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Abstract 

The rise of distributed applications and cloud computing has created a demand for scalable, high-performance key-

value storage systems. This paper presents a performance evaluation of three prominent NoSQL key-value stores: Redis, 

Aerospike, and Dragonfly, using the Yahoo! Cloud Serving Benchmark (YCSB) framework. We conducted extensive 

experiments across three distinct workload patterns (read-heavy, write-heavy), and balanced while systematically varying 

client concurrency from 1 to 32 clients. Our evaluation methodology captures both latency, throughput, and memory 

characteristics under realistic operational conditions, providing insights into the performance trade-offs and scalability 

behaviour of each system. 
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Introduction 

The model digital environment involves an extraordinary level of data creation and usage, and rapid 

expansion of web applications, mobile technology, and Internet of Things (IoT) devices. Conventional relational 

database management systems, although powerful and equipped with numerous features, frequently find it 

challenging to satisfy the performance (Salunke & Ouda, 2024) and scalability requirements of modern applications 

that require sub-millisecond response times and the capacity to manage millions of operations per second. NoSQL 

databases, especially key-value stores, emphasize performance and scalability have been used to overcome that 

challenge. Key-value stores are a fundamental and commonly used NoSQL model, providing a straightforward but 

effective abstraction for data storage and access. 

Among the key competitors in this field, Redis has positioned itself as a in-memory data store for caching, 

session handling, and real-time analytics. Aerospike markets itself as a high-speed, distributed database built for 

applications that demand both performance and reliability at scale. Dragonfly, a newer player, seeks to deliver 

Redis-compatible features while tackling certain scalability and performance constraints of conventional Redis 

implementations. Though these systems are widely used, thorough comparative evaluations that systematically 

evaluate their performance traits across various workload patterns and levels of concurrency are still scarce 

(Stjepanovic, D. et al., 2015; Anthony & Rao, 2015; Mohan, Kanmani, Ganesan & Ramasubramanian 2024). 

This paper addresses this gap by presenting a comparative evaluation of Redis, Aerospike, and Dragonfly 

using the Yahoo! Cloud Serving Benchmark (YCSB) framework. Our study systematically examines the 

performance characteristics of these systems across three fundamental workload patterns: read-heavy, write-

heavy, and balanced operations. By varying client concurrency from single-client scenarios to highly concurrent 

32-client configurations, we capture the scalability behaviour and performance trade-offs of each system under 

https://doi.org/10.57017/jorit.v4.2(8).05
https://orcid.org/0009-0009-4173-2447
https://orcid.org/0009-0006-5192-0175


2025, Volume IV 
 

 
194 

realistic operational conditions. The contributions of this work include performance comparison including both 

latency and throughput metrics, analysis of memory consumption characteristics, and practical guidance for system 

architects in selecting appropriate key-value storage solutions. 

1. Database Systems Overview 

Redis is an open-source, in-memory data structure store that serves as a database, cache, and message 

broker (Charan, P. S. B., Varshitha, G., Lashya, A., Varma, U. S. R., & Madhusudhan, D). Redis was developed in 

2009 and has become one of the most popular NoSQL databases due to its simplicity, performance, and versatility. 

Redis stores data in memory to enable fast read and write operations and sub-millisecond latencies. The system 

supports various data structures including strings, hashes, lists, sets, sorted sets, bitmaps, and streams which 

makes it suitable for use cases beyond simple key-value operations. Redis employs a single-threaded architecture 

for command processing which eliminates the need for complex locking mechanisms but can limit scalability on 

multi-core systems. Persistence is achieved through periodic snapshots or append-only files, providing durability 

options while maintaining high performance. Redis Cluster enables horizontal scaling by partitioning data across 

multiple nodes, but it introduces additional complexity in deployment and management (Easwaramoorthy et al., 2025; 

Mohan et al., 2024). 

Aerospike is a distributed NoSQL database designed for high-performance applications that require speed 

and scale. It was found in 2009 and was built to address the limitations of traditional databases in handling real-

time applications. The system uses a hybrid memory architecture that combines DRAM for index storage and SSDs 

for data storage to optimize performance and cost. The architecture automatically handles data partitioning, 

replication, and cluster management. It also offers strong consistency and automatic failover capabilities. The 

database utilizes a shared-nothing architecture where each node operates independently for high scalability 

(Volminger, A., 2021). The query engine supports both key-value operations and complex secondary index queries 

Dragonfly is an in-memory data store created as a direct substitute for Redis to tackle its single-threaded 

scalability limitation. Launched in 2022, it utilizes a multi-threaded, shared-nothing architecture that can leverage 

multiple CPU cores, potentially providing much greater throughput on modern hardware. The system utilizes the 

Redis protocol, guaranteeing compatibility with current Redis clients and applications without the need for code 

modifications. Dragonfly implements sophisticated memory management methods and lock-free data structures to 

reduce contention and enhance performance among threads 

2. Experimental Setup 

All experiments were conducted on a Mac OS system equipped with an Apple M3 Pro chip featuring 12 

cores and 36 GB of RAM, running macOS Sequoia. The databases were deployed locally using Docker containers 

to ensure consistent and isolated environments for each system. This configuration provided a controlled testing 

environment while leveraging the high-performance ARM architecture of the M3 Pro chip. Docker containerization 

enabled precise resource allocation and eliminated potential interference between different database instances 

during sequential testing. The substantial memory capacity and multi-core architecture of the test system allowed 

for a comprehensive evaluation of each database's scalability characteristics under varying concurrency levels 

The evaluation utilized the Yahoo! Cloud Serving Benchmark (YCSB), a widely adopted framework for 

benchmarking NoSQL databases that provides standardized workloads and metrics for fair comparison across 

different systems. YCSB operates through a two-phase approach: the load phase populates the database with 

initial data, while the run phase executes the actual benchmark operations according to the specified workload 

characteristics. The framework's importance lies in its ability to generate realistic, configurable workloads that 

simulate real-world application patterns, enabling systematic performance evaluation across different operational 

scenarios (Ferreira et al., 2025; Beckermann, 2025). YCSB supports various data access patterns and allows 

precise control over concurrency levels, making it ideal for evaluating database scalability.  
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For this study, we configured YCSB to test with 1, 2, 4, 8, 16, and 32 concurrent clients to assess each 

system's performance characteristics under increasing load. The benchmark employed a Zipfian distribution for 

key selection, which realistically models the non-uniform access patterns commonly observed in production 

systems where a small subset of keys receives the majority of request. 

The read-heavy workload simulated applications with predominantly read operations, configured with a 95% 

read and 5% update operation ratio. Each record consisted of 1 KB of data organized as 10 fields of 100 bytes 

each, plus the key identifier. This workload pattern is representative of caching scenarios, content delivery systems, 

and read-intensive web applications where data retrieval significantly outweighs modification operations. The load 

phase inserted 1,474,560 records to establish a substantial dataset, while the run phase performed the same 

number of operations with the specified read-update ratio. This configuration tests each database's ability to handle 

high throughput read operations while maintaining low latency under concurrent access patterns. 

The balanced workload provided equal distribution of read and update operations with a 50% read and 50% 

update ratio, representing applications with mixed access patterns such as social media platforms, collaborative 

applications, and general-purpose web services. Records maintained the same 1 KB structure as the read-heavy 

workload, consisting of 10 fields of 100 bytes each plus the key. The load phase populated the database with 

1,474,560 records, while the run phase executed the same number of operations with balanced read-update 

distribution. This workload evaluates each system's ability to handle concurrent read and write operations 

efficiently, testing both query performance and transaction processing capabilities under mixed load conditions. 

The write-heavy workload utilized YCSB's time series workload template configured with a 10% read and 

90% insert ratio, designed to simulate high-throughput data ingestion scenarios typical of IoT applications, 

monitoring systems, and real-time analytics platforms. The workload generated time series data with 64 fields per 

key, each field having a length of 8 characters, creating a total of 1,024 unique time series combinations. This 

configuration models applications that continuously ingest streaming data with occasional read operations for 

monitoring or alerting purposes. The load phase inserted 1,474,560 records to establish baseline data, while the 

run phase performed 2,949,120 insert operations, effectively doubling the dataset size. This workload tests each 

database's ability to sustain high write throughput while maintaining acceptable performance for concurrent read 

operations, evaluating both ingestion capabilities and storage efficiency under continuous data growth.  

3. Results and Analysis 

3.1. Read-Heavy Workload Performance 

The read-heavy workload results show significant performance differences across the three database 

systems. Aerospike demonstrated superior performance in latency and throughput metrics, achieving the lowest 

P99 latencies ranging from 436ms with a single client to 2,979ms at 32 concurrent clients. This performance 

advantage stems from Aerospike's hybrid memory architecture, where frequently accessed data remains in DRAM 

while the distributed hash table enables efficient data location without centralized bottlenecks. The system's shared-

nothing architecture allows each node to process requests independently, eliminating the serialization bottlenecks 

that plague single-threaded systems under high concurrency. 

Similarly, Aerospike delivered the highest throughput, scaling from 3,348 operations per second with one 

client to 32,592 operations per second at maximum concurrency. Redis showed moderate performance with P99 

latencies between 862ms and 4,447ms, while achieving throughput values from 1,656 to 17,158 operations per 

second. Redis's single-threaded event loop eliminates lock contention and ensures atomic operations but becomes 

the primary performance bottleneck under high concurrency. Each client request must be serialized through the 

main thread, creating queuing delays that manifest as increased latency at higher concurrency levels. The 

approximately 2.7x latency increase from 1 to 32 clients demonstrates this serialization penalty.  
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Dragonfly exhibited the highest latencies in this workload, ranging from 1,137ms to 4,883ms, with throughput 

scaling from 1,371 to 16,328 operations per second. Despite its multi-threaded design, Dragonfly's performance 

suggests that the coordination overhead between threads and lock-free data structure management introduces 

significant latency penalties for read operations. The system's attempt to maintain Redis compatibility while 

implementing thread-safe operations appears to create computational overhead that outweighs the benefits of 

parallelism in read-heavy scenarios. 

Figure 1. P99 latency comparison of Redis, Aerospike, and Dragonfly 

 
Figure 2. Throughput comparison of Redis, Aerospike, and Dragonfly 

 

3.2. Balanced Workload Performance 

The balanced workload showed similar performance hierarchies but with some variations. Aerospike 

maintained its performance leadership with P99 latencies from 441ms to 2,409ms and throughput scaling from 

3,372 to 33,741 operations per second. The consistent performance across workload types demonstrates 

Aerospike's distributed consensus mechanisms and replication strategies effectively handle mixed read-write 

workloads without creating operation-specific bottlenecks.  

Redis performance remained consistent with the read-heavy scenario, showing P99 latencies between 

874ms and 4,017ms and throughput from 1,664 to 17,004 operations per second. This stability reflects an inherent 

characteristic of Redis's single-threaded architecture: operation type has minimal impact on processing efficiency 

since all operations are serialized through the same execution path. However, the slight latency increase in 

balanced workloads indicates that write operations require additional processing for persistence mechanisms 

(Append Only File/Redis Database) and replication. 

Dragonfly showed marginal improvements compared to the read-heavy workload, with latencies ranging 

from 1,187ms to 4,631ms and throughput from 1,278 to 16,497 operations per second. The improvement suggests 

that Dragonfly's multi-threaded architecture can better distribute mixed operation types across threads, though the 

coordination overhead still limits overall performance gains. 
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3.3. Write-Heavy Workload Performance 

The write-heavy time series workload produced the most favorable results across all systems, with generally 

lower latencies and higher throughput compared to read-intensive scenarios. This improvement reflects 

fundamental characteristics of how each architecture handles sequential write operations and reduced read-write 

contention. 

Aerospike continued to dominate performance metrics with P99 latencies from 410ms to 2,233ms and 

exceptional throughput scaling from 3,562 to 34,896 operations per second. The superior write performance 

demonstrates Aerospike's optimized write path, where data is immediately written to memory while asynchronous 

background processes handle SSD persistence. The distributed architecture enables parallel write processing 

across nodes without coordination overhead for simple insert operations. 

Redis showed its best performance in this workload with latencies ranging from 808ms to 3,547ms and 

throughput from 1,757 to 17,170 operations per second. The performance improvement in write-heavy scenarios 

reveals Redis's strength: sequential write operations benefit from the absence of lock contention and simplified 

memory management. The single-threaded nature becomes advantageous when operations don't require complex 

coordination. 

Dragonfly also demonstrated improved performance with latencies between 1,124ms and 3,859ms and 

throughput scaling from 1,331 to 16,925 operations per second. The significant improvement in write-heavy 

workloads suggests that Dragonfly's multi-threaded architecture is better optimized for write operations, where 

thread coordination overhead is minimized and parallel processing provides tangible benefits. 

3.4. Scalability Analysis and Architectural Implications 

Examining scalability characteristics across concurrency levels reveals distinct architectural advantages and 

limitations. The scaling behaviour directly correlates with each system's core design philosophy and technical 

implementation choices. 

Aerospike demonstrates near-linear throughput scaling across all workloads, increasing throughput by 

approximately 9-10x when scaling from 1 to 32 clients, while maintaining relatively controlled latency degradation. 

This scaling pattern reflects the fundamental benefit of distributed architectures: the ability to handle concurrent 

requests without centralized bottlenecks. Each client can potentially interact with different nodes or processing 

units, enabling true parallel request processing. 

Redis shows consistent but more modest scalability, achieving 10-11x throughput improvements with 

proportionally higher latency increases, suggesting bottlenecks in its single-threaded architecture under high 

concurrency. The scaling limitation becomes apparent as concurrency increases beyond the system's ability to 

process requests through a single thread efficiently. The latency degradation follows a predictable pattern: as the 

request queue grows, each subsequent request experiences longer wait times. Beyond 16 concurrent clients, Redis 

shows signs of saturation where additional concurrency provides diminishing throughput returns while significantly 

increasing latency. 

Dragonfly exhibits strong scalability potential with 12-13x throughput improvements from single to maximum 

concurrency, though starting from lower baseline performance. While the throughput scaling appears impressive, 

the consistently higher baseline latencies suggest that Dragonfly's multi-threaded coordination mechanisms 

introduce fixed overhead costs. The system appears to trade single-request efficiency for improved concurrent 

processing capability. 

3.5. Cross Workload Performance Comparison and Technical Trade-offs 

Analysing performance variations across different workload types reveals fundamental architectural 

characteristics and technical trade-offs inherent in each system's design. The workload-specific performance 

variations directly reflect how each system's core design decisions impact different operation patterns. 
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All three databases performed best under write-heavy conditions, with Aerospike showing the least 

performance variation across workload types, indicating robust architectural design. This consistency demonstrates 

that distributed architectures can maintain performance characteristics across varied workloads because they avoid 

single points of contention. The hybrid storage model ensures that write operations don't interfere with read 

performance, maintaining balanced resource utilization. 

Redis demonstrated consistent behavior across all workloads with slight performance improvements in 

write-heavy scenarios, reflecting its optimized memory management for sequential operations. While Redis's 

single-threaded nature limits peak performance, it provides predictable behavior across workload types. The slight 

improvement in write scenarios reflects the absence of read-write coordination overhead, but the limited scalability 

represents a fundamental architectural constraint for high-concurrency applications. 

Dragonfly showed the most significant performance variation, with better results in write-heavy workloads 

compared to read-intensive scenarios. This variation suggests that Dragonfly's multi-threaded implementation has 

uneven optimization across operation types. The better write performance indicates successful parallel write 

processing, while the read performance suggests that thread coordination overhead disproportionately affects read 

operations, possibly due to cache coherence costs or lock-free data structure complexity. 

Table 1. Memory consumption comparison of Redis, Aerospike, and Dragonfly 

 Redis (MB) Aerospike (MB) Dragonfly (MB) 

Before the run 36.32 232.1 58.98 

After the run 2610 772.3 2350 

Source: Personal research 

3.6. Memory Consumption and Architectural Efficiency 

Memory consumption patterns reveal significant differences in how each database manages storage and 

represents data structures. The memory utilization patterns provide insight into each system's data representation 

efficiency and storage optimization strategies. 

Before workload execution, Aerospike demonstrated the highest baseline memory usage at 232.1 MB, 

reflecting its distributed architecture and metadata overhead. This initial memory footprint includes cluster 

management metadata, distributed hash tables, and replication state information necessary for distributed 

operation. While higher initially, this overhead enables the system's superior scaling characteristics. 

Redis consumed 36.32 MB and Dragonfly used 58.98 MB in their initial states, representing minimal 

overhead single-node configurations. After completing the benchmark runs with 1,474,560 records, the memory 

consumption patterns shifted dramatically, revealing fundamental architectural differences. 

Redis exhibited the highest memory usage at 2,610 MB, representing a 72x increase from baseline. This 

substantial memory overhead reflects Redis's approach of maintaining all data structures in memory with additional 

overhead for object metadata, expiration tracking, and internal data structure pointers. The single-threaded 

architecture, while simple, doesn't optimize for memory efficiency at scale. 

Dragonfly consumed 2,350 MB (40x increase), suggesting that its multi-threaded architecture includes 

additional memory overhead for thread safety mechanisms, lock-free data structures, and coordination metadata. 

The improved memory efficiency compared to Redis indicates some optimization, but the thread coordination 

structures still impose significant overhead costs. 

Aerospike used 772.3 MB (3.3x increase), demonstrating superior memory efficiency through its hybrid 

storage model. This efficiency stems from Aerospike's ability to store data on SSDs while maintaining only indexes 

and frequently accessed data in memory. The distributed architecture enables this optimization by providing fast 

access to persistent storage across multiple nodes. 
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The memory efficiency results highlight a fundamental trade-off in NoSQL database design: systems 

optimized for simplicity and single-node performance (Redis, Dragonfly) sacrifice memory efficiency, while 

distributed systems (Aerospike) achieve better resource utilization through architectural complexity. 

Conclusion 

This evaluation of Redis, Aerospike, and Dragonfly using YCSB benchmarks reveals clear performance 

hierarchies and fundamental architectural trade-offs across diverse workload patterns and concurrency levels. 

Aerospike emerged as the consistent leader, demonstrating superior throughput scaling and maintaining relatively 

low latencies even under high concurrency, with nearly 10x throughput improvements when scaling from single to 

32 concurrent clients. Redis showed stable and predictable performance across all workload patterns, though with 

more modest scalability due to its single-threaded architecture. Dragonfly, despite its modern multi-threaded design 

and Redis compatibility, consistently exhibited higher latencies compared to both competitors, though it 

demonstrated strong throughput scaling potential in write-heavy scenarios. 

The evaluation reveals that workload characteristics significantly influence system performance, with all 

databases performing optimally under write-heavy conditions. These findings provide practical guidance for system 

selection: organizations requiring maximum performance and scalability should consider Aerospike, while those 

prioritizing operational simplicity may find Redis sufficient. Dragonfly represents an interesting option for Redis-

compatible deployments seeking improved concurrency handling, though careful evaluation is recommended for 

latency-sensitive applications. 

Future work should examine these systems under production-like conditions (Malyi & Serdyuk, 2024) with 

realistic data distributions (Abubakar et al., 2024) and in clustered mode to assess the true distributed scalability 

potential. Such research should address critical technical challenges including data consistency models under 

network partitions (particularly CAP theorem implications for each system's design), distributed transaction 

management across nodes, cross-datacentre replication latencies, and fault tolerance mechanisms during node 

failures. Additionally, investigation into network-induced performance bottlenecks, cluster coordination overhead, 

and the impact of different consensus algorithms on write performance would provide valuable insights into real-

world deployment considerations for modern NoSQL data technologies. 
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