(i)∗,k and x̂(i)∗,k|k refer to the actual state values
and estimated values of x∗ in the n-th Monte Carlo simulation, respectively.
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Figure 6. Error graph of Xk

Figure 7. Error graph of Yk

Figure 8. Error graph of Vy,k

Figure 9. Error graph of Vl,k
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Figure 10. Error graph of θk

Figure 11. Comparison of real and estimated state values of bk

Figure 12. Error graph of bk

Figure 1, Figure 2, Figure 3, Figure 4, Figure 5 illustrate the comparison between the actual and estimated values
of the states in relation to position, velocity, and angle on the X and Y axes. These comparison charts show that the
actual values are found within the area of estimated values that are most likely to be correct. This suggests that the
algorithm has effective noise reduction abilities and accurate estimation.

Figure 6, Figure 7, Figure 8, Figure 9, Figure 10 depict the error graphs for each constituent of the state vector,
obtained from Eq. (44). These graphs demonstrate that the error in the state vector xk remains within an insignificant
range for practical applications. This inaccuracy is actually caused by the inherent computational imperfections in
digital computing. Therefore, the estimation findings are considered acceptable.

The graphs in Figure 11 and Figure 12 illustrate the comparison and error between the real and estimated values
of the bias vector in the bk state.

Figure 12 demonstrates that the error in bk closely resembles that of the state vector xk, staying within a small
range that is insignificant in practical scenarios, thus making the results satisfactory.

To summarise, the simulation studies have confirmed that the TSCKF technique is suitable for state estimation.
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5.3 Comparative Experiment between CKF and TSCKF Algorithms

The simulation system model used for this comparative experiment is the same as the one described in Section
5.1, where the state vector xk is not influenced by the bias vector bk, with x0 ∼ N

(
5, 0.012

)
. The state and

measurement noises are zero-mean Gaussian white noises that are independent of each other. The state noise vector
is denoted as ωx

k ∼ N
(
0, 0.022

)
, while the measurement noise vector is denoted as vk ∼ N

(
0, 0.12

)
. The bias

noise vector is represented by the symbol ωb
k ∼ N

(
0, 0.012

)
.

In the simulation experiment, the initial estimated value of the system was designated as x0 = 5 + 0.01∗ rand
(5, 1), using mean values of 5 and a variance of 0.01 for five randomly generated integers. Additionally, the matrix
with a variance of P0 = diag([0.02, 0.02, 0.02, 0.02, 0.02]) was defined as a 5× 5 matrix with diagonal elements of
0.02 . The bias was initially set at a value of b0 = 2 + 0.02∗ rand (1, 1), with a variance of 0.01 . The simulation
lasted for a duration of 200 seconds, and the TSCKF method underwent 1,000 Monte Carlo simulations.

Figure 13. Comparison of estimated values of Xk between two algorithms

Figure 14. Comparison of Xk RMSE between two algorithms

Figure 15. Comparison of estimated values of Yk between two algorithms
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Figure 16. Comparison of Yk RMSE between two algorithms

Figure 17. Comparison of estimated values of Vl,k between two algorithms

Figure 18. Comparison of Vl,k RMSE between two algorithms

Figure 19. Comparison of estimated values of Vy,k between two algorithms
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Figure 20. Comparison of Vy,k RMSE between two algorithms

Figure 21. Comparison of estimated values of θk between two algorithms

Figure 22. Comparison of θk RMSE between two algorithms

Figure 13, Figure 14, Figure 15, Figure 16, Figure 17, Figure 18, Figure 19, Figure 20, Figure 21, Figure 22
illustrate the comparison of estimated values and RMSE for the state components using both the CKF and TSCKF
algorithms. By examining Figure 13, Figure 15, Figure 17, Figure 19, and Figure 21, it can be noted that the
estimated value curves of the state vectors for both algorithms are nearly identical, thereby verifying the suitability
of the CKF approach. Figure 14, Figure 16, Figure 18, Figure 20, and Figure 22 indicate that the estimation accuracy
of both techniques is similar, thereby establishing their equivalency.

Figure 23 and Figure 24 display the estimation curves and RMSE comparison for the bias vector bk of both
techniques. The RMSE accuracy of both algorithms is similar, which further supports their equivalency.

The RMSE of both techniques can be determined using Eq. (45), and the results are shown in Table 1 for
comparison. The data presented in this table provides quantitative evidence that both algorithms have comparable
accuracy, thereby establishing their equality.
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Figure 23. Comparison of estimated values of bk between two algorithms

Figure 24. Comparison of bk RMSE between two algorithms

Table 1. RMSE comparison for state components

CKF Algorithm TSCKF Algorithm
Xk 0.0177 0.0185
Yk 0.0224 0.0265
Vl,k 0.3459 0.3496
Vy,k 0.4746 0.4721
θk 0.0077 0.0091
bk 0.1805 0.1790

6 Conclusion

Confronting the ubiquitous biases present in system models within practical settings, the ASCKF algorithm was
initially developed. An in-depth analysis of this augmented algorithm highlighted certain limitations, leading to the
proposition of the TSCKF. Central to the TSCKF algorithm is its innovative approach of block-diagonalizing the
covariance matrix via matrix state transformations. This pivotal strategy effectively obviates the need for calculating
cross-covariance between the state and biases, thereby substantially diminishing the computational load. As a result,
this approach facilitates a smoother and more efficient filtering process. The mathematical equivalence of the TSCKF
algorithm with the established CKF algorithm was rigorously demonstrated, underscoring the theoretical robustness
of the proposed method. Subsequently, a series of simulation experiments were conducted to assess the practical
applicability of the TSCKF algorithm. These experiments not only verified the usability of the TSCKF algorithm
but also, through comparative analysis, established its equivalence with the CKF algorithm.
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