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Abstract: One significant benefit of the Maclaurin symmetric mean (MSM) is that it is a generalization of many
extend operators and can consider the interrelationships among the multi-input arguments, such as multi-attributes
or multi-experts in the multi-attribute group decision making (MAGDM). In the information fusion process, the
Schweizer-Sklar T-norm (TN) and T-conorm (TCN), an important class of the TN and TCN, have more flexibility.
We define SS operational rules of SFNs and extend SSTN, SSTCN to Spherical fuzzy values (SFVs) in order to
fully utilize the advantages of SSTN, SSTCN, and MSM. Next, by combining the MSM with SS operational rules,
we propose the spherical fuzzy Schweizer-Sklar weighted Maclaurin symmetric mean (SFSSWMSM) and spherical
fuzzy Schweizer-Sklar Maclaurin symmetric mean (SFSSMSM) operators. This research examines their advantages
and creates a novel approach based on these operators for particular MAGDM issues. Then, by comparing the
suggested technique with current approaches in practical settings, its benefits and viability are demonstrated. Lastly,
a few real-world examples are provided to demonstrate the applicability and benefits of the suggested approach in
comparison to a few other approaches already in use.

Keywords: SFNs; SS; MSM; SFSSMSM; SFSSMSM; MAGDM

1 Introduction
Artificial intelligence has a significant impact on a wide range of fields and aspects of modern life. With

the introduction of various AI-based tools, a range of problems can now be addressed with varying degrees of
effectiveness. Evaluating the performance and capabilities of these AI tools is essential, especially when it comes
to decision-making (DM). However, the DM process is inherently uncertain, and real-world scenarios frequently
involve the aggregation of information. To solve these problems, several models have been put forth to enhance
decision-making procedures. These models aim to lower uncertainty, improve information aggregation, and provide
workable solutions for complex and dynamic real-world scenarios. The continuous development and enhancement
of models facilitates the ongoing evolution of decision-making methodologies in the era of artificial intelligence.

Zadeh [1] created the fuzzy set (FS) theory in 9965. In an FS, a membership degree (MD), represented by the
symbol µ, stands for all unexplained phenomena or subcategories of human opinion. The non-membership degree
(NMD), represented by the symbol η, is obtained by deducting the MD 0 from 1. In light of this theory, Atanassov [2]
questioned if FSs could be used to represent ambiguity in human opinion and developed the idea of IFSs, which
combine an FS with an incorrect event. Atanassov states that the sum of µ and η may range from 0 to 1. Because
it is necessary for their sum to remain within the range [0, 1]. µ and η can never be assigned independently in an
IFS since their sum will sometimes be greater than this range. In order to accommodate a decision-maker, Yager [3]
expanded the domain for assigning µ and η, abstracting the concept of IFS to Pythagorean FS (PyFS). Even the
Pythagorean FS (PyFS) limitations, according to Yager [4], may place limitations on decision-makers in a particular
field and cause issues. This leads him to develop the concept of q-rung orthopair FS (q-ROFS), which offers human
opinion formation in the face of ambiguity an infinite range.

The abstinence degree (AD) and refusal degree (RD) of an element of PFS are represented byϑ and δ, respectively.
Cuong [5] presented a complex form and structure known as a PFS, which is capable of characterizing four aspects
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of ambiguous data denoted by µ, ϑ, η, and δ, subject to the requirement that the sum of the three components
be contained in [ 0, 1] (i.e., sum (µ, ϑ, η) ∈ [0, 1) . By extending the use of PFS while taking into account
the shortcomings of all the previously mentioned concepts [6]. The SFS’s limitation is that, even though the total
(µ, ϑ, η) may exceed the unit interval, the sum of their squares, (µ2, ϑ2, η2) ∈ [0, 1]. Due to this new constraint, there
is a larger region in the SFS than the PFS where uncertain parameters can be assigned. When there are three pieces of
information, sometimes even squaring all the uncertain parameters is insufficient because the square sum is greater
than the unit interval, which causes problems. To address these situations, Mahmood et al. [6] proposed a variant of
SFS which has no restrictions on the values assigned to µ, ϑ, and η. SFS now requires the sum (µ2, ϑ2, η2) ∈ [0, 1]
wheren ∈ Z+.

1.1 Literature Review
In the year 1960, SS [7] invented the concepts of the Schweizer-Sklar aggregation tools. Owing to the increased

flexibility of these aggregation systems, decision-makers can receive reliable information. Based on various fuzzy
conditions, a number of mathematicians forecasted several aggregation models using dependable attributes of the
SS aggregation tools. For example, utilizing the under IF information of basic Hamacher aggregating tools, Garg
et al. [8] presented numerous unique aggregation strategies. The properties of the SS aggregation tools are used
to express correlation between independent arguments. By using IF information, Khan et al. [9] classified a class
of novel techniques. Zhang [10] devised an original technique for the interval-valued intuitionistic fuzzy (IVIF)
information decision-making system. Also, we looked at a few of the robust characteristics and features of the SS
aggregation tools across a range of fuzzy settings, as mentioned in references [11–13]. Yu and Xu [14] developed the
concept of PAOs for the SF set. This also uses PAOs to identify the data gathering into a singleton set. According to
research, limits and equal weighting of standards and decision-makers are necessary for all of the previously provided
data to function at its best. Some have concluded different operator types based on different norms when dealing with
priority data; however, they cannot use the SS norms because some researchers have developed different operator
types that conflict with the priority degree. Assuming a priority degree, all fuzzy set theory organizations face an
incredibly difficult task: emerging the system of aggregation operators based on SS t-norm (SSTN) and t-conorm
(TCM). SS generalized power aggregation operators were made available to SF sets through [15].

Helmers and Weiss [16] created the concept of using MADM for battery life cycle assessment. Helmers et al. [17]
considered the idea of a life cycle assessment for electric cars using actual data derived from MADM. Lundström
and Hellström [18] extended the use of an app to evaluate electric vehicles. MADM application chose the electric
passenger automobile [19]. Use of traction supply system based on MADM for charging electric vehicles [20, 21].
Evaluation of conventional fuel-powered cars with a greener nature on MADM [22]. In MADM, a sophisticated and
delicate study is conducted to choose electric vehicles. The MADM optimization life cycle evaluation application for
passenger cars has been expanded [23]. The studies [20, 24] explained how to use the supply system to charge electric
vehicles. Hao et al. [25] considered the notion of vehicle emissions from liquefied petroleum gas-powered vehicles.
In gasoline exhaust emissions, the hydrocarbons were expanded [26]. Given the notion of life cycle evaluation of
mid- range passenger Carson based on the liquid and gaseous [27]. Considering the idea of using a scenario analysis
framework to examine passenger cars both now and in the future. Sarfraz et al. [28] gave the concept of prioritization
aggregation operator using the IFS. Ullah et al. [29] gave the concept of prioritized Aczel-Alsina using the complex
IFS. Berre et al. [30] expanded the theory of Schweizer-Sklar TN and TCN using the Pythagorean fuzzy rough set.

Berre et al. [31] gave the concept of artificial intelligence. Lee et al. [32] developed the theory of artificial
intelligence based on technologies. Shan et al. [33] gave the concept of artificial intelligence. Zhou et al. [34] used
the application of artificial intelligence. Wan et al. [31] developed the application of artificial intelligence. Lawal et
al. [35] developed the concept of artificial intelligence. Wan et al. [36] used the application of artificial intelligence.

1.2 Aim of the Study
Of course, all of the BM and HM operators have this function. However, they can only consider the relationships

between two combined arguments. The MSM operator is more suitable for solving actual MAGDM problems because
it uses a variable parameter to account for the interrelationships among any multiple arguments. It is necessary to
fully consider the interrelationships among multiple aggregated arguments in some practical problems.

1.3 Motivation for the Research
Furthermore, because there is an infinite set of possible parameter values for Schweizer-Sklar operations, the

parameters can be adjusted to reflect the different risk attitudes of decision-makers, including risk aversion and
preference, which makes the method more flexible and appropriate for real-world MAGDM problems. It is important
and useful to extend the MSM operator to SFNs based on the Schweizer-Sklar operations in order to address the
MAGDM issues with SFNs. Inspired by these ideas, the goal of this work is to present a new Spherical fuzzy
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MSM operator based on these new rules, and some new Schweizer-Sklar operational rules within the Spherical fuzzy
environment.

1.4 Contributions
• Some conclusions from the MSM and SS discussed above in the form of the key points are given below.
• All the MSM and SS for the IFS, PYFS, qROFS, PFS and SFS are outdate because these frameworks can extract

very limited information from the real-life scenarios. Hence, the decisions makers cannot find the best results due to
the involvement of the uncertainty and the information loss. Hence, the advanced AI should be defined for the SFNs.

• Some of the MSM and SS discussed above are failed to compute at some special scenarios. For example, some
of the MSM and SS do not provide the decision results due to the division by zero problems. Therefore, to improve
the identification ability of the MSM and SS overcome the defects of current MSM with SS, it is very necessary to
propose a new operator.

1.5 Organization of the Study
This essay is organized generally as follows. In section 2, we primarily introduce some basic SFSs, combining

MS and SS operators, as well as the ideas of SSTCN and SSTN. In section 3, we demonstrate two spherical fuzzy
combining MS and SS operators using the SSTN and SSTCN: The spherical fuzzy Schweizer-Sklar weighted MSM
(SFSSWMSM) and the spherical fuzzy Schweizer-Sklar MSM (SFSSMSM) operator. In section 4, we use the
suggested SFSSWMSM operator to develop a new MAGDM method. And shows how the suggested method works
and contrasts it with the ones that are currently in use. In section 5, we offer the paper’s conclusions.

2 Preliminaries
To make this paper easier for readers to understand, we will go over the concepts of SFS, Maclaurin symmetric

mean (MSM) operator, and Schweizer-Sklar T-norm and T-conorm.
Definition 1: SFS P is a set of a finite set U = {ξ1, ξ2, ξ3, . . . , ξt} are specified as [6]:

P = {(ξι, µp (ξι) , ϑP (ξι) , ηP (ξι)) ∈ U, ι = 1, 2, 3, . . . , t}

The µp (ξι) , ϑP (ξι) and ηP (ξι) represented the MG, AG, and NMG element ξi ∈ U the set P respectively,

0 ≤ µ2
P (ξι) + ϑ2P (ξι) + η2P (ξι) ≤ 1

RG δp (ξι) as

δp (uι) =
2

√
1− (µ2

P (ξι) + ϑ2P (ξι) + η2P (ξι))

Definition 2: Suppose Ř = (U , ϑ, β) is a SFN, then the score function sc
(
Ř
)

is defined as [37]

sc
(
Ř
)
= (U2 − ϑ2 − β2)

And the accuracy function ac
(
Ř
)

is defined as

ac
(
Ř
)
= (U2 + ϑ2 + β2)

Let Ř1 =
(
U2
1 , ϑ

2
1, β

2
1

)
and Ř2 =

(
U2
2 , ϑ

2
2, β

2
2

)
be two SFNs, the laws of comparing the two SFNs are as

below:
1. If scŘ1 ≻ scŘ1, then Ř1 ≻ Ř1

2. If scŘ1 = scŘ1, then
(i). If acŘ1 ≻ acŘ1, then Ř1 ≻ Ř1

(ii). If scŘ1 = scŘ1, then Ř1 = Ř1

2.1 Schweizer-Sklar T-Norm and T-Conorm
As a particular instance of SSTN, SSTCN is capable of producing operations utilizing the sum and product of

Schweizer-Sklar.
Definition 3: Consider A = (aA, bA, cA) and B = (aB , bB , cĊ) are any two SFNs, the result and total SFSs

depending on the T (ψ,Λ) [38]:

A∩TN,TCNB = {⟨φ, TN (aA (φ) , aB (φ)) , aĊ (φ) , TCN (aA (φ) , aB (φ)) , aĊ (φ)⟩φ ∈ φ} (1)

3



A∪TN,TCNB = {⟨φ, TN (aA (φ) , aB (φ)) , aĊ (φ) , TCN (aA (φ) , aB (φ)) , aĊ (φ)⟩φ ∈ φ} (2)

TN∆∆, o (ψ,Λ) = (ψo + Λo − 1)
1/o (3)

TCN∆∆, o (ψ,Λ) = 1− ((1− ψ)o + (1− Λ)
o − 1)

1
o (4)

So o < 0, ψ,Λ ∈ [0, 1].
where, o = 0, we have TNo (ψ,Λ) = ψΛ and TCNo (ψ,Λ) = ψ+Λ−ψΛ, which, TN and TC are the algebraic.

The TN T (ψ,Λ) and TCN (ψ,Λ) Schweizer-Sklar operations for SFNs are available.
Definition 4: Suppose Ř1 =

(
U2
1 , ϑ

2
1, β

2
1

)
and Ř2 =

(
U2
2 , ϑ

2
2, β

2
2

)
are any two SFNs, then, based on

Schweizer-Sklar operations, the product and sum of SFNs are shown as follows [38]

Ř1⊗TN,TCN Ř2 =
(
TN

(
U2
1 , U2

2

)
, TCN

(
ϑ21, ϑ

2
2

))
Ř1⊕TN,TCN Ř2 =

(
TN

(
U2
1 , U2

2

)
, TCN

(
ϑ21, ϑ

2
2

))
We might suggest the Schweizer-Sklar operational norms of SFNs, which are illustrated below, based on formulas

(o < 0, α > 0).

Ř1 ⊕∆∆ Ř2 =

(
1−

((
1− µ2

1

)o)
+
((

1− µ2
2

)o − 1
) 1

o

,
((
ϑ21
)a

+
(
ϑ22
)a − 1

) 1
o

,
((
β2
1

)a
+
(
β2
2

)a − 1
) 1

o

)

Ř1⊗∆∆ Ř2 =

(
((µn

1 )
a
+ (µn

2 )
a − 1)

1
o , 1−

((
1− ϑ21

)o
+
(
1− ϑ22

)o − 1
) 1

o

, 1−
((

1− β2
1

)o
+
(
1− β2

2

)o − 1
) 1

o

)

αŘ1 =
(
1−

(
α
(
1− µ2

1

)o − (α− 1)
)
1/o
)
, 1−

(
α
(
1− ϑ21

)o − (α− 1)
)1/o

,
(
α
(
1− β2

1

)o − (α− 1)
)1/o

Řα
1 =

((
α
(
µ2
1

)a − (α− 1)
)1/o

, 1−
(
α
(
1− ϑ21

)o − (α− 1)
)1/o

, 1−
(
α
(
1− β2

1

)o − (α− 1)
)1/o)

Theorem 1: Let Ř1 =
(
U2
1 , ϑ

2
1, β

2
1

)
and Ř2 =

(
U2
2 , ϑ

2
2, β

2
2

)
be any two SFNs, and o < 0 [39], then

(1) Ř1 ⊕∆∆ Ř2 = Ř2 ⊕ Ř2 ⊕∆∆Ř1,

(2) Ř1 ⊗∆∆ Ř2 = Ř2 ⊕ Ř2 ⊗∆∆Ř1,

(3) α
(
Ř1 ⊕∆∆ Ř2

)
= αŘ1 ⊕∆∆ αŘ2, α ≥ 0,

(4)α1 ⊕ Ř1∆∆ α2Ř1 = (α1 + α2) Ř1, α1, α2 ≥ 0,

(5) Řα1
1 ⊗ Ř

α2
1 = Řα1+α2

1 , α1, α2 ≥ 0,

(6) Řα
1 ⊗∆∆ Řα

2 =
(
Ř1 ⊗∆∆ Ř2

)α
, α ≥ 0.

As Theorem 1 is simple to prove, it is not included here.
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2.2 Maclaurin Symmetric Mean Operator
In order to take the relationships between various integrated arguments into consideration, Maclaurin created the

Maclaurin symmetric mean (MSM) which are follows:
Definition 5 [39]: Consider aı (ı = 1, 2, . . . , α) and the collection of the real numbers not of the negative, the

MSM is written are

MSM (K) (a1, a2, . . . , aα) =

(∑
1≤ı1<...<ıq≤α

∏
ℓ=1 aıℓ

ĊK
α

)1/K

where, Ċq
α = α!

q!(α−q)! is the binomial coefficient, (ı1, ı2, . . . , ıq) the combination of (1, 2, . . . , m), and traverses

all the k-tuple as, So, 1 ≤ q ≤ α. For instance, if α = 4 and q = 3, then
∑

1≤ı1<...<ıq≤α

q∏
ℓ=1

aıℓ = a1a2a3+a1a2a4+

a1a3a4 + a2a3a4.
The properties of MSM are following as:

MSM (q) (0, 0, . . . , 0) = 0, MSM (q) (a, a, . . . , a) = a;

MSM (q) (a1, a2, . . . , aα) ≤MSM (q) (b1, b2, . . . , bα) , ıf aı ≤ bı for all ı;

min
ı
{aı} ≤MSM (q) (a1, a2, . . . , aα) ≤ max

ı
{aı} .

3 The Operators are SFNs Schweizer-Sklar Maclaurin Symmetric Mean (SSMSM)
This section we can introduces two new operators constants are the SSTT and SFNs. spherical fuzzy Schweizer-

Sklar Maclaurin symmetric mean (SFSSMSM) and the spherical fuzzy Schweizer-Sklar weighted Maclaurin
symmetric mean (SFSSWMSM).

3.1 Spherical Fuzzy Schweizer-Sklar Maclaurin Symmetric Mean (SFSSMSM) Operator
Definition 6: Consider Řı (ı = 1, 2, . . . , α) is a collection of SFNs, q = 1, 2, . . . , α and SFSSMSM:
Ωα →Ω, if

SFSSMSM (q,o)
(
Ř1, Ř2, . . . , Řα

)
=

(
⊕1≤ı1<...<ıq≤α∆∆⊗q

ℓ=1 ∆∆ Řıℓ

Ċq
α

) 1
q

The collection of SFNs, Ċq
α = α!

K!(α−K)! is the binomial coefficient, (ı1, ı2, . . . , ıq) the combination of
(1, 2, . . . , α) and traverses all the k-tuple. So 1 ≤ q ≤ α.

We have aggregation result below, which is presented as in Theorem 3.1.2, on the base of Schweizer-Sklar
operational principles of SFNs.

Theorem 2: Suppose Řı =
(
U2
ı , ϑ

2
ı , β

2
ı

)
(ı = 1, 2, . . . , α) is a set of SFNs and o < 0, q = 1, 2, . . . , α, thus

the total result remains a SFN, and even
SFSSMSM (q, o)

(
Ř1, Ř2, . . . , Řα

)

=




 1

q

1−

 1
Ċq

α

( ∑
1≤ı1<...<ıq≤α

(
U2
ıℓ

)o)
− (q − 1)


1
o


o

1
o


o

,

1−

 1
q

1−

 1
Ċq

α

∑
1≤ı1<...<ıq≤α

(
1−

((
q∑

ℓ=1

(
ϑ2ıℓ
)o − (q − 1)

) 1
o

)o) 1
o

o

−
(

1
q − 1

)
1
o

 ,

1−

 1
q

1−

 1
Ċq

α

∑
1≤ı1<...<ıq≤α

(
1−

((
q∑

ℓ=1

(
β2
ıℓ

)o − (q − 1)

) 1
o

)o) 1
o

o

−
(

1
q − 1

)1/o


Proof. Firstly, we can calculate ⊗q

ℓ=1∆∆Řıℓ, and get
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⊗q
ℓ=1∆∆Řıℓ =



(((
q∑

ℓ=1

(
U2
ıℓ

)o)− (q − 1)

) 1
o

)
,

1−
((

q∑
ℓ=1

(
1− ϑ2ıℓ

)o)− (q − 1)
1
o

)
,

1−
((

q∑
ℓ=1

(
1− β2

ıℓ

)o)− (q − 1)
1
o

)


,

And it is SFN.
Then calculate ⊕1≤ı1<...<ıq≤α∆∆⊗q

ℓ=1 ∆∆Řıℓ, and get

⊕1≤ı1<...<ıq≤α∆∆⊗∆∆q
ℓ=1 =



(
1−

( ∑
1≤ı1<...<ıq≤α

(
1−

(
q∑

ℓ=1

(
U2
ıℓ

)o − (q − 1)

) 1
o

)o)
−
(
Ċq

α − 1
)) 1

o

,( ∑
1≤ı1<...<ıq≤α

(
1−

((
q∑

ℓ=1

(
1− ϑ2ıℓ

)o − (q − 1)

) 1
o

)o)
−
(
Ċq

α − 1
)) 1

o

 ,
 ∑

1≤ı1<...<ıq≤α

1−

((
q∑

ℓ=1

(
1− β2

ıℓ

)o − (q − 1)

) 1
o

)Γ
− (Ċq

α − 1
)1/o




And it is also SFN.
Further, we can calculate ⊕1≤ı1<...<ıq≤α∆∆⊗q

ℓ=1∆∆Řıℓ

Ċq
α

, and get⊕
1≤ı1<···<ıq≤α ∆∆⊗∆∆Řıℓ

q
ℓ=1

Ċq
α

=

1−

 1
Ċq

α

 ∑
1≤ı1<...<ıq≤α

1−

( q∑
ℓ=1

(
U2
ıℓ

)o)
− (q − 1)


1
o


o



1
o

,

 1
Ċq

α

 ∑
1≤ı1<...<ıq≤α

1−

( q∑
ℓ=1

(
1− ϑ2ıℓ

)o)
− (q − 1)


1
o


o

1
o
 ,

 1
Ċq

α

 ∑
1≤ı1<...<ıq≤α

1−

( q∑
ℓ=1

(
1− β2

ıℓ

)o)
− (q − 1)


1
o


o

1
o



And it is also SFN.

Finally, we calculate
(

⊕1≤ı1<...<ıq≤α∆∆⊗q
ℓ=1∆∆Řıℓ

Ċq
α

)1/q

, and get

SFSSMSM (q, o)
(
Ř1, Ř2, . . . , Řα

)
=

⊕1≤ı1<...<ıq≤α
ℓ=1

∆∆⊗∆∆Řıℓ
q
ℓ=1

Ċq
α


1
q

=



 1
q

1−

(
1
Ċq

α

(∑
1≤ı1<...<ıq≤α

(
1−

((∑q
ℓ=1

(
U2
ıℓ

)o)
− (q − 1)

) 1
o

)o)) 1
o
o

−
(

1
q − 1

)
1
o

,

1−

 1
q

1−

(
1
Ċq

α

(∑
1≤ı1<...<ıq≤α

(
1−

((∑q
ℓ=1

(
1− ϑ2ıℓ

)o)
− (q − 1)

) 1
o

)o)) 1
o
o

−
(

1
q − 1

)
1
o

,

1−

 1
q

1−

(
1
Ċq

α

(∑
1≤ı1<...<ıq≤α

(
1−

((∑q
ℓ=1

(
1− β2

ıℓ

)o)
− (q − 1)

) 1
o

)o)) 1
o
o

−
(

1
q − 1

)
1
o
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And SFN as well.
The SFSSMSM operator has the following qualities, which are simple to demonstrate.
Theorem 3: (Idempotency) suppose Řı =

(
U2
ı , ϑ

2
ı , β

2
ı

)
(ı = 1, 2, . . . , α) is a collection of the SFNs, if Řı =

Ř =
(
U2, ϑ2, β2

)
, ı = 1, 2, . . . , α, then

SFSSMSM (q, o)
(
Ř1, Ř2, . . . , Řα

)
= Ř =

(
U2, ϑ2, β2

)
Proof: Since Řı =

(
U2, ϑ2, β2

)
(ı = 1, 2, . . . , α), then according to formula (22), we have

SFSSMSM (q, o)
(
Ř1, Ř2, . . . , Řα

)
=



 1
q

(
1−

(
1
Ċq

α

( ∑
1≤ı1<...<ıq≤α

(
1−

(
q
(
U2
)o − (q − 1)

) 1
o

)o))) 1
o

o

−
(

1
q − 1

)
1
o

,

1−

 1
q

1−

 1
Ċq

α

( ∑
1≤ı1<...<ıq≤α

(
1−

((
1− ϑ2

)o − (q − 1)
) 1

o

)o) 1
o

o

−
(

1
q − 1

)
1
o

 ,

1−

 1
q

1−

 1
Ċq

α

( ∑
1≤ı1<...<ıq≤α

(
1−

((
1− β2

)o − (q − 1)
) 1

o

)o) 1
o

o

−
(

1
q − 1

)
1
o





=



(
1
q

(
1−

(
1−

(
q
(
U2
)o − (q − 1)

) 1
o

))o
−
(

1
q − 1

)) 1
o

,

1−
(

1
q

(
1−

(
1−

(
q
(
1− ϑ2

)o − (q − 1)
) 1

o

))o
−
(

1
q − 1

)) 1
o

,

1−
(

1
q

(
1−

(
1−

(
q
(
1− β2

)o − (q − 1)
) 1

o

))o
−
(

1
q − 1

)) 1
o



=


(

1
q

(
q
(
U2
)o − (q − 1)

)
−
(

1
q − 1

)) 1
o

,

1−
(

1
q

(
q
(
1− ϑ2

)o − (q − 1)
)
−
(

1
q − 1

)) 1
o

,

1−
(

1
q

(
q
(
1− β2

)o − (q − 1)
)
−
(

1
q − 1

)) 1
o


=
(
U2, ϑ2, β2

)
= Ř.


(

1
q

(
1−

(
1−

(
q
(
U2
)o − (q − 1)

) 1
o

))) 1
o

,

1−
(

1
q

(
1−

(
1−

(
q
(
1− ϑ2

)o − ( 1
q − 1

)))))
,

1−
(

1
q

(
1−

(
1−

(
q
(
1− β2

)o − ( 1
q − 1

)))))


Theorem 4: (Monotonicity) suppose Řı =
(
U2
ı , ϑ

2
ı , β

2
ı

)
and Ř′

ı =
(
U2

ı

′

, ϑ2ı
′

, β2
ı

′)
are two sets of SFNs,

if U2
ı ≥ U2

ı

′

, ϑ2ı ≥ ϑ2ı
′

and β2
ı ≥ β2

ı

′

for all ı = 1, 2, . . . , α, then

SFSSMSM (q, o)
(
Ř

′

1, Ř
′

2, . . . , Ř
′

α

)
≥ SFSSMSM (q, o)

(
Ř

′

1, Ř
′

2, . . . , Ř
′

α

)
Proof: Since U2

ı ≥ U2
ı

′

for any ı, we have
α∑

ℓ=1

(
U2
ıℓ

)o ≤ α∑
ℓ=1

(
U2

ıℓ

′)o
and

((
α∑

ℓ=1

(
U2
ıℓ

)o)− (q − 1)

) 1
o

≤((
α∑

ℓ=1

(
U2

ıℓ

′)o)
− (q − 1)

) 1
o

,

Then we have1−

((
α∑

ℓ=1

(
U2
ıℓ

)o)− (q − 1)

) 1
o

o

≥

1−

((
α∑

ℓ=1

(
U2

ıℓ

′)o)
− (q − 1)

) 1
o

o
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And  1

Ċq
α

 ∑
1≤ı1<...<ıq≤α

1−

((
α∑

ℓ=1

(
U2
ıℓ

)o)− (q − 1)

) 1
o

o
≥ 1

Ċq
α

 ∑
1≤ı1<...<ıq≤α

1−

((
α∑

ℓ=1

(
U2

ıℓ

′)o)
− (q − 1)

) 1
o

o
Further, we have

1−

 1

Ċq
α

 ∑
1≤ı1<...<ıq≤α

1−

((
α∑

ℓ=1

(
U2
ıℓ

)o)− (q − 1)

) 1
o

o
1
o

≥ 1−

 1

Ċq
α

 ∑
1≤ı1<...<ıq≤α

1−

((
α∑

ℓ=1

(
U2

ıℓ

′)o)
− (q − 1)

) 1
o

o
1
o

And

1

q

1−

 1

Ċq
α

∑
1≤ı1<...<ıq≤α

1−

(
α∑

ℓ=1

(
U2
ıℓ

)o − (q − 1)

) 1
o

o
1
o


o

≤ 1

q

1−

 1

Ċq
α

∑
1≤ı1<...<ıq≤α

1−

(
α∑

ℓ=1

(
U

′2
ıℓ

)o
− (q − 1)

) 1
o

o
1
o


o

Finally, we have

1

q

1−

 1

Ċq
α

 ∑
1≤ı1<...<ıq≤α

1−

((
α∑

ℓ=1

(
U2
ıℓ

)o) − (q − 1)

) 1
o

o
1
o




o

−
(
1

q
− 1

)
1
o

≥

1

q

1−

 1

Ċq
α

 ∑
1≤ı1<...<ıq≤α

1−

((
α∑

ℓ=1

(
U2

ıℓ

′)o
− (q − 1)

) ) 1
o

o
1
o




o

−
(
1

q
− 1

)
1
o

Similarly, we have

1−

1

q

1−

 1

Ċq
α

 ∑
1≤ı1<...<ıq≤α

1−

(
α∑

ℓ=1

(
ϑ2lℓ
)o − (q − 1)

) 1
o

o
1
o




o

−
(
1

q
− 1

)
1
o

≤ 1−

1

q

1−

 1

Ċq
α

 ∑
1≤ı1<...<ıq≤α

1−

(
α∑

ℓ=1

((
ϑ2lℓ
)′)o − (q − 1)

) 1
o

o
1
o




o

−
(
1

q
− 1

)
1
o

1−

1

q

1−

 1

Ċq
α

 ∑
1≤ı1<...<ıq≤α

1−

(
α∑

ℓ=1

(
β2
lℓ

)o − (q − 1)

) 1
o

o
1
o




o

−
(
1

q
− 1

)
1
o
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≤ 1−

1

q

1−

 1

Ċq
α

 ∑
1≤ı1<...<ıq≤α

1−

(
α∑

ℓ=1

(
β2′

lℓ

)o
− (q − 1)

) 1
o

o
1
o




o

−
(
1

q
− 1

)
1
o

Let Ř = SFSSMSM (q, o)
(
Ř

′

1, Ř
′

2, . . . , Ř
′

α

)
, according to this Equation,



 1
q

1−

 1
Ċq

α

∑
1≤ı1<...<ıq≤α

1−

( α∑
ℓ=1

(
U2
ıℓ

)o − (q − 1)

)
1
o


o

1
o


o

−
(

1
q − 1

)
1
o

=

 1
q

1−

 1
Ċq

α

∑
1≤ı1<...<ıq≤α

1−

( α∑
ℓ=1

(
1− ϑ2ıℓ

)o − (q − 1)

)
1
o


o

1
o


o

−
(

1
q − 1

)
1
o

−

1−

 1
q

1−

 1
Ċq

α

∑
1≤ı1<...<ıq≤α

1−

( α∑
ℓ=1

(
U2
ıℓ

)o − (q − 1)

)
1
o


o

1
o


o

−
(

1
q − 1

)
1
o

−1−

 1
q

1−

 1
Ċq

α

∑
1≤ı1<...<ıq≤α

1−

( α∑
ℓ=1

(
1− β2

ıℓ

)o − (q − 1)

)
1
o


o

1
o


o

−
(

1
q − 1

)
1
o

 ≥
 1

q

1−

 1
Ċq

α

∑
1≤ı1<...<ıq≤α

1−

( α∑
ℓ=1

(
U2

ıℓ

′)o
− (q − 1)

)
1
o


o

1
o


o

−
(

1
q − 1

)
1
o

−

1−

 1
q

1−

 1
Ċq

α

∑
1≤ı1<...<ıq≤α

1−

( α∑
ℓ=1

((
1− ϑ2ıℓ

)′)o
− (q − 1)

)
1
o


o

1
o


o

−
(

1
q − 1

)
1
o

−



−

1−

1

q

1−

 1

Ċq
α

∑
1≤ı1<...<ıq≤α

1−

(
α∑

ℓ=1

(
1− β2

ıℓ

′

− (q − 1)
)o) 1

o

o
1
o


o

−
(
1

q
− 1

)
1
o
 = S

(
Ř′)

We can discussion the two circumstances are necessary.
(1) If S(Ř) > S(Ř′), according to Definition 2.2.

SFSSMSMq, o(Ř1, Ř2, . . . , Řα) > SFSSMSM (q, o)(Ř′
1, Ř

′
2, . . . , Ř

′
α).

(2) If S(Ř) = S(Ř′), because U2
ıℓ ≥ U2′

ıℓ ≥ 0, ϑ2ıℓ ≥ ϑ2
′

ıℓ ≥ 0, β2
ıℓ ≥ β2′

ıℓ ≥ 0

1

q

1−

 1

Ċq
α

∑
1≤ı1<...<ıq≤α

1−

(
q∑

ℓ=1

(
U2
ıℓ

)o − (q − 1)

) 1
o

o
1
o


o

−
(
1

q
− 1

)
1
o

=

1

q

1−

 1

Ċq
α

∑
1≤ı1<...<ıq≤α

1−

(
q∑

ℓ=1

(
U2′
ıℓ − (q − 1)

)o) 1
o

o
1
o


o

−
(
1

q
− 1

)
1
o
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1−

1

q

1−

 1

Ċq
α

∑
1≤ı1<...<ıq≤α

1−

((
q∑

ℓ=1

(
1− ϑ2ıℓ

)o − (q − 1)

)) 1
o

o
1
o


o

−
(
1

q
− 1

)
1
o

= 1−

 1
q

1−

(
1
Ċq

α

∑
1≤ı1<···<ıq≤α

(
1−

((∑q
ℓ=1

(
1−

(
ϑ2ıℓ
)′ − (q− 1)

)o)) 1
o

)o
) 1

o

o

−
(

1
q − 1

)
1
o

1−

1

q

1−

 1

Ċq
α

∑
1≤ı1<···<ıq≤α

1−

((
q∑

ℓ=1

(
1− β2

ıℓ

)o − (q− 1)

)) 1
o

o
1
o


o

−
(
1

q
− 1

)
1
o

= 1−

1

q

1−

 1

Ċq
α

∑
1≤ı1<···<ıq≤α

1−

((
q∑

ℓ=1

(
1− β2′

ıℓ

)o
− (q− 1)

)) 1
o

o
1
o


o

−
(
1

q
− 1

)
1
o

As a result, using Definition 2, we may obtain

H
(
Ř
)
=

 1
q

1−

(
1
Ċq

α

∑
1≤ı1<...<ıq≤α

(
1−

((
q∑

ℓ=1

(
U2
ıℓ

)o − (q − 1)

)) 1
o

)o) 1
o

o

−
(

1
q − 1

)
1
o

+1−

 1
q

1−

(
1
Ċq

α

∑
1≤ı1<...<ıq≤α

(
1−

((
q∑

ℓ=1

(
1− ϑ2ıℓ

)o − (q − 1)

)) 1
o

)o) 1
o

o

−
(

1
q − 1

)
1
o

+

1−

 1
q

1−

(
1
Ċq

α

∑
1≤ı1<...<ıq≤α

(
1−

((
q∑

ℓ=1

(
1− β2

ıℓ

)o − (q − 1)

)) 1
o

)o) 1
o

o

−
(

1
q − 1

)
1
o

=

 1
q

1−

(
1
Ċq

α

∑
1≤ı1<...<ıq≤α

(
1−

((
q∑

ℓ=1

(
U2

ıℓ

′)o
− (q − 1)

)) 1
o

)o) 1
o

o

−
(

1
q − 1

)
1
o

+

1−

 1
q

1−

(
1
Ċq

α

∑
1≤ı1<...<ıq≤α

(
1−

((
q∑

ℓ=1

(
1−

(
ϑ2ıℓ
)′)o

− (q − 1)

)) 1
o

)o) 1
o

o

−
(

1
q − 1

)
1
o

+1−

 1
q

1−

(
1
Ċq

α

∑
1≤ı1<...<ıq≤α

(
1−

((
q∑

ℓ=1

(
1− β2

ıℓ

′)o
− (q − 1)

)) 1
o

)o) 1
o

o

−
(

1
q − 1

)
1
o


= H

(
Ř′) .

So, according to Definition 2, we can get

SFSSMSM (q, o)
(
Ř1, Ř2, . . . , Řα

)
≥ SFSSMSM (q, o)

(
Ř

′

1, Ř
′

2, . . . , Ř
′

α

)
.

Theorem 5: (Boundedness) suppose Řı =
(
U2
ı , ϑ

2
ı , β

2
ı

)
is a set of T-SFNs, if U− = min

1≤ı≤α

{
U2
ı

}
, U+ =

max
1≤ı≤α

{
ϑ2ı
}

, ϑ− = min
1≤ı≤α

{
ϑ2ı
}

, ϑ+ = max
1≤ı≤α

{ϑı} , β− = min
1≤ı≤α

{
β2
ı

}
, β+ = max

1≤ı≤α

{
β2
ı

}
, let Ř− =

(U−, ϑ+, β+) and Ř+ = (U+, ϑ−, β−), then

Ř− ≤ SFSSMSM (q, o)
(
Ř1, Ř2, . . . , Řα

)
≤ Ř+

Proof:
(
U2
ı , ϑ

2
ı , β

2
ı

)
(ı = 1, 2, . . . , α) is a collection of the SFNs, if Řı = Ř =

(
U2, ϑ2, β2

)
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Since U− = min
1≤ı≤α

{
U2
ı

}
, U+ = max

1≤ı≤α

{
U2
ı

}
, ϑ− = min

1≤ı≤α

{
ϑ2ı
}

, V\ϑ+ = max
1≤ı≤α

{
ϑ2ı
}

, β− = min
1≤ı≤α

{
β2
ı

}
,

β+ = max
1≤ı≤α

{
β2
ı

}
, so U− ≤ Uı ≤ U+, ϑ− ≤ ϑı ≤ ϑ+, β− ≤ β2

ı ≤ β+ base of the Definition 2, Ř− =

min
1≤ı≤α

{
Řı

}
, Ř+ = max

1≤ı≤α

{
Řı

}
.

Hence, we can obtain due to idempotency and monotonicity

Ř− ≤ SFSSMSM (q, o)
(
Ř1, Ř2, . . . , Řα

)
≤ Ř+

By assigning various parameter values o and q to the proposed SFSSMSM operator, we can obtain certain specific
situations.

(1) If o = 0, the SFSSMSM operator are the reduces of spherical fuzzy Maclaurin symmetric mean (SFMSM)
operator [40],

SFSSMSM (q, o=0) (a1, a2, . . . , aα) =



1−

( ∏
1≤ı1<...<ı2≤α

(
1−

q∏
ℓ=1

U2
ıℓ

)) 1

Ċ
q
α

 ,

1−

1−

( ∏
1≤ı1<...<ı2≤α

(
1−

q∏
ℓ=1

(
1− ϑ2ıℓ

))) 1

Ċ
q
α


1
q

,

1−

1−

( ∏
1≤ı1<...<ı2≤α

(
1−

q∏
ℓ=1

(
1− β2

ıℓ

))) 1

Ċ
q
α


1
q


= SFMSM (q) (a1, a2, . . . , aα)

(2) If q = 1, then SFSSMSM operator are reduces in the spherical fuzzy Schweizer-Sklar average (SFSSA)
operator.

SFSSMSM (q=1, o) (a1, a2, . . . , aα) =



 1
1

1−

(
1
Ċ1

α

( ∑
1≤ı1≤α

(
1−

((
1∑

ℓ=1

(
U2
ıℓ

)o − (1− 1)

)) 1
o

)o)) 1
o
o

−
(
1
1 − 1

)
1
o

,

1−

 1
1

1−

 1
Ċ1

α

 ∑
1≤ı1≤α

1−

( 1∑
ℓ=1

(
1− ϑ2ıℓ

)o)
→← − (1− 1)


1
o


o

1
o


o− ( 11 − 1
)


1
o

,

1−

 1
1

1−

 1
Ċ1

α

 ∑
1≤ı1≤α

1−

( 1∑
ℓ=1

(
1− β2

ıℓ

)o)
→← − (1− 1)


1
o


o

1
o


o− ( 11 − 1
)


1
o



1−

1−

(
1
α

∑
1≤ı1≤α

(
U2
ı1

)o) 1
o

o
1
o

,

1−

(
1
α

∑
1≤ı1≤α

(
1− ϑ2ı1

)o) 1
o

o
1
o

,

1−

(
1
α

∑
1≤ı1≤α

(
1− β2

ı1

)o) 1
o

o
1
o


(let ıℓ = ℓ) =

1−

(
1

α

α∑
ℓ=1

(
1− U2

ℓ

)o) 1
o

,

(
1

α

α∑
ℓ=1

(
ϑ2ℓ
)o) 1

o

,

(
1

α

α∑
ℓ=1

(
β2
ℓ

)o) 1
o


(3) If q = 2, then SFSSMSM operator are reduces on the Spherical fuzzy Schweizer-Sklar Bonferroni mean

(SFSSBM) operator,

SFSSMSM (q=2, o) (a1, a2, . . . , aα) = π

11



=


1

2

1−

 1

Ċ2
α

 ∑
1≤ı1<...<ı2≤α

( 2∑
ℓ=1

(
U2
ıℓ

)o)
− (2− 1)


1
o


o


1
o


o

−
(
1

2
− 1

)
1
o

,

1−

1

2

1−

 1

Ċ2
α

 ∑
1≤ı1<...<ı2≤α

1−

( 2∑
ℓ=1

(1− ϑıℓ)o
)

− (2− 1)


1
o


o

1
o


o

−
(
1

2
− 1

)
1
o

 ,

1−

1

2

1−

 1

Ċ2
α

 ∑
1≤ı1<...<ı2≤α

1−

( 2∑
ℓ=1

(
1− β2

ıℓ

)o)
− (2− 1)


1
o


o

1
o


o

−
(
1

2
− 1

)
1
o



=



 1
2

1−

(
2

α(α−1)

( ∑
1≤ı1<ı2≤α

(
1−

((
U2
ı1

)o
+
(
U2
ı2

)o − 1
) 1

o

)o)) 1
o

o

+ 1
2


1
o

,

1−

 1
2

1−

(
2

α(α−1)

∑
1≤ı1<ı2≤α

(
1−

( (
1− ϑ2ıℓ

)o
+(

1− ϑ2ıℓ
)o − 1

) 1
o

)o) 1
o


o

+ 1
2


1
o

1−

 1
2

1−

(
2

α(α−1)

∑
1≤ı1<ı2≤α

(
1−

( (
1− β2

ıℓ

)o
+(

1− β2
ıℓ

)o − 1

) 1
o

)o) 1
o


o

+ 1
2


1
o


= SFSSBM1,1 (a1, a2, . . . , aα) .

(4) If q = α, then SFSSMSM operator are the reduces of the spherical fuzzy Schweizer –Sklar geometric
(SFSSG) operator

SFSSNSM (q=α,o) (a1, a2, . . . , aα) =


 1

α

1−

 1
Ċα

α

(∑
1≤ı1<...<ια≤α

(
1−

( (∑α
ℓ=1

(
U2
ıℓ

)o)
−(α− 1)

) 1
o

)o) 1
o
o

−
(
1
α − 1

)
1
o

,

1−

 1
α

1−

(
1
Cα

α

(∑
1≤ı1<...<ıα≤α

(
1−

( (∑α
ℓ=1

(
U2
ıℓ

)o)
−(α− 1)

) 1
o

)o)) 1
o
o

− ( 1
α − 1)


1
o

,

1−

 1
α

1−

 1

Ċα

(∑
1≤ι1<...<ια≤α

(
1−

(( ∑α
ℓ=1

(
1− ϑ2ıℓ

)o)) 1
o

−(α− 1)

))o)) 1
o

o

−
(
1
α − 1

)
1
o



=


 1

α

1−

(1−(( α∑
ℓ=1

U2
ıℓ

)o)
− (α− 1)

) 1
o

o
1
o


o

−
(
1

α
− 1

)
1
o

,

1−

 1

α

1−

((
1−

( (∑α
ℓ=1

(
1− ϑ2ıℓ

)o)
−(α− 1)

) 1
o

)o) 1
o
o

−
(
1

α
− 1

)
1
o

,
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1−

 1

α

1−

((
1−

( (∑α
ℓ=1

(
1− β2

ıℓ

)o)
−(α− 1)

) 1
o

)o) 1
o
o

−
(
1

α
− 1

)
1
o

( let ıℓ = ℓ)

=

 1

α

α∑
ℓ=1

(µo
ℓ)

1
o , 1−

(
1

α

α∑
ℓ=1

(
1− ϑ2ℓ

)o) 1
o

, 1−

(
1

α

α∑
ℓ=1

(
1− β2

ℓ

)o) 1
o

 .

3.2 Spherical Fuzzy Schweizer-Sklar Weighted Maclaurin Symmetric Mean (SFSSWMSM) Operator
Even though the operator accounts the relationships between many aggregated, it does not take into account

how important each aggregated argument is on its own. To address this flaw, the spherical fuzzy Schweizer-Sklar
weighted Maclaurin symmetric mean (SFSSWMSM) operator is defined in this sections:

Definition 6: Suppose Řı (ı = 1, 2, . . . , α) is a collection of SFNs, q = 1, 2, . . . , α, and SFSSWMS: Ωα → Ω,
if

SFSSWMSM (q,o)
(
Ř1, Ř2, . . . , Řα

)
=

(
1 ≤ ı1 < . . .⊕SS < ıq ≤ αq

ℓ=1 ⊗ SS
(
δıℓŘıℓ

)
q
α

) 1
q

where, Ω is the set of all SFNs, and (δ = δ1, δ2, . . . , δα) are the vector weight Ř =
(
Ř1, Ř2, . . . , Řα

)
, Ċq

α =
α!

q!(α−q)! is the binomial coefficient, (ı1, ı2, . . . , ıq) are the combination of (1, 2, . . . , α) and traverses all the k-tuple.
SFSSWMSM is termed of spherical fuzzy Schweizer-Sklar weighted Maclaurin symmetric mean operator.

We have following aggregation result, denoted the Theorem 6, and based on the Schweizer-Sklar operational
principles of SFNs.

Theorem 6: Suppose Řı =
((
U2
ı , ϑ

2
ı , β

2
ı

))
are the collection of SFNs, and q = 1, 2, . . . , α, then result is still a

SFN, and even

SFSSWMSm(q,o)
(
Ř1, Ř2, . . . , Řα

)
=1

q

1−

 1

Ċq
α

 ∑
1≤ı1<...<ıq≤α

1−

(
q∑

ı=1

(
1−

(
δıℓ
(
1− U2

ıℓ

)o
− (δıℓ − 1)

) 1
o

)o

− (q − 1)

) 1
o
o


1
o


o

−
(
1

q
− 1

)
1
q

,

1−

1

q

1−

 1

Cq
α

 ∑
1≤ı1<...<ιq≤α

1−

 q∑
ℓ=1

(
1−

(
δℓℓ
(
ϑ2ıℓ
)o−) 1

o

(δıℓ − 1)

)o

− (q − 1)

) 1
o

o
1
o


o

−
(
1

q
− 1

)
1
o

,

1−

1

q

1−

 1

Ċq
α

 ∑
1≤ı1<...<ιq≤α

1−

(
q∑

ℓ=1

(
1−

(
δıℓ
(
β2
ıℓ

)o−
(δıℓ − 1)

) 1
o

)o

− (q − 1)

) 1
o
o


1
o


o

−
(
1

q
− 1

)
1
o

SFSSWMSMM (q)
(
Ř1, Ř2, . . . , Řα

)
=

(
(ℓqℓ=1⊗SS(διℓ Řιℓ))1≤ı1<...⊕SS<ıq≤α

Ċq
α

) 1
q
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1

q

1−

 1

Cq
α

 ∑
1≤ı1<...<ıq≤α

1−

(
q∑

ℓ=1

(
1−

(
δıℓ
(
1− U2

ıℓ

)o
− (δıℓ − 1)

) 1
o

)o

− (q − 1)

) 1
o
o


1
o


o

−
(
1

q
− 1

) ,

1−

1

q

1−

 1

C
q

α

 ∑
1≤ı1<...<ıq≤α

1−

 q∑
ℓ=1

(
1−

(
δıℓ
(
ϑ2ıℓ
)o−) 1

o

(δıℓ − 1)

)o

− (q − 1)

) 1
o

o1/o


o

−
(
1

q
− 1

)
1
o

,

1−

1

q

1−

 1

Cq
α

 ∑
1≤ı1<...<ıq≤α

1−

(
q∑

ℓ=1

(
1−

(
δıℓ
(
β2
ıℓ

)o−
(δıℓ − 1)

) 1
o

)o

− (q − 1)

) 1
o
o


1/o


o

−
(
1

q
− 1

)
1
o

So it is also SFN.
The straightforward to verify the SFSSWMSM operator following the properties.
Definition 7: (Monotonicity) Consider Řı =

((
U2
ı , ϑ

2
ı , β

2
ı

))
aαd Ř

′

ı =
(
U2

ı

′

, ϑ2ı
′

, β2
ıℓ

′)
are two sets of SFNs,

if U2
ı ≥ U2

ı

′

, ϑ2ı ≥ ϑ2ı
′

and β2
ı ≥ β2

ıℓ

′

for all ı = 1, 2, . . . , α, then

SFSSWMSM (q,o)
(
Ř1, Ř2, . . . , Řα

)
≥ SFSSWMSM (q,o)

(
Ř

′

1, Ř
′

2, . . . , Ř
′

α

)
Theorem 7: (Boundedness) suppose Řı =

((
U2
ı , ϑ

2
ı , β

2
ı

))
are the set of SFNs and Ř− =

(
µ2−
min, ϑ

2−
max, β

2−
max

)
,

Ř+ =
(
µ2+
max, ϑ

2+
min, β

2+
min

)
µ2−
min =

 1

q

1 −

 1

Ċq
α

 ∑
1≤ı1<...<ıq≤α

1 −
(

q∑
ℓ=1

(
1 −

(
δıℓ

(
1 − min

1≤ı≤α

{
U2

ı

})o

− (δıℓ − 1)

) 1
o

)o

− (q − 1)

) 1
o

o
1
o


o

−
(

1

q
− 1

)
1
o

ϑ2−
max =

1−

 1

q

1 −

 1

Ċq
α

 ∑
1≤ı1<...<ıq≤α

1 −
(

q∑
ℓ=1

(
1 −

(
δıℓ

(
max

1≤ı≤α

{
ϑ
2
ı

})o

− (δıℓ − 1)

) 1
o

)o

− (q − 1)

) 1
o

o
1
o


o

−
(

1

q
− 1

)
1
o

β2−
max =

1−

 1

q

1 −

 1

Ċq
α

 ∑
1≤ı1<...<ıq≤α

1 −
(

q∑
ℓ=1

(
1 −

(
δıℓ

(
min

1≤ı≤α

{
β
2
ı

})o

− (δıℓ − 1)

) 1
o

)o

− (q − 1)

) 1
o

o
1
o


o

−
(

1

q
− 1

)
1
o

µ2+
max =

1−

 1

q

1 −

 1

Ċq
α

 ∑
1≤ı1<...<ıq≤α

1 −
(

q∑
ℓ=1

(
1 −

(
δıℓ

(
min

1≤ı≤α

{
U2

ı

})o

− (δıℓ − 1)

) 1
o

)o

− (q − 1)

) 1
o

o
1
o


o

−
(

1

q
− 1

)
1
o

ϑ2+
min =

 1

q

1 −

 1

Ċq
α

 ∑
1≤ı1<...<ıq≤α

1 −
(

q∑
ℓ=1

(
1 −

(
δıℓ

(
1 − min

1≤ı≤α

{
ϑ
2
ı

})o

− (δıℓ − 1)

) 1
o

)o

− (q − 1)

) 1
o

o
1
o


o

−
(

1

q
− 1

)
1
o

β2+
min =


 1

q

1 −

 1

Ċq
α

 ∑
1≤ı1<...<ıq≤α

1 −

 q∑
ℓ=1

1 −

δıℓ

(
1 − min

1≤ı≤α

{
β2
ı

})o

− (δıℓ − 1)

 1
o


o

− (q − 1)


1
o


o


1
o


o

−
(

1

q
− 1

)
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Then, Ř− ≤ SFSSWMSM (q,o)
(
Ř1, Ř2, . . . , Řα

)
≤ Ř+.

By assigning various parameter values for o and q, we can obtain some specific cases of the proposed SFSSWMSM
operator in a similar manner.

(1) If o = 0, theSFSSWMSMoperator of the spherical fuzzy weighted Maclaurin symmetric mean SFWMSM
operator [40].

SFSSWMSM (q,o=0)
(
Ř1, Ř2, . . . , Řα

)
=



1−

( ∏
1≤ı1,<ı2≤α

(
1−

q∏
ℓ=1

(
1−

(
1− U2

ıℓ

)δıℓ))) 1

Ċ
q
α


1
q

,


1−

1−

( ∏
1≤ı1,<ı2≤α

(
1−

q∏
ℓ=1

(
1−

(
ϑ2ıℓ
)δıℓ))) 1

Ċ
q
α


1
q

,

1−

1−

( ∏
1≤ı1,<ı2≤α

(
1−

q∏
ℓ=1

(
1−

(
β2
ıℓ

)δıℓ))) 1

Ċ
q
α


1
q


= SFWMSM (q)

(
Ř1, Ř2, . . . , Řα

)
.

(2) If q = 1, the SSSWMSM operator are,

SFSSWMSM (q=1,o)
(
Ř1, Ř2, . . . , Řα

)

=



((
1−

(
1
α

∑
1≤ı1≤α δıℓ

(
1− U2

ıℓ

)o − (δıℓ − 1)
) 1

o

)o) 1
o

,

1−
((

1−
(

1
α

∑
1≤ı1≤α

(
ωıℓ

(
ϑ2ıℓ
)o − (ωıℓ − 1)

)) 1
o

)o) 1
o

,

1−
((

1−
(

1
α

∑
1≤ı1≤α

(
ωıℓ

(
β2
ıℓ

)o − (ωıℓ − 1)
)) 1

o

)o) 1
o

(let ıℓ = ℓ)



=

 1−
(
1
α

∑α
ℓ=1

(
δℓ
(
1− U2

ℓ

)o − (δℓ − 1)
)) 1

o ,(
1
α

∑α
ℓ=1

(
δℓ
(
ϑ2ℓ
)o − (δℓ − 1)

)) 1
o ,(

1
α

∑α
ℓ=1

(
δℓ
(
β2
ℓ

)o − (δℓ − 1)
)) 1

o


(3) If q = 2, the SFSSWMSM operator is the reduces of spherical fuzzy Schweizer-Sklar weighted Bonferroni

SFSSWBM (p = q = 1) operator,

SFSSWMSM (q=2, o)
(
Ř1, Ř2, . . . , Řα

)
=

 1
2

1−

 2
α(α−1)

 ∑
1≤ı1<ı2≤α

1−

1−

(
2∑

ℓ=1

(
1−

(
δıℓ
(
U2
ıℓ

)o−
(δıℓ − 1)

) 1
o

)o

− 1

) 1
o

− 1


1
o


o


1
o


o

+ 1
2


1
o

,

1−

 1
2

1−

 2
α(α−2)

∑
1≤ı1<ı2≤α

1−

(
2∑

ℓ=1

(
1−

(
δıℓ
(
ϑ2ıℓ
)o−

(δıℓ − 1)

) 1
o

)o

− 1

) 1
o
o

1
o


o

+ 1
2


1
2

,

1−

 1
2

1−

 2
α(α−2)

∑
1≤ı1<ı2≤α

1−

(
2∑

ℓ=1

(
1−

(
δıℓ
(
β2
ıℓ

)o−
(δıℓ − 1)

) 1
o

)o

− 1

) 1
o
o

1
o


o

+ 1
2


1
2


= SFSSWBM1,1

(
Ř1, Ř2, . . . , Řα

)
.

(4) If q = α, the SFSSWMSM operator is

SFSSWMSM (q=α,o)
(
Ř1, Ř2, . . . , Řα

)
=
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 1
α

1−


1−

((
α∑

ℓ=1

(
1−

(
δıℓ
(
1− U2

ıℓ

)o
− (δıℓ − 1)

) 1
o

)o)
− (α− 1)

) 1
o
o

1
o


o

−
(
1
α − 1

)
1
o

,

1−

 1
α

1−


1−

((
α∑

ℓ=1

(
1−

(
δıℓ
(
ϑ2ıℓ
)o−

(δıℓ − 1)

) 1
o

)o)
− (α− 1)

) 1
o
o

1
o


o

−
(
1
α − 1

)
1
o

,

1−

 1
α

1−


1−

((
α∑

ℓ=1

(
1−

(
δıℓ
(
β2
ıℓ

)o−
(δıℓ − 1)

) 1
o

)o)
− (α− 1)

) 1
o
o

1
o


o

−
(
1
α − 1

)
1
o


(let ıℓ = ℓ)

=


1
α

(
α∑

ℓ=1

(
1−

(
δℓ
(
1− U2

ℓ

)o − (δℓ − 1)
) 1

o

)o) 1
o

,

1−
(

1
α

α∑
ℓ=1

(
1−

(
δℓ
(
ϑ2ℓ
)o − (δℓ − 1)

) 1
o

)o)o

,

1−
(

1
α

α∑
ℓ=1

(
1−

(
δℓ
(
β2
ℓ

)o − (δℓ − 1)
) 1

o

)o)o


4 MAGDM Based on the SFSSWMSM Operator

The MAGDM difficulties will be solved using the SFSSWMSM operator in this part. LetL = {L1,L2, . . . ,Lm}
are the set of alternatives andP = {P1, P2, . . . , Pα} the set of attributes. The weight vector is δ = (δ1, δ2, . . . , δα)

T

with δı ≥ 0, ı = 1, 2, . . . , α, and
α∑

ı=1
δı = 1. Further, let {D1, D2, . . . , Dt} set of experts and ω = (ω1, ω2, . . . , ωt)

weight vector with ωs ≥ 0 (s = 1, 2, . . . , t), and
t∑

s=1
δs = 1. The decision matrices of this MAGDM problem are

expressed by Řs = [rı
s
ℓ ]m×α, where rısℓ = (asıℓ, b

s
ıℓ) is the evaluation information of alternative Lı concerning the

attribute Pℓ given by the decision maker Ds, which is expressed by the SFNs. Then alternatives are required. We
will provide the detailed decision-making process based on the suggested SFSSWMSM operator, which is illustrated
as follows.

Step 1. Information can be normalized are used the make decisions.
Benefit and cost attributes two main categories of the characteristics. Normalizing the decision matrix, Řs =

[rsıℓ]m×αwe eliminate effects of various attribute types prior to integrating the evaluated attribute values. The
normalized decision matrix is given as Řs = [rsıℓ]m×α after converting the cost attribute values to benefits ones,
(ı = 1, 2, . . . ,m; ℓ = 1, 2, . . . , α),
where,

Řs
ıℓ =

{
(asıℓ, b

s
ıℓ) for beαefıt attrıbute pℓ

(bsıℓ, a
s
ıℓ) for cost attrıbute pℓ

Step 2. By use the theorem 3.2 get the group evaluation values rıℓ (ı = 1, 2, . . . ,m; ℓ = 1, 2, . . . , α) are the
introduced SFSSWMSM operator

rıℓ = SFSSWMSM (q, o)
(
r1ıℓ, r

2
ıℓ, . . . , r

t
ıℓ

)
Step 3. By the presented SFSSWMSM operator expressed in theorem 3, are comprehensive the values

φı (rı1, rı2, . . . , rıα) ,

shown as follows.

φı = SFSSWMSM (q, o) (rı1, rı2, . . . , rıα)

Step 4. The Definitions 2 and 3, we evaluate the SVs S (φı) of every alternative φı (ı = 1, 2, . . . ,m), are equal,
to calculate the important AVs H (φı) φı (ı = 1, 2, . . . ,m).

Step 5. Prioritize the options. Definition 2 are used the best ranking.
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4.1 An Illustrative the Example
Artificial Intelligence (AI) is used in many different fields to improve productivity and creativity. AI helps with

drug discovery, personalized medicine, and diagnostics in the healthcare industry. It optimizes trading strategies
and risk management in the financial domain. AI powers driverless cars for safer and more effective mobility
in the transportation sector. Personalized learning platforms are beneficial for education, and AI-driven catboats
are used for customer service. AI has a wider impact on manufacturing through predictive maintenance, and it
also maximizes crop yields in agriculture. All things considered, the versatility of AI revolutionizes industries
through task automation, data-driven decision-making, and the promotion of technological and problem-solving
breakthroughs. Consider the problem of the assessment of some artificial intelligence tools based on some
attributes {L1,L2,L3,L4}. Three experts Ds (s = 1, 2, 3) and the weight vector are ω = (0.35, 0.40, 0.25)T )
are invited the decision problem by the SFNs based on four basic indexes are weight vector is δ = (0.2, 0.1, 0.3, 0.4)):
the four alternative Ps (s = 1, 2, 3) machine learning (P1), natural language processing (P2), expert systems(P3)
and the robotics (P4), and four attributes learningL1, reasoningL2, perceptionL3 and problem-solvingL4. then the
three decision matrices Řs = [rsıℓ]5×4 (s = 1, 2, 3) are constructed and the objective is to choose the finest company
for investment out of those given in Table 1, Table 2, Table 3 and Table 4. These tables contain only SFNs for all of
the data for q = 3.

The following process is illustrated for the suggested method:
Step 1. Normalizing the information used for decision-making Řs. We don’t need the decision matrix because

in this step all attribute values are all of the benefit.
Step 2. By the introduced SFSSWMSM operator expressed, we obtain the group evaluation values rıℓ(l =

1, 2, 3, 4; ℓ = 1, 2, 3, 4 ) (consider q = 2 and o = −6).
Step 3. By the introduced SFSSWMSM operator expressed in theorem 3.2 we can obtain the comprehensive

evaluation values φı(ı = 1, 2, 3, 4) (suppose q = 2 and o = −6).

φ1 = (0.6260, 0.7220, 0.5440) , φ2 = (0.3510, 0.5400, 0.2010) , φ3 = (0.4530, 0.5122, 0.5441) ,

φ4 = (0.4020, 0.3320, 0.2450)

Step 4. Considering Definition 2 we evaluate the SVs S (φı) of each alternative φı (ı = 1, 2, 3, 4), and get

S (φ1) = 0.5332, S (φ2) = 0.7255, S (φ3) = 0.7044, S (φ4) = 0.3245

Step 5. Rank the alternatives.
Considering Definition 2.2 and the values of S (φı), we obtain the ranking alternatives as follows:

L2 > L3 > L1 > L4

Table 1. Ř1 Decision maker D1

P1 P2 P3 P4

L1 0.33 0.44 0.72 0.33 0.53 0.68 0.22 0.32 0.42 0.51 0.53 0.22
L2 0.62 0.78 0.32 0.34 0.74 0.55 0.52 0.33 0.52 0.62 0.42 0.45
L3 0.52 0.29 0.71 0.34 0.54 0.44 0.52 0.56 0.43 0.32 0.61 0.75
L4 0.51 0.33 0.22 0.44 0.23 0.35 0.11 0.29 0.32 0.44 0.24 0.21

Table 2. Ř2 the Decision maker D2

P1 P2 P3 P4

L1 0.26 0.19 0.35 0.54 0.23 0.18 0.35 0.21 0.25 0.32 0.44 0.22
L2 0.42 0.34 0.12 0.25 0.25 0.32 0.16 0.31 0.22 0.32 0.32 0.45
L3 0.25 0.35 0.12 0.23 0.24 0.34 0.23 0.12 0.36 0.34 0.43 0.33
L4 0.55 0.22 0.33 0.24 0.32 0.25 0.27 0.27 0.21 0.32 0.13 0.22

So, the best alternative is L2. The finest decision is L2 according to the theory of the SFSSWMSM operator.
Additionally, we are comparing the suggested work with the current operator while taking into account the
aforementioned numerical examples in order to demonstrate the efficacy and dependability of the derived theory.
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Table 3. Ř3 the Decision maker D3

P1 P2 P3 P4

L1 0.53 0.21 0.18 0.25 0.31 0.14 0.23 0.22 0.15 0.22 0.65 0.11
L2 0.28 0.16 0.32 0.33 0.14 0.24 0.22 0.11 0.22 0.34 0.82 0.24
L3 0.12 0.45 0.18 0.36 0.12 0.11 0.15 0.31 0.33 0.22 0.36 0.22
L4 0.23 0.15 0.26 0.16 0.22 0.36 0.41 0.22 0.36 0.22 0.25 0.21

Table 4. Results of ranking based on various parameter values of o

P1 P2 P3 P4

L1 0.4282 0.5182 0.7346 0.4243 0.7229 0.7533 0.4022 0.7677 0.5670 0.4362 0.3642 0.5564
L2 0.6322 0.8190 0.7101 0.3124 0.4941 0.4312 0.5500 0.5762 0.3095 0.3017 0.2264 0.5432
L3 0.6283 0.3588 0.6205 0.4188 0.5974 0.6241 0.5322 0.4354 0.6826 0.462 0.6828 0.6455
L4 0.4107 0.5503 0.520 0.4243 0.6244 0.3430 0.44 0.52 0.5521 0.5322 0.3253 0.5233

4.2 Comparative Analysis
In order to improve the strength and value of the novel operators, we focus on drawing comparisons between

the derived work and other existing works. To do this, we attempt to gather a variety of existing data, including
Le Berre et al. [31] derived the theory of AOs for Artificial Intelligence, Lee and Yoon [32] exposed the theory of
AO for Artificial Intelligence and finally, Lundström and Hellström [18] examined the theory of AO for electric car.
Additionally, Hussain and Pamucar [30] derived the idea of PAOs for PyFSs. Under the presence of the information
in Table 1, the comparative information is available in Table 5.

Table 5. Comparison information matrix

Methods Ranking Values
SFSSWMSM L2 > L1 > L4 > L3

Le Berre et al. [31] L2 > L1 > L4 > L3

Lee and Yoon [32] L2 > L1 > L4 > L3

Hussain and Pamucar [30] L2 > L1 > L4 > L3

Lundström and Hellström [18] L2 > L1 > L4 > L3

5 Conclusion
This study of, algebraic operations are less flexible than Schweizer-Sklar operations, which have a variable and

infinite parameter. For tackling information fusion problems, the Maclaurin symmetric mean (MSM) turns out
to be an invaluable tool. For spherical fuzzy number sets (SFNSs), this paper presents two new Schweizer-Sklar
Maclaurin mean operators: the SFSSMSM operator and the SFSSWMSM operator. Based on the SFSSWMSM
operator, a novel method for resolving Multi-Attribute Group Decision Making (MAGDM) problems is created,
improving versatility with the help of the parameters α. In addition to taking into account the relationships between
the two independent integrated arguments, this method also takes decision-makers’ risk preferences into account by
using the parameter gamma. The suggested approach contributes to the understanding of fuzzy decision-making
strategies and offers a better way to handle difficult MAGDM scenarios. This novel approach is anticipated to be
beneficial for future applications in fields such as consensus models, expert allocation, T-spherical Hami mean and
supply selection.
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