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Abstract: Neutrosophic sets, expanded from the constructs of fuzzy and intuitionistic fuzzy sets, can accommodate
degrees of truth, indeterminacy, and falsity for each element. This attribute equips them with an aptitude for a more
refined interpretation of ambiguous or uncertain data. This study presents an innovative application of Neutrosophic
Data Envelopment Analysis (Neu-DEA), incorporating pentagonal neutrosophic numbers in both input and output
data. This novel methodology involves the transformation of traditional DEA models into a Pentagonal neutrosophic
DEA model, subsequently converting it into a Crisp Linear Programming (CrLP) model. A unique ranking function
is integral to this process. Performance evaluation of decision-making units (DMUs) is accomplished through the
resolution of the CrLP model, with subsequent ranking of the DMUs based on their relative efficiency scores. The
utility and effectiveness of this novel technique is validated through a numerical example.

Keywords: Neutrosophic Data Envelopment Analysis; Performance evaluation; Pentagonal neutrosophic number;
Ranking function; Efficiency score

1 Introduction

Data Envelopment Analysis (DEA), with its robust analytical framework and inherent flexibility, has emerged as
a pivotal tool for performance appraisal. This methodology, proposed initially by Charnes, Cooper, and Rhodes in
1978 [1], leverages mathematical programming to benchmark multiple Decision Making Units (DMUs) that employ
various inputs to generate a range of outputs. The underlying aim of DEA is to discern the most resource-efficient
DMUs that maximize output through minimal input utilization. The assessment is conducted by establishing a
production frontier—a mathematical depiction of an efficient production process—and comparing the position of
each DMU relative to this frontier.

DEA’s strength lies in its assumption-free approach towards the functional form of the production function, and
its ability to manage multiple inputs and outputs. It delivers a quantitative basis for identifying efficient DMUs and
setting targets for performance enhancement. In recent decades, DEA’s usage has expanded across diverse sectors,
such as healthcare, banking, energy, manufacturing, and education, to name a few [2–5]. Despite its benefits, the
traditional DEA model is predicated on the certainty and preciseness of the input and output data of DMUs, a
condition not always feasible in real-life scenarios. Consequently, a need has arisen for the evolution of traditional
DEA models to incorporate fuzzy logic, thereby affording a more nuanced portrayal of DMU performance in the
face of ambiguity and uncertainty [6].

One such evolution led to the development of Fuzzy Data Envelopment Analysis (FDEA), a derivative of the
traditional DEA model that accommodates imprecise or uncertain data. Since Sengupta’s pioneering work on fuzzy
DEA, where both inputs and outputs were treated as fuzzy numbers [7], numerous scholars have refined and extended
the fuzzy DEA models [8, 9]. These models have been classified into six distinct approaches, including the stochastic
fuzzy DEA models developed to handle uncertain data [10] and used wide range of real-world applications [11].

Further, to embody uncertainty more accurately in performance analysis, Intuitionistic fuzzy sets (IFSs) [12]
were developed as extensions of fuzzy sets. By encapsulating both the degree of membership and non-membership
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of an element in a set, IFSs afford a greater depth of understanding for decision-makers. Different methodologies,
including weighted entropy approach [13], ranking approach [14], expected value approach [15, 16], parametric
approach [17], (α, β)-cut approach [18, 19], and MCDM approach, have been developed to solve Intuitionistic Fuzzy
DEA models [20, 21].

In recent decades, the extension of fuzzy sets and intuitionistic fuzzy sets into neutrosophic sets, as first proposed
by Smarandache in 1999 [22], has demonstrated exceptional applicability and adaptability in handling situations of
high indeterminacy or contradiction [23, 24]. An exemplary demonstration of this adaptability lies in the usage of
these sets in performance analysis, contributing significantly to modeling uncertainty with greater precision.

In 2018, a noteworthy advancement was made by Edalatpanah who introduced the Neu-DEA model, establishing
a new dimension to handle uncertainty in DEA analysis [25]. This model has since been embraced by numerous
researchers to address various uncertainty problems across diverse fields. For instance, it was deployed by Kahraman
and colleagues to evaluate the performance of private universities in Turkey by integrating a neutrosophic version of
AHP and DEA models [26]. It was also instrumental in Abdelfattah’s proposed ranking and parametric approach
to tackle the Neu-DEA model, taking into account neutrosophic inputs and outputs [27]. Further development of
this model was made by Edalatpanah and Smarandache, who converted an input-oriented Neu-DEA model into
a corresponding crisp DEA model using natural logarithms [28]. Edalatpanah continued to build on the model,
incorporating Triangular neutrosophic number into the Neu-DEA model [29]. The model was also adapted by Mao
and colleagues to accommodate single-valued neutrosophic sets in an undesirable DEA model using a logarithm
approach [30]. Yang and team took it a step further by measuring hospital efficiency based on the Neu-DEA model
with a single-valued triangular neutrosophic number [31]. Another innovative application of the model was proposed
by Tapia, who devised an MCDA technique based on the neutrosophic DEA model to assess risks tied to uncertainties
in emerging technologies [32]. More recently, Abdelfattah applied the model to measure the performance of regional
hospitals in Tunisia [33]. The performance of All India Institute of Medical Science (AIIMS) are measured by using
Neu-DEA model [34].

Advancements have not been limited to the neutrosophic sets, however. Other extensions of fuzzy set, such as
Fermatean fuzzy set [35], Plithogenic Set [36], and Spherical fuzzy set [37, 38], have been constructively employed to
develop DEA models and establish solution techniques. These extensions have proven invaluable for decision-making
under uncertainty, with widespread applications across multiple disciplines.

One such extension, the pentagonal neutrosophic numbers, demonstrates a marked increase in nuance and
flexibility in portraying uncertain or imprecise information compared to other neutrosophic numbers. The use of five
parameters enables complex degrees of truth, falsity, and indeterminacy to be expressed more comprehensively [39–
42]. As a result, decision-makers are better equipped to model uncertainty or vagueness with greater accuracy,
potentially leading to more informed decision-making and improved problem-solving outcomes [43–46].

The study delineated here introduces three key contributions: Firstly, the development of a new ranking function
for pentagonal neutrosophic numbers, designed to assist decision-makers in prioritizing PNNs. Secondly, the
proposal of a Pentagonal neutrosophic DEA model, which integrates PNN inputs and outputs. Lastly, the innovative
use of the proposed ranking function to convert the Pentagonal neutrosophic DEA model into a crisp LP model,
enabling the determination of relative efficiency of DMUs and their subsequent ranking based on their efficiency
score.

The organization of the study follows a systematic approach: Section 2 defines the concept of neutrosophic
number and pentagonal neutrosophic numbers, and introduces an accuracy function, demonstrated through theorems,
to establish its linearity. Section 3 discusses the development of Neutrosophic Data Envelopment Analysis from
traditional Data Envelopment Analysis, accounting for the presence of pentagonal neutrosophic numbers. The same
section also includes the conversion of the Pentagonal Neutrosophic DEA model into a corresponding crisp LP
Model using the Ranking function. Section 4 offers a pertinent numerical example to illustrate the methodology.
Finally, Section 5 presents the conclusion and provides directions for future research.

2 Preliminaries

This section commences with an exploration of fundamental aspects of neutrosophic sets and pentagonal neu-
trosophic number, as well as the associated arithmetic operations. The first subsection offers an original ranking
function that is predicated on the pentagonal neutrosophic number.

Definition 1 [22]: A single valued neutrosophic set XN in a universe of discourse Ω is given by

XN = {⟨x;T (x), I(x), F (x)⟩ : x ∈ Ω}

where T : Ω → [0, 1], I : Ω → [0, 1] and F : Ω → [0, 1], are the truth, indeterminacy, and falsity membership
degrees with satisfy the condition 0 ≤ TA + IA + FA ≤ 3,∀x ∈ X .
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Definition 2: [Pentagonal Neutrosophic Number] A pentagonal neutrosophic number of a neutrosophic set XN

is defined as XPN = ⟨xp1 , xp2 , xp3 , xp4 , xp5 ;µx, ϑx, πx⟩ and whose truth, indeterminacy and falsity membership
function are defined as

T (x) =



0, x ≤ xp1

µx

(
x−xp1

xp2−xp1

)
, xp1 ≤ x ≤ xp2

µx + (1− µx)
(

x−xp2

xp3−xp2

)
, xp2 ≤ x ≤ xp3

1, x = xp3

µx + (1− µx)
(

xp4−x
xp4−xp3

)
, xp3 ≤ x ≤ xp4

µx

(
xp5−x

xp5−xp4

)
, xp4 ≤ x ≤ xp5

0, x ≥ xp5

I(x) =



1, x ≤ xp1

ϑx + (1− ϑx)
(

xp2−x
xp2−xp1

)
, xp1 ≤ x ≤ xp

ϑx

(
xp3−x

xp3−xp2

)
, xp2 ≤ x ≤ xp3

0, x = xp3

ϑx

(
x−xp3

xp4−xp3

)
, xp3 ≤ x ≤ xp4

ϑx + (1− ϑx)
(

x−xp4

xp5−xp4

)
, xp4 ≤ x ≤ xp5

1, x ≥ xp5

F (x) =



1, x ≤ xp1

πx + (1− πx)
(

xp2−x
xp2−xp1

)
, xp1 ≤ x ≤ xp2

πx

(
xp3−x

xp3−xp2

)
, xp2 ≤ x ≤ xp3

0, x = xp3

πx

(
x−xp3

xp4−xp3

)
, xp3 ≤ x ≤ xp4

πx + (1− πx)
(

x−xp4

xp5−xp4

)
, xp4 ≤ x ≤ xp5

1, x ≥ xp5

Satisfy 0 ≤ T (x) + I(x) + F (x) ≤ 3. Figure 1 show the graphically representation of T (x), I(x), and F (x).

Figure 1. Representation of truth, indeterminacy and falsity membership grades of a PNN

Definition 3: [Arithmetic Operation]
Let XPN

1 = ⟨xp1

1 , xp2

1 , xp3

1 , xp4

1 , xp5

1 ;µx1 , ϑx1 , πx1⟩ and XPN
2 = ⟨xp1

2 , xp2

2 , xp3

2 , xp4

2 , xp5

2 ;µx2 , ϑx2 , πx2⟩
are the pentagonal neutrosophic numbers. The following arithmetic operation satisfies

1. Addition Rule:

XPN
1 ⊕XPN

2 = ⟨xp1

1 + xp1

2 , xp2

1 + xp2

2 , xp3

1 + xp3

2 , xp4

1 + xp4

2 , xp5

1 + xp5

2 ;µx1 ∧ µx2 , ϑx1 ∨ ϑx2 , πx1 ∨ πx2⟩

2. Difference Rule:

XPN
1 ⊖XPN

2 = ⟨xp1

1 − xp5

2 , xp2

1 − xp4

2 , xp3

1 − xp3

2 , xp4

1 − xp2

2 , xp5

1 − xp1

2 ;µx1
∧ µx2

, ϑx1
∨ ϑx2

, πx1
∨ πx2

⟩
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3. Scalar Multiplication Rule:

λXPN
1 =

{
⟨λxp1

1 , λxp2

1 , λxp3

1 , λxp4

1 , λxp5

1 ;µx1 , ϑx1 , πx1⟩λ ≥ 0
⟨λxp5

1 , λxp4

1 , λxp3

1 , λxp2

1 , λxp1

1 ;µx1 , ϑx1 , πx1⟩λ ≤ 0

4. Product Rule:

XPN
1 ⊗XPN

2 = ⟨xp1

1 xp1

2 , xp2

1 xp2

2 , xp3

1 xp3

2 , xp4

1 xp4

2 , xp5

1 xp5

2 ;µx1 ∨ µx2 , ϑx1 ∧ ϑx2 , πx1 ∧ πx2⟩

5. Quotient Rule:

XPN
1

XPN
2

=
〈

x
p1
1

x
p5
2

,
x
p2
1

x
p4
2

,
x
p3
1

x
p3
2

,
x
p4
1

x
p2
2

,
x
p5
1

x
p1
2

;µx1
∨ µx2

, ϑx1
∧ ϑx2

, πx1
∧ πx2

〉
2.1 Proposed Ranking Function of Pentagonal Neutrosophic Number

Definition 4: [Ranking Function] Let XPN = ⟨xp1 , xp2 , xp3 , xp4 , xp5 ;µx, ϑx, πx⟩ be a PNN. The ranking
function for XPN is denoted by R

(
XPN

)
and defined as

R
(
XPN

)
= xp1+3xp2+5xp3+3xp4+xp5

39 × [µx + (1− ϑx) + (1− πx)]

If XPN = x be any real crisp number, which can be represent in PNN form i.e., XPN =⟨x, x, x, x, x, ; 1, 0, 0⟩
then R

(
XPN

)
= x.

Definition 5: [Ordering of PNNs]
Let XPN

1 = ⟨xp1

1 , xp2

1 , xp3

1 , xp4

1 , xp5

1 ;µx1
, ϑx1

, πx1
⟩ and XPN

2 = ⟨xp1

2 , xp2

2 , xp3

2 , xp4

2 , xp5

2 ;µx2
, ϑx2

, πx2
⟩ are the

PNNs. Then
1. R

(
XPN

1

)
≤ R

(
XPN

2

)
that implies XPN

1 ≤ XPN
2 .

2. R
(
XPN

1

)
≥ R

(
XPN

2

)
that implies XPN

1 ≥ XPN
2 .

3. R
(
XPN

1

)
= R

(
XPN

2

)
that implies XPN

1 ≈ XPN
2 .

Lemma 1: Let XPN = ⟨xp1 , xp2 , xp3 , xp4 , xp5 ;µx, ϑx, πx⟩ be a PNN and λ ∈ R. Then

R
(
λXPN

)
= λR

(
XPN

)
Proof. Since λ ∈ R, then there are two cases arises.
Case 1: (when λ ≥ 0 )
From Definition 3,

λXPN = ⟨λxp1 , λxp2 , λxp3 , λxp4 , λxp5 ;µx, ϑx, πx⟩

From Definition 4,

R
(
λXPN

)
= λxp1+3λxp2+5λxp3+3λxp4+λxp5

39 × [µx + (1− ϑx) + (1− πx)]

= λ
(

xp1+3xp2+5xp3+3xp4+xp5

39 × [µx + (1− ϑx) + (1− πx)]
)
= λR

(
XPN

)
Case 2: (when λ ≤ 0)
From Definition 3,

λXPN = ⟨λxp5 , λxp4 , λxp3 , λxp2 , λxp1 ;µx, ϑx, πx⟩

From Definition 4,

R
(
λXPN

)
= λxp5+3λxp4+5λxp3+3λxp2+λxp1

39 × [µx + (1− ϑx) + (1− πx)]

= λ
(

xp1+3xp2+5xp3+3xp4+xp5

39 × [µx + (1− ϑx) + (1− πx)]
)
= λR

(
XPN

)
Note: The ranking function(R) is not linear i.e., R

(
XPN

1 ⊕XPN
2

)
̸= R

(
XPN

1

)
+R

(
XPN

2

)
forXPN

1 ̸= XPN
2 .

Example 1: Let XPN
1 = ⟨11, 16, 23, 26, 30; 0.8, 0.3, 0.5⟩ and XPN

2 = ⟨10, 18, 22, 25, 32; 0.7, 0.4, 0.3⟩
are two PNNs. Then

a. R
(
XPN

1

)
= 11+3×16+5×23+3×26+30

39 × (0.8 + 1− 0.3 + 1− 0.5) = 14.4615

R
(
XPN

2

)
= 10+3×18+5×22+3×25+32

39 × (0.7 + 1− 0.4 + 1− 0.3) = 14.4103

Hence R
(
XPN

1

)
> R

(
XPN

1

)
that implies XPN

1 > XPN
2 .

b. Let 3XPN
1 = ⟨33, 48, 69, 78, 90; 0.8, 0.3, 0.5⟩, then R

(
3XPN

1

)
= 43.3846 = 3R

(
XPN

1

)
.

c. XPN
1 +XPN

2 = ⟨21, 34, 45, 51, 62; 0.7, 0.4, 0.5⟩, then
R
(
XPN

1 +XPN
2

)
= 27.4282 ̸= R

(
XPN

1

)
+R

(
XPN

2

)
= 28.8718

Definition 6: [Aggregation ranking function] LetXPN
i = ⟨xp1

i , xp2

i , xp3

i , xp4

i , xp5

i ;µxi , ϑxi , πxi⟩ , i = 1, 2, · · · , n
be n PNNs. The aggregation ranking function ℜ is defined as
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ℜ
(∑n

i=1 X
PN
i

)
= [

∧n
i=1 µxi

+ (1−
∨n

i=1 ϑxi
) + (1−

∨n
i=1 πxi

)]×
∑n

i=1

R(XPN
i )

µxi
+(1−ϑxi)+(1−πxi)

Example 2: Let XPN
1 = ⟨11, 16, 23, 26, 30; 0.8, 0.3, 0.5⟩ and XPN

2 = ⟨10, 18, 22, 25, 32; 0.7, 0.4, 0.3⟩ are two
PNNs. Then R

(
XPN

1 +XPN
2

)
= 27.4282 and ℜ

(
XPN

1 +XPN
2

)
= 27.4282.

Hence, R
(
XPN

1 +XPN
2

)
= R

(
XPN

1 +XPN
2

)
.

Lemma 2: Let XPN
i = ⟨xp1

i , xp2

i , xp3

i , xp4

i , xp5

i ;µxi
, ϑxi

, πxi
⟩ , i = 1, 2, · · · , n be the n PNNs and λi ∈ R.

Then

ℜ
(∑n

i=1 λiX
PN
i

)
= [

∧n
i=1 µxi

+ (1−
∨n

i=1 ϑxi
) + (1−

∨n
i=1 πxi

)]×
∑n

i=1

R(XPN
i )

µxi
+(1−ϑxi)+(1−πxi)

λi

Proof.
From Definition 3, we have ∑n

i=1 λiX
pN
i =

⟨
∑n

i=1 λix
p1

i ,
∑n

i=1 λix
p2

i ,
∑n

i=1 λix
p3

i ,
∑n

i=1 λix
p4

i ,
∑n

i=1 λix
p5

i ;
∧n

i=1 µxi
,
∨n

i=1 ϑxi
,
∨n

i=1 πxi
⟩

From Definition 6 and Lemma 1, we have

ℜ
(∑n

i=1 λiX
PN
i

)
= [

∧n
i=1 µxi

+ (1−
∨n

i=1 ϑxi
) + (1−

∨n
i=1 πxi

)]×
∑n

i=1

R(λiX
PN
i )

µxi
+(1−ϑxi)+(1−πxi)

= [
∧n

i=1 µxi + (1−
∨n

i=1 ϑxi) + (1−
∨n

i=1 πxi)]×
∑n

i=1

R(XPN
i )

µxi
+(1−ϑxi)+(1−πxi)

λi

3 Data Envelopment Analysis

Suppose that there are n decision making units (DMUs) each having m inputs and r outputs as represented by
the vectors x ∈ Rm and y ∈ Rr, respectively. We define the input matrix X as X = [x1, · · · , xm] ∈ Rm×n,
and the output matrix Y as Y = [yl, · · · , yr] ∈ Rr×n, xi ∈ Rm,∀i = 1, 2, · · · ,m, yk ∈ Rr,∀k = 1, 2, 3, · · · , r
and assume that X > 0 and Y > 0. Charnes et al. [1] developed this model for measuring the efficiency of
DMUo, (o = 1, 2, 3, · · · , n), that is,

maxuk,vi θ =
∑r

k=1 ukyko∑m
i=1 vixio

,

subject to
∑r

k=1 ukykj∑m
i=1 vixij

≤ 1, j = 1, 2, · · ·n,
and uk ≥ 0, k = 1, 2, · · · , r,

vi ≥ 0, i = 1, 2, · · · ,m,

 (Model 1)

which is the non-linear programming problem. The corresponding linear programming (LPo) problem of the given
non-linear programming problem is

max
uk,vi

θ =

r∑
k=1

ukyko,

subject to
m∑
i=1

vixio = 1,

r∑
k=1

ukykj ≤
m∑
i=1

vixij , j = 1, 2, · · · , n,

and uk ≥ 0, k = 1, 2, · · · , r,
vi ≥ 0, i = 1, 2, · · · ,m,

which is called CCR model. This mathematical model can be solved easily using LPP solving techniques. The
optimal solution (θ∗o) of the above models gives the efficiency score of the DMUo, o = 1, 2, · · · , n.

Definition 7: A DMU is said to be efficient if the efficiency score (θ∗) is 1; Otherwise, the DMU is inefficient.
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3.1 Proposed Pentagonal Neu-DEA Model

This subsection provides a brief overview of the Pentagonal Neutrosophic Data Envelopment Analysis (PNNeu-
DEA) model, which is an extension of the traditional Data Envelopment Analysis (DEA) method. The PNNeu-
DEA model utilizes pentagonal neutrosophic numbers to represent imprecise and uncertain input and output data.
Pentagonal neutrosophic numbers are made up of five components and three membership degree that are represented
as real numbers between 0 and 1. Let us consider the input and output for the DMUj , j = 1, 2, · · ·n are xPN

ij , i =

1, 2, · · · ,m and yPN
kj , k = 1, 2, · · · , r. The input and output weights are considered as vi ∈ R, i = 1, 2, · · · ,m and

uk ∈ R, k = 1, 2, · · · , r respectively. The Mathematical model in the presence of PNN inputs and outputs is defined
as below.

maxuk,vi θ =
∑r

k=1 uky
PN
ko ,

subject to
∑m

i=1 vix
PN
io = 1PN ,∑r

k=1 uky
PN
kj ≤

∑m
i=1 vix

PN
ij , j = 1, 2, · · ·n,

and uk ≥ 0, k = 1, 2, · · · , r,
vi ≥ 0, i = 1, 2, · · · ,m,

 (Model 2)

where the input and outputs are PNNs i.e., yPN
kj =

〈
yp1

kj , y
p2

kj , y
p3

kj , y
p4

kj , y
p5

kj ;µykj
, ϑykj

, πykj

〉
and

xPN
ij =

〈
xp1

ij , x
p2

ij , x
p3

ij , x
p4

ij , x
p5

ij ;µxij
, ϑxij

, πxij

〉
, and 1PN = ⟨1, 1, 1, 1, 1; 1, 0, 0⟩. The DEA model base on

pentagonal neutrosophic numbers is defined as

max
uk,vi

θ =

r∑
k=1

uk ⟨yp1

ko, y
p2

ko, y
p2

ko, y
p4

ko, y
p5

ko;µyko
, ϑyko,πyko

⟩ ,

subject to
m∑
i=1

vi
〈
xp1

ij , x
p2

ij , x
p3

ij , x
p4

ij , x
p5

ij ;µxij ,, ϑxij ,, πxij

〉
= ⟨1, 1, 1, 1, 1; 1, 0, 0⟩

r∑
k=1

uk

〈
yp1

kj , y
p2

kj , y
p3

kj , y
p4

kj , y
p5

kj ;µykj ,ϑykj ,πykj

〉
≤

〈
xp1

ij , x
p2

ij , x
p3

ij , x
p4

ij , x
p5

ij ;µxij ,, ϑxij
, πxij

〉
, j = 1, 2, · · ·n,

and uk ≥ 0, k = 1, 2, · · · , r,
vi ≥ 0, i = 1, 2, · · · ,m,

which is the Pentagonal Neutrosophic DEA (PN-Neu-DEA) model. This model can’t be solved directly using the
existing LP techniques. The aggregation ranking function is used in the constraints and objective function of the
PN-Neu-DEA model to convert its corresponding crisp form.

maxuk,vi θ = ℜ
(∑r

k=1 uk

〈
yp1

ko, y
p2

ko, y
p3

ko, y
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and uk ≥ 0, k = 1, 2, · · · , r,

vi ≥ 0, i = 1, 2, · · · ,m,

By applying Lemma 2, we have
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and uk ≥ 0, k = 1, 2, · · · , r
vi ≥ 0, i = 1, 2, · · · ,m

which is the corresponding crisp LP model of the Pentagonal Neutrosophic DEA model.
Theorem 1: The Optimal solution of the Pentagonal Neu-DEA model defined in Model 2 and the corresponding

crisp LP model defined in Model 3 are equivalent.
Definition 8: The optimal solution of the crisp LP model is the efficiency score of the DMUs. If efficiency score

of the DMU is 1, then it is said to be efficient otherwise it is inefficient.
The provided flow chart in Figure 2 illustrates the methodology employed to solve the Pentagonal Neu-DEA

(PN-Neu-DEA) model.

Figure 2. The method of solution for the PN-Neu-DEA model

4 Numerical Example

This section presents a practical example to elucidate the applicability and efficacy of the Pentagonal Neu-DEA
model. The illustration incorporates seven Decision-Making Units (DMUs), each characterized by two input and
two output variables represented as Pentagonal Neutrosophic Numbers (PNNs). The input-output matrix for the
respective DMUs is provided in Table 1.

Table 1. The pentagonal neutrosophic input and output data
DMUs Input 1 Input 2 Output 1 Output 2
DMU 1 〈21,25,30,33,36;

0.8,0.4,0.6〉
〈108,112,120,125,129;

0.5,0.2,0.6〉
〈54,59,63,68,72;

0.5,0.3,0.7〉
〈162,168,172,176,180;

0.7,0.3,0.6〉
DMU 2 〈8,12,17,23,27;

0.9,0.3,0.4〉
〈87,92,95,99,106;

0.7,0.5,0.3〉
〈75,79,83,88,92;

0.8,0.5,0.2〉
〈144,148,153,156,161;

0.8,0.5,0.3〉
DMU 3 〈15,19,25,27,34;

0.4,0.8,0.6〉
〈118,122,127,132,136;

0.9,0.5,0.1〉
〈64,68,71,76,80;

0.7,0.1,0.6〉
〈153,156,161,167,173;

0.7,0.2,0.4〉
DMU 4 〈11,15,17,21,26;

0.8,0.4,0.2;〉
〈98,106,109,115,121;

0.6,0.2,0.8〉
〈71,76,81,85,89;

0.6,0.5,0.3〉
〈168,173,178,183,187;

0.5,0.6,0.2〉
DMU 5 〈25,29,33,37,40;

0.7,0.5,0.1〉
〈105,110,118,125,130;

0.8,0.6,0.4〉
〈50,53,58,62,65;

0.4,0.9,0.5〉
〈151,156,160,165,169;

0.8,0.3,0.1〉
DMU 6 〈18,23,27,31,35;

0.5,0.7,0.4〉
〈100,105,109,114,119;

0.7,0.3,0.5〉
〈57,63,67,72,75;

0.9,0.6,0.4〉
〈173,176,180,183,187;

0.6,0.5,0.4〉
DMU 7 〈6,10,18,26,30;

0.8,0.2,0.5;〉
〈115,120,126,131,137;

0.9,0.4,0.7〉
〈73,78,81,86,88;

0.5,0.4,0.6〉
〈162,165,169,174,179;

0.9,0.4,0.3〉

An application of the proposed Pentagonal Neu-DEA (PN-Neu-DEA) model is then made in a neutrosophic
environment to evaluate the relative efficiency of the DMUs. Presented in Table 2, the findings are resultant of the
PN-Neu-DEA model’s application. Efficiency scores are quantified ranging from 0 to 1, where a score of 1 signifies
complete efficiency and a score less than 1 indicates inefficiency. From the analysis, it is observed that only DMU
3 managed to obtain a perfect efficiency score of 1, suggesting an optimal resource utilization. The remaining six
DMUs demonstrated inefficiencies, with efficiency scores in the range of 0.5972 to 0.9433. Consequently, these
inefficient DMUs are identified as potential targets for performance improvement interventions.

Among the DMUs, DMU 5 demonstrated the lowest efficiency, with a score of 0.3314, thus ranking at the bottom.
This reflects DMU 5’s vast scope for enhancement. DMUs were sequenced in the order of DMU 3 > DMU 2 >
DMU 4 > DMU 6 > DMU 7 > DMU 1 > DMU 5 based on their efficiency scores. The sequencing served as
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an inverse indication of their efficiency levels, with a lower rank signifying higher efficiency. DMU 3 achieved the
topmost rank, thereby deemed as the most efficient DMU, while DMU 5, with the lowest rank, was identified as the
least efficient. These rankings provide valuable information for decision-makers to allocate resources and identify
best practices judiciously.

Table 2. Efficiency score of the DMUs in PN-Neu-DEA model

DMU Efficiency score Type Ranking
DMU 1 0.5972 Inefficient 6
DMU 2 0.9433 Inefficient 2
DMU 3 1 Efficient 1
DMU 4 0.9185 Inefficient 3
DMU 5 0.3314 Inefficient 7
DMU 6 0.8376 Inefficient 4
DMU 7 0.7037 Inefficient 5

The insights derived from the PN-Neu-DEA model findings can contribute to informed decision-making by
quantifying efficiency levels and pinpointing areas of improvement. Applying this model for DMU evaluation can
enhance resource allocation, mitigate costs, and escalate productivity.

Figure 3. Comparison of the efficiency score of the DMUs in PN-Neu-DEA model

Figure 3 exhibits the efficiency scores of various DMUs as calculated through the PN-Neu-DEA model. The
Y-axis depicts the efficiency scores, while the X-axis represents the DMUs. This graphical representation delineates
the variation in efficiency among the DMUs, spotlighting those achieving optimal levels of efficiency (i.e., 1), and
those falling short of it. This visualization serves as a beneficial tool for decision-makers, promoting an understanding
of the overall performance landscape.

5 Conclusions

In this study, a novel ranking function for Pentagonal Neutrosophic Numbers (PNN) was proposed, which takes
into consideration the degrees of truth, indeterminacy, and falsity. This ranking function serves as a vital tool
in decision-making processes, enabling the prioritization of neutrosophic elements in scenarios characterized by
uncertain, vague, or inconsistent information. A traditional Data Envelopment Analysis (DEA) model has been
adapted to incorporate pentagonal neutrosophic inputs and outputs, resulting in the development of the Pentagonal
Neutrosophic DEA (PN-Neu-DEA) model.

The proposed ranking function was employed to transform the PN-Neu-DEA model into a corresponding crisp
Linear Programming (LP) model. By solving this crisp LP model, the efficiency of Decision-Making Units (DMUs)
can be assessed, with the DMUs ranked according to their efficiency scores. An efficiency score of 1 indicates an
efficient DMU, while scores below 1 signify inefficiency. A numerical example was provided to demonstrate the
applicability and validity of the proposed methodology.

A key advantage of the PN-Neu-DEA model is its ability to handle uncertain and incomplete information with
greater flexibility compared to other DEA models. Future research directions include applying the PN-Neu-DEA
model to real-life performance evaluation cases and extending its reach to address more complex decision-making
problems. These may encompass multiple inputs and outputs in uncertain environments, as well as dynamic systems.
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Furthermore, the integration of the PN-Neu-DEA model with other decision-making tools could be explored to
enhance its effectiveness and utility in practical situations.

Data Availability

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

[1] A. Charnes, W. W. Cooper, and E. Rhodes, “Measuring the efficiency of decision-making units,” Eur. J. Oper.
Res., vol. 2, no. 6, pp. 429–444, 1978. https://doi.org/10.1016/0377-2217(78)90138-8

[2] K. K. Mohanta, D. S. Sharanappa, and A. Aggarwal, “Efficiency analysis in the management of Covid-19
pandemic in India based on data envelopment analysis,” Curr. Res. Behav. Sci., vol. 2, p. 100063, 2021.
https://doi.org/10.1016/j.crbeha.2021.100063

[3] H. Zhou, Y. Yang, Y. Chen, and J. Zhu, “Data envelopment analysis application in sustainability: The origins,
development and future directions,” Eur. J. Oper. Res., vol. 264, no. 1, pp. 1–16, 2018. https://doi.org/10.101
6/j.ejor.2017.06.023

[4] S. Soheilirad, K. Govindan, A. Mardani, E. K. Zavadskas, M. Nilashi, and N. Zakuan, “Application of data
envelopment analysis models in supply chain management: A systematic review and meta-analysis,” Ann. Oper.
Res., vol. 271, pp. 915–969, 2018. https://doi.org/10.1007/s10479-017-2605-1

[5] V. Chaubey, D. S. Sharanappa, K. K. Mohanta, V. N. Mishra, and L. N. Mishra, “Efficiency and productivity
analysis of the Indian agriculture sector based on the Malmquist-DEA technique,” Univ. J. Agric. Res., vol. 10,
no. 4, pp. 331–343, 2022. https://doi.org/10.13189/ujar.2022.100402

[6] L. A. Zadeh, “Fuzzy sets,” Inf. Control, vol. 8, no. 3, pp. 338–353, 1965.
[7] J. K. Sengupta, “A fuzzy systems approach in data envelopment analysis,” Comput. Math. Appl., vol. 24, no.

8-9, pp. 259–266, 1992. https://doi.org/10.1016/0898-1221(92)90203-T
[8] A. Hatami-Marbini, A. Emrouznejad, and M. Tavana, “A taxonomy and review of the fuzzy data envelopment

analysis literature: Two decades in the making,” Eur. J. Oper. Res., vol. 214, no. 3, pp. 457–472, 2011.
https://doi.org/10.1016/j.ejor.2011.02.001

[9] W. Zhou and Z. Xu, “An overview ofthe fuzzy data envelopment analysis research and its successful applica-
tions,” Int. J. Fuzzy Syst., vol. 22, no. 4, pp. 1037–1055, 2020. https://doi.org/10.1007/s40815-020-00853-6

[10] F. Z. Montazeri, “An overview of data envelopment analysis models in fuzzy stochastic environments,” J. Fuzzy
Extens. Appl., vol. 1, no. 4, pp. 272–278, 2020. https://doi.org/10.22105/jfea.2020.258330.1030

[11] I. Ucal Sari and U. Ak, “Machine efficiency measurement in industry 4.0 using fuzzy data envelopment analysis,”
J. Fuzzy Extens. Appl., vol. 3, no. 2, pp. 177–191, 2022. https://doi.org/10.22105/jfea.2022.326644.1199

[12] K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets Syst., vol. 20, no. 1, pp. 87–96, 1986. https://doi.org/10
.1016/S0165-0114(86)80034-3

[13] N. Gandotra, R. K. Bajaj, and N. Gupta, “Sorting of decision making units in data envelopment analysis with
intuitionistic fuzzy weighted entropy,” Adv. Comput. Sci. Eng. Appl., pp. 567–576, 2012. https://doi.org/10.1
007/978-3-642-30157-5 57

[14] S. A. Edalatpanah, “A data envelopment analysis model with triangular intuitionistic fuzzy numbers,” Int. J.
Data Envelopment Anal., vol. 7, pp. 47–58, 2019.

[15] J. Puri and S. P. Yadav, “Intuitionistic fuzzy data envelopment analysis: An application to the banking sector
in India,” Expert Syst. Appl., vol. 42, pp. 4982–4998, 2015. https://doi.org/10.1016/j.eswa.2015.02.014

[16] A. Arya and S. P. Yadav, “Performance efficiency of public health sector using intuitionistic fuzzy DEA,” Int.
J. Uncertain. Fuzziness Knowl.-Based Syst., vol. 28, no. 02, pp. 289–315, 2020. https://doi.org/10.1142/S021
8488520500129

[17] B. Shakouri, R. Abbasi Shureshjani, B. Daneshian, and F. Hosseinzadeh Lotfi, “A parametric method for
ranking intuitionistic fuzzy numbers and its application to solve intuitionistic fuzzy network data envelopment
analysis models,” Complexity, vol. 2020, p. 6408613, 2020. https://doi.org/10.1155/2020/6408613

[18] A. Arya and S. P. Yadav, “Development of intuitionistic fuzzy super-efficiency slack based measure with an
application to health sector,” Comput. Ind. Eng., vol. 115, pp. 368–380, 2018. https://doi.org/10.1016/j.cie.20
17.11.028

[19] A. Arya and S. P. Yadav, “Development of intuitionistic fuzzy data envelopment analysis models and intuition-
istic fuzzy input-output targets,” Soft Comput., vol. 23, pp. 8975–8993, 2019. https://doi.org/10.1007/s00500
-018-3504-3

78

https://doi.org/10.1016/0377-2217(78)90138-8
https://doi.org/10.1016/j.crbeha.2021.100063
https://doi.org/10.1016/j.ejor.2017.06.023
https://doi.org/10.1016/j.ejor.2017.06.023
https://doi.org/10.1007/s10479-017-2605-1
https://doi.org/10.13189/ujar.2022.100402
https://doi.org/10.1016/0898-1221(92)90203-T
https://doi.org/10.1016/j.ejor.2011.02.001
https://doi.org/10.1007/s40815-020-00853-6
https://doi.org/10.22105/jfea.2020.258330.1030
https://doi.org/10.22105/jfea.2022.326644.1199
https://doi.org/10.1016/S0165-0114(86)80034-3
https://doi.org/10.1016/S0165-0114(86)80034-3
https://doi.org/10.1007/978-3-642-30157-5_57
https://doi.org/10.1007/978-3-642-30157-5_57
https://doi.org/10.1016/j.eswa.2015.02.014
https://doi.org/10.1142/S0218488520500129
https://doi.org/10.1142/S0218488520500129
https://doi.org/10.1155/2020/6408613
https://doi.org/10.1016/j.cie.2017.11.028
https://doi.org/10.1016/j.cie.2017.11.028
https://doi.org/10.1007/s00500-018-3504-3
https://doi.org/10.1007/s00500-018-3504-3


[20] S. M. Ardakani, H. Babaei Meybodi, and H. Sayyadi Tooranloo, “Development of a bounded two-stage data
envelopment analysis model in the intuitionistic fuzzy environment,” Adv. Oper. Res., vol. 2022, p. 3652250,
2022. https://doi.org/10.1155/2022/3652250

[21] M. Rasoulzadeh, S. A. Edalatpanah, M. Fallah, and S. E. Najafi, “A multi-objective approach based on
markowitz and dea cross-efficiency models for the intuitionistic fuzzy portfolio selection problem,” Decis.
Mak. Appl. Manag. Eng., vol. 5, pp. 241–259, 2022. https://doi.org/10.31181/dmame0324062022e

[22] F. Smarandache, “A unifying field in logics,” Neutrosophic Logic, 1999.
[23] F. Smarandache and B. Said, “Neutrosophic theories in communication, management and information technol-

ogy,” Nova Science Publishers, 2020.
[24] K. K. Mohanta, V. Chaubey, D. S. Sharanappa, and V. N. Mishra, “A modified novel method for solving the

uncertainty linear programming problems based on triangular neutrosophic number,” Trans. Fuzzy Sets Syst.,
vol. 1, no. 1, pp. 155–169, 2022. https://doi.org/10.30495/tfss.2022.1956751.1022

[25] S. A. Edalatpanah, “Neutrosophic perspective on DEA,” J. Appl. Res. Ind. Eng., vol. 5, no. 4, pp. 339–345,
2018. https://doi.org/10.22105/jarie.2019.196020.1100

[26] C. Kahraman, I. Otay, B. Oztay, and S. C. Onar, “An integrated AHP & DEA methodology with neutrosophic
sets,” Fuzzy Multi-Criteria Decision-Making Using Neutrosophic Sets, pp. 623–645, 2019. https://doi.org/10.1
007/978-3-030-00045-5 24

[27] W. Abdelfattah, “Data envelopment analysis with neutrosophic inputs and outputs,” Expert Syst., vol. 36, no. 6,
p. e12453, 2019. https://doi.org/10.1111/exsy.12453

[28] S. A. Edalatpanah and F. Smarandache, “Data envelopment analysis for simplified neutrosophic sets,” Neutro-
sophic Sets Syst., vol. 29, pp. 215–226, 2019.

[29] S. A. Edalatpanah, “Data envelopment analysis based on triangular neutrosophic numbers,” CAAI Trans. Intell.
Technol., vol. 5, no. 2, pp. 94–98, 2020. https://doi.org/10.1049/trit.2020.0016

[30] X. Mao, Z. Guoxi, M. Fallah, and S. A. Edalatpanah, “A neutrosophic-based approach in data envelopment
analysis with undesirable outputs,” Math. Probl. Eng., vol. 2020, p. 7626102, 2020. https://doi.org/10.1155/20
20/7626102

[31] W. Yang, L. Cai, S. A. Edalatpanah, and F. Smarandache, “Triangular single valued neutrosophic data envel-
opment analysis: Application to hospital performance measurement,” Symmetry, vol. 12, no. 4, p. 588, 2020.
https://doi.org/10.3390/sym12040588

[32] J. F. D. Tapia, “Evaluating negative emissions technologies using neutrosophic data envelopment analysis,” J.
Clean. Prod., vol. 286, p. 125494, 2021. https://doi.org/10.1016/j.jclepro.2020.125494

[33] W. Abdelfattah, “Neutrosophic data envelopment analysis: An application to regional hospitals in Tunisia,”
Neutrosophic Sets Syst., vol. 41, pp. 89–105, 2021.

[34] K. K. Mohanta, D. S. Sharanappa, and V. N. Mishra, “Neutrosophic data envelopment analysis based on the
possibilistic mean approach,” Oper. Res. Decis., vol. 32, no. 2, pp. 81–98, 2023. https://doi.org/10.37190/ord
230205

[35] M. Akram, S. M. U. Shah, M. M. A. Al-Shamiri, and S. A. Edalatpanah, “Extended DEA method for solving
multi-objective transportation problem with Fermatean fuzzy sets,” AIMS Math., vol. 8, no. 1, pp. 924–961,
2023. http://dx.doi.org/10.3934/math.2023045
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