
RITHA Publishing Research, Innovation and Technologies – Hub for Academics

Journal of Research, Innovation and Technologies https://doi.org/10.57017/jorit.v4.2(8).05

193

Comparative Performance Analysis of Modern NoSQL Data Technologies: Redis,

Aerospike, and Dragonfly

Deep BODRA

Harrisburg University of Science and Technology, USA

https://orcid.org/0009-0009-4173-2447

Sushil KHAIRNAR

Virginia Tech, USA

https://orcid.org/0009-0006-5192-0175

Abstract

The rise of distributed applications and cloud computing has created a demand for scalable, high-performance key-

value storage systems. This paper presents a performance evaluation of three prominent NoSQL key-value stores: Redis,

Aerospike, and Dragonfly, using the Yahoo! Cloud Serving Benchmark (YCSB) framework. We conducted extensive

experiments across three distinct workload patterns (read-heavy, write-heavy), and balanced while systematically varying

client concurrency from 1 to 32 clients. Our evaluation methodology captures both latency, throughput, and memory

characteristics under realistic operational conditions, providing insights into the performance trade-offs and scalability

behaviour of each system.

Keywords: NoSQL databases, performance benchmarking, cloud computing, Redis; Aerospike, Dragonfly.

Introduction

The model digital environment involves an extraordinary level of data creation and usage, and rapid

expansion of web applications, mobile technology, and Internet of Things (IoT) devices. Conventional relational

database management systems, although powerful and equipped with numerous features, frequently find it

challenging to satisfy the performance (Salunke & Ouda, 2024) and scalability requirements of modern applications

that require sub-millisecond response times and the capacity to manage millions of operations per second. NoSQL

databases, especially key-value stores, emphasize performance and scalability have been used to overcome that

challenge. Key-value stores are a fundamental and commonly used NoSQL model, providing a straightforward but

effective abstraction for data storage and access.

Among the key competitors in this field, Redis has positioned itself as a in-memory data store for caching,

session handling, and real-time analytics. Aerospike markets itself as a high-speed, distributed database built for

applications that demand both performance and reliability at scale. Dragonfly, a newer player, seeks to deliver

Redis-compatible features while tackling certain scalability and performance constraints of conventional Redis

implementations. Though these systems are widely used, thorough comparative evaluations that systematically

evaluate their performance traits across various workload patterns and levels of concurrency are still scarce

(Stjepanovic, D. et al., 2015; Anthony & Rao, 2015; Mohan, Kanmani, Ganesan & Ramasubramanian 2024).

This paper addresses this gap by presenting a comparative evaluation of Redis, Aerospike, and Dragonfly

using the Yahoo! Cloud Serving Benchmark (YCSB) framework. Our study systematically examines the

performance characteristics of these systems across three fundamental workload patterns: read-heavy, write-

heavy, and balanced operations. By varying client concurrency from single-client scenarios to highly concurrent

32-client configurations, we capture the scalability behaviour and performance trade-offs of each system under

https://doi.org/10.57017/jorit.v4.2(8).05
https://orcid.org/0009-0009-4173-2447
https://orcid.org/0009-0006-5192-0175

2025, Volume IV

194

realistic operational conditions. The contributions of this work include performance comparison including both

latency and throughput metrics, analysis of memory consumption characteristics, and practical guidance for system

architects in selecting appropriate key-value storage solutions.

1. Database Systems Overview

Redis is an open-source, in-memory data structure store that serves as a database, cache, and message

broker (Charan, P. S. B., Varshitha, G., Lashya, A., Varma, U. S. R., & Madhusudhan, D). Redis was developed in

2009 and has become one of the most popular NoSQL databases due to its simplicity, performance, and versatility.

Redis stores data in memory to enable fast read and write operations and sub-millisecond latencies. The system

supports various data structures including strings, hashes, lists, sets, sorted sets, bitmaps, and streams which

makes it suitable for use cases beyond simple key-value operations. Redis employs a single-threaded architecture

for command processing which eliminates the need for complex locking mechanisms but can limit scalability on

multi-core systems. Persistence is achieved through periodic snapshots or append-only files, providing durability

options while maintaining high performance. Redis Cluster enables horizontal scaling by partitioning data across

multiple nodes, but it introduces additional complexity in deployment and management (Easwaramoorthy et al., 2025;

Mohan et al., 2024).

Aerospike is a distributed NoSQL database designed for high-performance applications that require speed

and scale. It was found in 2009 and was built to address the limitations of traditional databases in handling real-

time applications. The system uses a hybrid memory architecture that combines DRAM for index storage and SSDs

for data storage to optimize performance and cost. The architecture automatically handles data partitioning,

replication, and cluster management. It also offers strong consistency and automatic failover capabilities. The

database utilizes a shared-nothing architecture where each node operates independently for high scalability

(Volminger, A., 2021). The query engine supports both key-value operations and complex secondary index queries

Dragonfly is an in-memory data store created as a direct substitute for Redis to tackle its single-threaded

scalability limitation. Launched in 2022, it utilizes a multi-threaded, shared-nothing architecture that can leverage

multiple CPU cores, potentially providing much greater throughput on modern hardware. The system utilizes the

Redis protocol, guaranteeing compatibility with current Redis clients and applications without the need for code

modifications. Dragonfly implements sophisticated memory management methods and lock-free data structures to

reduce contention and enhance performance among threads

2. Experimental Setup

All experiments were conducted on a Mac OS system equipped with an Apple M3 Pro chip featuring 12

cores and 36 GB of RAM, running macOS Sequoia. The databases were deployed locally using Docker containers

to ensure consistent and isolated environments for each system. This configuration provided a controlled testing

environment while leveraging the high-performance ARM architecture of the M3 Pro chip. Docker containerization

enabled precise resource allocation and eliminated potential interference between different database instances

during sequential testing. The substantial memory capacity and multi-core architecture of the test system allowed

for a comprehensive evaluation of each database's scalability characteristics under varying concurrency levels

The evaluation utilized the Yahoo! Cloud Serving Benchmark (YCSB), a widely adopted framework for

benchmarking NoSQL databases that provides standardized workloads and metrics for fair comparison across

different systems. YCSB operates through a two-phase approach: the load phase populates the database with

initial data, while the run phase executes the actual benchmark operations according to the specified workload

characteristics. The framework's importance lies in its ability to generate realistic, configurable workloads that

simulate real-world application patterns, enabling systematic performance evaluation across different operational

scenarios (Ferreira et al., 2025; Beckermann, 2025). YCSB supports various data access patterns and allows

precise control over concurrency levels, making it ideal for evaluating database scalability.

Issue 2(8), 2025

 195

For this study, we configured YCSB to test with 1, 2, 4, 8, 16, and 32 concurrent clients to assess each

system's performance characteristics under increasing load. The benchmark employed a Zipfian distribution for

key selection, which realistically models the non-uniform access patterns commonly observed in production

systems where a small subset of keys receives the majority of request.

The read-heavy workload simulated applications with predominantly read operations, configured with a 95%

read and 5% update operation ratio. Each record consisted of 1 KB of data organized as 10 fields of 100 bytes

each, plus the key identifier. This workload pattern is representative of caching scenarios, content delivery systems,

and read-intensive web applications where data retrieval significantly outweighs modification operations. The load

phase inserted 1,474,560 records to establish a substantial dataset, while the run phase performed the same

number of operations with the specified read-update ratio. This configuration tests each database's ability to handle

high throughput read operations while maintaining low latency under concurrent access patterns.

The balanced workload provided equal distribution of read and update operations with a 50% read and 50%

update ratio, representing applications with mixed access patterns such as social media platforms, collaborative

applications, and general-purpose web services. Records maintained the same 1 KB structure as the read-heavy

workload, consisting of 10 fields of 100 bytes each plus the key. The load phase populated the database with

1,474,560 records, while the run phase executed the same number of operations with balanced read-update

distribution. This workload evaluates each system's ability to handle concurrent read and write operations

efficiently, testing both query performance and transaction processing capabilities under mixed load conditions.

The write-heavy workload utilized YCSB's time series workload template configured with a 10% read and

90% insert ratio, designed to simulate high-throughput data ingestion scenarios typical of IoT applications,

monitoring systems, and real-time analytics platforms. The workload generated time series data with 64 fields per

key, each field having a length of 8 characters, creating a total of 1,024 unique time series combinations. This

configuration models applications that continuously ingest streaming data with occasional read operations for

monitoring or alerting purposes. The load phase inserted 1,474,560 records to establish baseline data, while the

run phase performed 2,949,120 insert operations, effectively doubling the dataset size. This workload tests each

database's ability to sustain high write throughput while maintaining acceptable performance for concurrent read

operations, evaluating both ingestion capabilities and storage efficiency under continuous data growth.

3. Results and Analysis

3.1. Read-Heavy Workload Performance

The read-heavy workload results show significant performance differences across the three database

systems. Aerospike demonstrated superior performance in latency and throughput metrics, achieving the lowest

P99 latencies ranging from 436ms with a single client to 2,979ms at 32 concurrent clients. This performance

advantage stems from Aerospike's hybrid memory architecture, where frequently accessed data remains in DRAM

while the distributed hash table enables efficient data location without centralized bottlenecks. The system's shared-

nothing architecture allows each node to process requests independently, eliminating the serialization bottlenecks

that plague single-threaded systems under high concurrency.

Similarly, Aerospike delivered the highest throughput, scaling from 3,348 operations per second with one

client to 32,592 operations per second at maximum concurrency. Redis showed moderate performance with P99

latencies between 862ms and 4,447ms, while achieving throughput values from 1,656 to 17,158 operations per

second. Redis's single-threaded event loop eliminates lock contention and ensures atomic operations but becomes

the primary performance bottleneck under high concurrency. Each client request must be serialized through the

main thread, creating queuing delays that manifest as increased latency at higher concurrency levels. The

approximately 2.7x latency increase from 1 to 32 clients demonstrates this serialization penalty.

2025, Volume IV

196

Dragonfly exhibited the highest latencies in this workload, ranging from 1,137ms to 4,883ms, with throughput

scaling from 1,371 to 16,328 operations per second. Despite its multi-threaded design, Dragonfly's performance

suggests that the coordination overhead between threads and lock-free data structure management introduces

significant latency penalties for read operations. The system's attempt to maintain Redis compatibility while

implementing thread-safe operations appears to create computational overhead that outweighs the benefits of

parallelism in read-heavy scenarios.

Figure 1. P99 latency comparison of Redis, Aerospike, and Dragonfly

Figure 2. Throughput comparison of Redis, Aerospike, and Dragonfly

3.2. Balanced Workload Performance

The balanced workload showed similar performance hierarchies but with some variations. Aerospike

maintained its performance leadership with P99 latencies from 441ms to 2,409ms and throughput scaling from

3,372 to 33,741 operations per second. The consistent performance across workload types demonstrates

Aerospike's distributed consensus mechanisms and replication strategies effectively handle mixed read-write

workloads without creating operation-specific bottlenecks.

Redis performance remained consistent with the read-heavy scenario, showing P99 latencies between

874ms and 4,017ms and throughput from 1,664 to 17,004 operations per second. This stability reflects an inherent

characteristic of Redis's single-threaded architecture: operation type has minimal impact on processing efficiency

since all operations are serialized through the same execution path. However, the slight latency increase in

balanced workloads indicates that write operations require additional processing for persistence mechanisms

(Append Only File/Redis Database) and replication.

Dragonfly showed marginal improvements compared to the read-heavy workload, with latencies ranging

from 1,187ms to 4,631ms and throughput from 1,278 to 16,497 operations per second. The improvement suggests

that Dragonfly's multi-threaded architecture can better distribute mixed operation types across threads, though the

coordination overhead still limits overall performance gains.

Issue 2(8), 2025

 197

3.3. Write-Heavy Workload Performance

The write-heavy time series workload produced the most favorable results across all systems, with generally

lower latencies and higher throughput compared to read-intensive scenarios. This improvement reflects

fundamental characteristics of how each architecture handles sequential write operations and reduced read-write

contention.

Aerospike continued to dominate performance metrics with P99 latencies from 410ms to 2,233ms and

exceptional throughput scaling from 3,562 to 34,896 operations per second. The superior write performance

demonstrates Aerospike's optimized write path, where data is immediately written to memory while asynchronous

background processes handle SSD persistence. The distributed architecture enables parallel write processing

across nodes without coordination overhead for simple insert operations.

Redis showed its best performance in this workload with latencies ranging from 808ms to 3,547ms and

throughput from 1,757 to 17,170 operations per second. The performance improvement in write-heavy scenarios

reveals Redis's strength: sequential write operations benefit from the absence of lock contention and simplified

memory management. The single-threaded nature becomes advantageous when operations don't require complex

coordination.

Dragonfly also demonstrated improved performance with latencies between 1,124ms and 3,859ms and

throughput scaling from 1,331 to 16,925 operations per second. The significant improvement in write-heavy

workloads suggests that Dragonfly's multi-threaded architecture is better optimized for write operations, where

thread coordination overhead is minimized and parallel processing provides tangible benefits.

3.4. Scalability Analysis and Architectural Implications

Examining scalability characteristics across concurrency levels reveals distinct architectural advantages and

limitations. The scaling behaviour directly correlates with each system's core design philosophy and technical

implementation choices.

Aerospike demonstrates near-linear throughput scaling across all workloads, increasing throughput by

approximately 9-10x when scaling from 1 to 32 clients, while maintaining relatively controlled latency degradation.

This scaling pattern reflects the fundamental benefit of distributed architectures: the ability to handle concurrent

requests without centralized bottlenecks. Each client can potentially interact with different nodes or processing

units, enabling true parallel request processing.

Redis shows consistent but more modest scalability, achieving 10-11x throughput improvements with

proportionally higher latency increases, suggesting bottlenecks in its single-threaded architecture under high

concurrency. The scaling limitation becomes apparent as concurrency increases beyond the system's ability to

process requests through a single thread efficiently. The latency degradation follows a predictable pattern: as the

request queue grows, each subsequent request experiences longer wait times. Beyond 16 concurrent clients, Redis

shows signs of saturation where additional concurrency provides diminishing throughput returns while significantly

increasing latency.

Dragonfly exhibits strong scalability potential with 12-13x throughput improvements from single to maximum

concurrency, though starting from lower baseline performance. While the throughput scaling appears impressive,

the consistently higher baseline latencies suggest that Dragonfly's multi-threaded coordination mechanisms

introduce fixed overhead costs. The system appears to trade single-request efficiency for improved concurrent

processing capability.

3.5. Cross Workload Performance Comparison and Technical Trade-offs

Analysing performance variations across different workload types reveals fundamental architectural

characteristics and technical trade-offs inherent in each system's design. The workload-specific performance

variations directly reflect how each system's core design decisions impact different operation patterns.

2025, Volume IV

198

All three databases performed best under write-heavy conditions, with Aerospike showing the least

performance variation across workload types, indicating robust architectural design. This consistency demonstrates

that distributed architectures can maintain performance characteristics across varied workloads because they avoid

single points of contention. The hybrid storage model ensures that write operations don't interfere with read

performance, maintaining balanced resource utilization.

Redis demonstrated consistent behavior across all workloads with slight performance improvements in

write-heavy scenarios, reflecting its optimized memory management for sequential operations. While Redis's

single-threaded nature limits peak performance, it provides predictable behavior across workload types. The slight

improvement in write scenarios reflects the absence of read-write coordination overhead, but the limited scalability

represents a fundamental architectural constraint for high-concurrency applications.

Dragonfly showed the most significant performance variation, with better results in write-heavy workloads

compared to read-intensive scenarios. This variation suggests that Dragonfly's multi-threaded implementation has

uneven optimization across operation types. The better write performance indicates successful parallel write

processing, while the read performance suggests that thread coordination overhead disproportionately affects read

operations, possibly due to cache coherence costs or lock-free data structure complexity.

Table 1. Memory consumption comparison of Redis, Aerospike, and Dragonfly

 Redis (MB) Aerospike (MB) Dragonfly (MB)

Before the run 36.32 232.1 58.98

After the run 2610 772.3 2350

Source: Personal research

3.6. Memory Consumption and Architectural Efficiency

Memory consumption patterns reveal significant differences in how each database manages storage and

represents data structures. The memory utilization patterns provide insight into each system's data representation

efficiency and storage optimization strategies.

Before workload execution, Aerospike demonstrated the highest baseline memory usage at 232.1 MB,

reflecting its distributed architecture and metadata overhead. This initial memory footprint includes cluster

management metadata, distributed hash tables, and replication state information necessary for distributed

operation. While higher initially, this overhead enables the system's superior scaling characteristics.

Redis consumed 36.32 MB and Dragonfly used 58.98 MB in their initial states, representing minimal

overhead single-node configurations. After completing the benchmark runs with 1,474,560 records, the memory

consumption patterns shifted dramatically, revealing fundamental architectural differences.

Redis exhibited the highest memory usage at 2,610 MB, representing a 72x increase from baseline. This

substantial memory overhead reflects Redis's approach of maintaining all data structures in memory with additional

overhead for object metadata, expiration tracking, and internal data structure pointers. The single-threaded

architecture, while simple, doesn't optimize for memory efficiency at scale.

Dragonfly consumed 2,350 MB (40x increase), suggesting that its multi-threaded architecture includes

additional memory overhead for thread safety mechanisms, lock-free data structures, and coordination metadata.

The improved memory efficiency compared to Redis indicates some optimization, but the thread coordination

structures still impose significant overhead costs.

Aerospike used 772.3 MB (3.3x increase), demonstrating superior memory efficiency through its hybrid

storage model. This efficiency stems from Aerospike's ability to store data on SSDs while maintaining only indexes

and frequently accessed data in memory. The distributed architecture enables this optimization by providing fast

access to persistent storage across multiple nodes.

Issue 2(8), 2025

 199

The memory efficiency results highlight a fundamental trade-off in NoSQL database design: systems

optimized for simplicity and single-node performance (Redis, Dragonfly) sacrifice memory efficiency, while

distributed systems (Aerospike) achieve better resource utilization through architectural complexity.

Conclusion

This evaluation of Redis, Aerospike, and Dragonfly using YCSB benchmarks reveals clear performance

hierarchies and fundamental architectural trade-offs across diverse workload patterns and concurrency levels.

Aerospike emerged as the consistent leader, demonstrating superior throughput scaling and maintaining relatively

low latencies even under high concurrency, with nearly 10x throughput improvements when scaling from single to

32 concurrent clients. Redis showed stable and predictable performance across all workload patterns, though with

more modest scalability due to its single-threaded architecture. Dragonfly, despite its modern multi-threaded design

and Redis compatibility, consistently exhibited higher latencies compared to both competitors, though it

demonstrated strong throughput scaling potential in write-heavy scenarios.

The evaluation reveals that workload characteristics significantly influence system performance, with all

databases performing optimally under write-heavy conditions. These findings provide practical guidance for system

selection: organizations requiring maximum performance and scalability should consider Aerospike, while those

prioritizing operational simplicity may find Redis sufficient. Dragonfly represents an interesting option for Redis-

compatible deployments seeking improved concurrency handling, though careful evaluation is recommended for

latency-sensitive applications.

Future work should examine these systems under production-like conditions (Malyi & Serdyuk, 2024) with

realistic data distributions (Abubakar et al., 2024) and in clustered mode to assess the true distributed scalability

potential. Such research should address critical technical challenges including data consistency models under

network partitions (particularly CAP theorem implications for each system's design), distributed transaction

management across nodes, cross-datacentre replication latencies, and fault tolerance mechanisms during node

failures. Additionally, investigation into network-induced performance bottlenecks, cluster coordination overhead,

and the impact of different consensus algorithms on write performance would provide valuable insights into real-

world deployment considerations for modern NoSQL data technologies.

Credit Authorship Contribution Statement

Bodra, Deep led the conceptualization, methodology design, experimental implementation and analysis for database

benchmarking. Khairnar, Sushil contributed to the experimental implementation, data analysis, and interpretation. Both authors

reviewed and approved the final version of manuscript for publication

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

References -

Redis. About Redis: https://redis.io/about/ Accessed May 19, 2025

Aerospike database https://aerospike.com/products/database/ Accessed May 23, 2025

Dragonfly docs https://www.dragonflydb.io/docs/ Accessed May 24, 2025

Cooper, B.F. et al. 2010. Benchmarking cloud serving systems with YCSB. Proceedings of the 1st ACM symposium on Cloud

computing - SoCC '10. https://doi.org/10.1145/1807128.180715

Yahoo! Cloud Serving Benchmark (YCSB): https://github.com/brianfrankcooper/YCSB/wiki Accessed: May 17, 2025

Anthony, A., & Rao, Y. N. M. Memcached, Redis, and Aerospike Key-Value Stores Empirical Comparison. https://anthonyaje

.github.io/file/An_empirical_evaluation_of_Memcached_Redis_and_Aerospike_kvstore_Anthony_Eswar.pdf

https://redis.io/about/
https://aerospike.com/products/database/
https://www.dragonflydb.io/docs/
https://doi.org/10.1145/1807128.180715
https://github.com/brianfrankcooper/YCSB/wiki

2025, Volume IV

200

Aerospike, Memcached and Redis comparison: http://db-engines.com/en/system/Aerospike;Memcached;Redis Accessed

May 20, 2025

Volminger, A. (2021). A comparison of Data Stores for the Online Feature Store Component: A comparison between NDB and

Aerospike https://www.diva-portal.org/smash/get/diva2:1556387/FULLTEXT01.pdf

Charan, P. S. B., Varshitha, G., Lashya, A., Varma, U. S. R., & Madhusudhan, D. REDIS: In Memory Data Store

https://www.journal-dogorangsang.in/no_2_Online_22/24_aug.pdf

Mohan, R. K., Kanmani, R. R. S., Ganesan, K. A., & Ramasubramanian, N. (2024). Evaluating NoSQL Databases for OLAP

Workloads: A Benchmarking Study of MongoDB, Redis, Kudu and ArangoDB. arXiv preprint arXiv:2405.17731.

https://doi.org/10.48550/arXiv.2405.17731

Ferreira, S., Mendonça, J., Nogueira, B., Tiengo, W., & Andrade, E. (2025). Benchmarking Consistency Levels of Cloud-

Distributed NoSQL Databases Using YCSB. IEEE Access. https://doi.org/10.1109/ACCESS.2025.3558923

Easwaramoorthy, S. V., Xuan, K. O. Y., Putra, L., Ern, N. C., & Sheng, T. J. (2025). Comparative Study on Oracle, Neo4J,

Cassandra, Redis, and MongoDB. Information Research Communications, 1(2), 104-119.

https://doi.org/10.5530/irc.1.2.13

Abubakar, M., Abubakar, S., & Bello, U. M. (2024). Analysing and Designing an Evaluation Benchmark for SQL and NoSQL

Database Systems for some Selected Higher Institution in Zamfara State. International Journal of Science for Global

Sustainability, 10(2). https://doi.org/10.57233/ijsgs.v10i2.644

Beckermann, B. M. (2025). Transactional YCSB: Benchmarking ACID-Compliant NoSQL Systems with Multi-Operation

Transactions. In Datenbanksysteme für Business, Technologie und Web (BTW 2025) (pp. 1019-1030). Gesellschaft

für Informatik, Bonn. https://doi.org/10.18420/BTW2025-67

Malyi, R., & Serdyuk, P. (2024). Developing a performance evaluation benchmark for event sourcing databases. Information

Systems and Networks, Issue 15, 159-167. http://doi.org/10.23939/sisn2024.15.159

Salunke, S. V., & Ouda, A. (2024). A Performance Benchmark for the PostgreSQL and MySQL Databases. Future Internet,

16(10), 382. https://doi.org/10.3390/fi16100382

Cite this article

Bodra, D., & Khairnar, S. (2025). Comparative performance analysis of modern NoSQL data technologies: Redis, Aerospike,

and Dragonfly. Journal of Research, Innovation and Technologies, Volume IV, 2(8), 193-200.

https://doi.org/10.57017/jorit.v4.2(8).05

Article’s history

Received 17th of May, 2025; Revised 15th of June, 2025

Accepted for publication 28th of June, 2025; Available online: 30th of June, 2025

Published as article in Volume IV, Issue 2(8), 2025

© The Author(s) 2025. Published by RITHA Publishing. This article is distributed under the terms of the license CC-BY 4.0.,

which permits any further distribution in any medium, provided the original work is properly cited maintaining attribution to

the author(s) and the title of the work, journal citation and URL DOI.

http://db-engines.com/en/system/Aerospike;Memcached;Redis
https://www.diva-portal.org/smash/get/diva2:1556387/FULLTEXT01.pdf
https://www.journal-dogorangsang.in/no_2_Online_22/24_aug.pdf
https://doi.org/10.48550/arXiv.2405.17731
https://doi.org/10.1109/ACCESS.2025.3558923
https://doi.org/10.5530/irc.1.2.13
https://doi.org/10.57233/ijsgs.v10i2.644
https://doi.org/10.18420/BTW2025-67
http://doi.org/10.23939/sisn2024.15.159
https://doi.org/10.3390/fi16100382
https://doi.org/10.57017/jorit.v4.2(8).05
https://creativecommons.org/licenses/by/4.0/

