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Abstract: This study emphasizes the limitations observed in the prevailing neutrosophic AHP group decision-
making model. To address these limitations, an augmented neutrosophic AHP group decision-making model has
been established, leveraging the potential of neutrosophic trapezoidal numbers. A comprehensive exploration of a key
property of the neutrosophic trapezoidal pairwise comparison matrix is performed in this research, revealing that the
current model inadequately maintains the reciprocal property of the neutrosophic trapezoidal pairwise comparison
matrix. A real-world decision-making problem is resolved utilizing the introduced model, and a comparative analysis
is furnished between the pre-existing neutrosophic AHP group decision-making model and the revised version. The
results unequivocally demonstrate the superiority of the enhanced model.
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1 Introduction

In the intricate domain of multi-criteria decision-making (MCDM), identifying an optimal choice from a selection
of alternatives based on various parameters can present substantial challenges due to the complexity inherent in real-
world decision-making dilemmas. The analytic hierarchy process (AHP) is a pivotal technique, developed by
Saaty [1], which has demonstrated proficiency in navigating such intricate decision-making scenarios [2]. AHP
simplifies the complexities by transforming them into a hierarchy with multiple layers, including the objective level,
criteria level, sub-criteria level, and alternative level. The procedure mandates the decision maker to engage in
pairwise comparisons of the objects at each level, utilizing a fundamental 1-9 scale and incorporating the findings
into a pairwise comparison matrix [2, 3].

Subsequently, the priority weights of the alternatives, in relation to each criterion, are calculated, alongside the
priority weights of the criteria with respect to the objective of the issue at hand. The synthesis of global priority
weights then permits the ranking of the available alternatives [4].

The canonical version of AHP has undergone several extensions and adaptions, particularly to encompass fuzzy
and intuitionistic fuzzy environments [3–8]. With a similar goal in mind, Abdel-Basset et al [9] expanded AHP
into the realm of the neutrosophic environment, employing trapezoidal neutrosophic numbers to accomplish this.
Abdel-Basset et al [9] identified that the construction of pairwise comparison matrices with n×(n−1)

2 judgments may
lead to inconsistent judgments owing to the sizable value of n. To address this, a restriction of judgments to (n− 1)
was proposed. Further, they posited that the traditional 1-9 scale of AHP is not without flaws and, in response,
proposed a new scale [0, 1] and offered a process to verify the consistency of trapezoidal neutrosophic pairwise
comparison matrices [9].

However, an in-depth exploration has revealed certain limitations inherent in Abdel-Basset et al.’s methodology [9]
when applied to a neutrosophic environment. This document seeks to articulate these shortcomings and offer a
modified approach that addresses these limitations. A real-life decision-making problem, which has previously
been resolved by Abdel-Basset et al., is presented, and an exact solution is determined using the proposed modified
method.

Through this proposed method, an in-depth investigation will take place, challenging existing models and
expanding the understanding of complex decision-making processes in the neutrosophic environment. The ultimate
goal is to further enhance the scientific community’s knowledge and practical capabilities when encountering MCDM
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problems. The profound influence of AHP and its numerous extensions is acknowledged, while simultaneously
offering this updated method to confront the evolution of decision-making scenarios. Thus, this work hopes to
contribute an additional dimension to the ongoing scientific dialogue on MCDM and AHP, fostering future research
and application of these methodologies.

2 Preliminaries

In this section, basic concepts of SVNSs, single valued trapezoidal neutrosophic numbers, and their operational
laws are presented, focusing on the universal set X = {x1, x2, . . . , xn} comprising n objects.

Definition 2.1 A single valued trapezoidal neutrosophic number Ñ is denoted as Ñ = ⟨(L,M,M ′, U) ;T, I, F ⟩
and defined as [10]:

TÑ (x) =


TÑ

(
x−L
M−L

)
, L < x ≤ M

TÑ , M < x ≤ M ′

TÑ

(
U−x
U−M ′

)
, M ′ ≤ x < U

0, otherwise.

;

IÑ (x) =


(M−x+IÑ (x−L))

(M−L) , L < x ≤ M

IÑ , M ≤ x ≤ M ′

(x−M ′+IÑ (U−x))
(U−M ′) , M ′ ≤ x < U

0, otherwise.

FÑ (x) =


(M−x+FÑ (x−L))

(M−L) , L < x ≤ M

FÑ , M ≤ x ≤ M ′

(x−M ′+FÑ (U−x))
(U−M ′) , M ′ ≤ x < U

1, otherwise.

where, TÑ (x), IÑ (x) and FÑ (x) represents the truth membership degree, indeterminacy-membership degree and
falsity-membership degree respectively. Moreover, T, I, F ∈ [0, 1] such that 0 ≤ T +I+F ≤ 3 and L,M,M ′, U ∈
R such that L ≤ M ≤ M ′ ≤ U .

Definition 2.2 Arithmetic operational laws
Let Ñ1 = ⟨(L1,M1,M

′
1, U1) ;T1, I1, F1⟩ and Ñ2 = ⟨(L2,M2,M

′
2, U2) ;T2, I2, F2⟩ be any two single valued

trapezoidal neutrosophic numbers then:

1. Ñ1 + Ñ2 = ⟨(L1 + L2,M1 +M2,M
′
1 +M ′

2, U1 + U2) ;T1 ∧ T2, I1 ∨ I2, F1 ∨ F2⟩

2. Ñ1 − Ñ2 = ⟨(L1 − U2,M1 −M ′
2,M

′
1 −M2, U1 + L2) ;T1 ∧ T2, I1 ∨ I2, F1 ∨ F2⟩

3. Ñ1 × Ñ2 =

 ⟨(L1L2,M1M2,M
′
1M

′
2, U1U2) ;T1 ∧ T2, I1 ∨ I2, F1 ∨ F2⟩ if U1 > 0, U2 > 0

⟨(L1U2,M1M
′
2,M

′
1M2, U1L2) ;T1 ∧ T2, I1 ∨ I2, F1 ∨ F2⟩ if U1 < 0, U2 > 0

⟨(U1U2,M
′
1M

′
2,M1M2, L1L2) ;T1 ∧ T2, I1 ∨ I2, F1 ∨ F2⟩ if U1 < 0, U2 < 0

4.
Ñ1

Ñ2

=


〈(

L1

U2
, M1

M ′
2
,
M ′

1

M2
, U1

L2

)
;T1 ∧ T2, I1 ∨ I2, F1 ∨ F2

〉
if U1 > 0, U2 > 0〈(

U1

U2
,
M ′

1

M ′
2
, M1

M2
, L1

L2

)
;T1 ∧ T2, I1 ∨ I2, F1 ∨ F2

〉
if U1 < 0, U2 > 0〈(

U1

L2
,
M ′

1

M2
, M1

M ′
2
, L1

U2

)
;T1 ∧ T2, I1 ∨ I2, F1 ∨ F2

〉
if U1 < 0, U2 > 0

5. Ñ−1
1 =

〈(
1

U1
,

1

M ′
1

,
1

M1
,
1

L1

)
;T1, I1, F1

〉
;L1,M1,M

′
1, U1 ̸= 0.

6. kÑ1 =

{
⟨(kL1, kM1, kM

′
1, kU1) ;T1, I1, F1⟩ , if k > 0

⟨(kU1, kM
′
1, kM1, kL1) ;T1, I1, F1⟩ , if k < 0

3 A Brief Overview of Abdel-Basset et al.’s Approach

The primary objective of this study is to identify the shortcomings in the existing method [9] and propose a
modified approach to address these limitations. Consequently, a discussion of Abdel-Basset et al.’s approach [9] is
necessary. This section presents a brief overview of their methodology.

The steps of Abdel-Basset et al.’s approach are outlined as follows:
Step 1: The goal of the problem, which depends on the criteria, sub-criteria, and alternatives, is initially

identified. A hierarchical structure for the given MCDM problem is then constructed, and information provided by
experts is gathered.
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Step 2: The single valued trapezoidal neutrosophic number pairwise comparison matrix P̃ = {p̃ij}n×n of (n-1)

judgments, rather than n×(n−1)
2 , is constructed. This matrix, p̃ij =

〈(
Laij ,Maij ,M

′
aij

Uaij

)
;Taij , Iaij , Faij

〉
i, j =

1, 2, . . . , n, encompasses the criterion with respect to the goal of the problem. A similar process is applied to the
alternatives with respect to the corresponding criteria.

Step 3: The construction of the single valued trapezoidal neutrosophic pairwise comparison matrix is completed
with n×(n−1)

2 entries, utilizing Theorem 1 from the study [9] and either expression (1) or (2), depending on whether
Uaij

> 1 or Laij
< 0, respectively.

p′ij =
pij + kx
1 + 2kx

; kx = max {uij − 1, 0− lij} for every i, j = 1, 2, . . . , n (1)

p′ij =
−pij + kx
1 + 2kx

; kx = max {uij − 1, 0− lij} for every i, j = 1, 2, . . . , n (2)

Step 4: After the construct single valued trapezoidal neutrosophic pairwise comparison matrix P̃ =
(〈(

Laij ,Maij ,

M ′
aij

Uaij

)
;Taij

, Iaij
, Faij

〉)
n×n

. In order to check that the P̃ = {p̃ij}n×n is consistent or not. The trapezoidal

neutrosophic pairwise comparison matrix P̃ = {p̃ij}n×n is transformed into the four crisp pairwise comparison
matrices by using the following expressions:

L = (Lij)n×n =


Laij

, i < j
0.5, i = j
Uaij , i > j

; = (Uij)n×n =


Uaij

, i < j

0.5, i = j

Laij , i > j

; (3)

M = (Mij)n×n = Maij and M ′ =
(
M ′

ij

)
n×n

= M ′
aij

. (4)

Using the relation pik + pkj + pji = 1
2 , for every i, j, k if all the four matrices L = (Lij)n×n , U =

(Uij)n×n ,M = (Mij)n×n and M ′ =
(
M ′

ij

)
n×n

are additive approximate consistent i.e., satisfying the condition
pik+pkj +pji =

1
2 [9] then the corresponding trapezoidal neutrosophic pairwise comparison matrix P̃ = {p̃ij}n×n

is also consistent, otherwise P̃ = {p̃ij}n×n is inconsistent.
Step 5: If the trapezoidal neutrosophic pairwise comparison matrix P̃ = {p̃ij}n×n is consistent, then transform

the trapezoidal neutrosophic pairwise comparison matrix P̃ = {p̃ij}n×n into the corresponding crisp deterministic
pairwise comparison matrix P = {pij}n×n, by using the expression (5) and (6)

S1 (⟨(L,M,M ′, U) ;T, I, F ⟩) = 1

16
[(L+M +M ′ + U)× (2 + T − I − F )] (5)

S2 (⟨(L,M,M ′, U) ;T, I, F ⟩) = 1

16
[(L+M +M ′ + U)× (2 + T − I − F )] (6)

Step (6a): Transform the matrix, P = [pij ]n×n into the matrix, P ′ = [p′ij ]n×n, where p′ij =
pij∑n

k=1 pkj
, i, j =

1, 2, . . . , n.
Step (6b): Find a column matrix, = [wi1]n×1, where, wi1 =

∑n
k=1 p′

ik

n ; i = 1, 2, . . . , n.
Step 7: Check that W (Ai) > W (Aj) or W (Ai) < W (Aj) or W (Ai) = W (Aj).
Case (i): If W (Ai) = W (Aj) then Ai = Aj ,
Case (ii): If W (A)i > W (Aj) then Ai > Aj ,
Case (iii): If W (Ai) < W (Aj) then Ai < Aj .

4 Shortcomings of Abdel-Basset et al.’s Approach

Basset et al. highlighted that constructing pairwise comparison matrices with n×(n−1)
2 judgments could result in

inconsistent expert judgments due to the large value of n. To address this limitation, they employed (n−1) restricted
judgments instead of n×(n−1)

2 judgments. Furthermore, they noted that the traditional 1-9 scale of AHP has certain
drawbacks and proposed a new scale [0, 1] to overcome these shortcomings. However, upon closer examination, it
has been observed that Abdel-Basset et al. made several mathematically incorrect assumptions in their neutrosophic
environment approach:
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For instance, consider the trapezoidal neutrosophic pairwise comparison matrix.

P̃ =


(0.5, 0.5, 0.5, 0.5) (0.2, 0.3, 0.4, 0.5) p p

p (0.5, 0.5, 0.5, 0.5) (0.6, 0.7, 0.75, 0.9) p
p p (0.5, 0.5, 0.5, 0.5) (0.3, 0.4, 0.5, 0.8)
p p p (0.5, 0.5, 0.5, 0.5)


with (n− 1) judgments.

Using Step 2 and Step 3 of Abdel-Basset et al.’s method, as discussed in the Section 3, the matrix P̃ can be
obtained as follows.

P13 = p12 + p23 − (0.5, 0.5, 0.5, 0.5) = (0.3, 0.5, 0.65, 0.9),

P31 = 1− P13 = 1− (0.3, 0.5, 0.65, 0.9) = (0.1, 0.35, 0.5, 0.7),

P32 = p31 + p12 − (0.5, 0.5, 0.5, 0.5) = (−0.2, 0.15, 0.4, 0.7),

P21 = 1− P12 = 1− (0.2, 0.3, 0.4, 0.5) = (0.5, 0.6, 0.7, 0.8),

P14 = p13 + p34 − (0.5, 0.5, 0.5, 0.5) = (0.1, 0.4, 0.65, 1.2),

P24 = p21 + p14 − (0.5, 0.5, 0.5, 0.5) = (0.1, 0.5, 0.85, 1.5),

P41 = 1− P14 = 1− (0.1, 0.4, 0.65, 1.2) = (−0.2, 0.35, 0.6, 0.9),

P42 = 1− P24 = 1− (0.1, 0.5, 0.85, 1.5) = (−0.5, 0.15, 0.5, 0.9),

P43 = 1− P34 = 1− (0.3, 0.4, 0.5, 0.8) = (0.2, 0.5, 0.6, 0.7),

Using the above values, the incomplete matrix P̃ is transformed into the matrix P̃1

P̃1 =


(0.5, 0.5, 0.5, 0.5) (0.2, 0.3, 0.4, 0.5) (0.3, 0.5, 0.65, 0.9) (0.1, 0.4, 0.65, 1.2)
(0.5, 0.6, 0.7, 0.8) (0.5, 0.5, 0.5, 0.5) (0.6, 0.7, 0.75, 0.9) (0.1, 0.5, 0.85, 1.5)
(0.1, 0.35, 0.5, 0.7) (−0.2, 0.15, 0.4, 0.7) (0.5, 0.5, 0.5, 0.5) (0.3, 0.4, 0.5, 0.8)
(−0.2, 0.35, 0.6, 0.9) (−0.5, 0.15, 0.5, 0.9) (0.2, 0.5, 0.6, 0.7) (0.5, 0.5, 0.5, 0.5)

 .

Using the using the expression (1) and (2) transform the matrix P̃1 into the matrix P̃2

P̃2 =


(0.5, 0.5, 0.5, 0.5) (0.2, 0.3, 0.4, 0.5) (0.3, 0.5, 0.65, 0.9) (0.1, 0.4, 0.65, 1)
(0.5, 0.6, 0.7, 0.8) (0.5, 0.5, 0.5, 0.5) (0.6, 0.7, 0.75, 0.9) (0.1, 0.5, 0.85, 1)
(0.1, 0.35, 0.5, 0.7) (0.2, 0.15, 0.4, 0.7) (0.5, 0.5, 0.5, 0.5) (0.3, 0.4, 0.5, 0.8)
(0.2, 0.35, 0.6, 0.9) (0.5, 0.15, 0.5, 0.9) (0.2, 0.5, 0.6, 0.7) (0.5, 0.5, 0.5, 0.5)

 .

To check the consistency of matrix P̃2, expression (2) and (3) from Step 3 of Abdel-Basset et al.’s method, as
discussed in previous section, are employed. The matrix P̃2 is transformed into four different matrices as follows:

L = (Lij)n×n =


0.5 0.2 0.3 0.1
0.8 0.5 0.6 0.1
0.7 0.7 0.5 0.2
0.9 0.9 0.9 0.5

 ,M = (Mij)n×n =


0.5 0.3 0.5 0.4
0.6 0.5 0.7 0.5
0.35 0.2 0.5 0.4
0.35 0.5 0.5 0.5



M ′ = (M ′
ij)n×n =


0.5 0.4 0.65 0.65
0.7 0.5 0.75 0.85
0.5 0.4 0.5 0.5
0.6 0.5 0.6 0.5

 and U = (Uij)n×n =


0.5 0.5 0.9 1
0.5 0.5 0.9 1
0.1 0.2 0.5 0.8
0.2 0.5 0.2 0.5

 .

Therefore, it can be easily verified that none of the matrices L = (Lij)n×n ,M = (Mij)n×n ,M
′ = (M ′

ij)n×n
and U = (Uij)n×n are satisfying the additive reciprocal property of pairwise comparison matrices i.e., pij +
pji = 1; i, j = 1, 2, . . . , n. For example, for the elements of L = (Lij)n×n , l23 + l32 = 0.6 + 0.7 = 1.3 ̸=
1; l34 + l43 = 0.2 + 0.9 = 1.1 ̸= 1. Similarly, for the matrices M = (Mij)n×n ,M

′ =
(
M ′

ij

)
n×n

and U =

(Uij)n×n the elements m12 + m21 = 0.3 + 0.6 = 0.9 ̸= 1, m′
12 + m′

21 = 0.4 + 0.7 = 1.1 ̸= 1 and u23+
u32 = 0.9 + 0.2 = 1.1 ̸= 1 respectively are not satisfying the property pij + pji = 1; i, j = 1, 2, . . . , n.

Consequently, matrices L = (Lij)n×n ,M = (Mij)n×n ,M
′ =

(
M ′

ij

)
n×n

and U = (Uij)n×n are found to be
inconsistent, implying that matrix P̃2 is not consistent and will never be consistent when applying Abdel-Basset et
al.’s method [9]. However, Basset et al. claimed that matrix P̃2 is consistent, which is mathematically incorrect.

To determine the propriety weights of the alternatives from the trapezoidal neutrosophic pairwise comparison
matrix P̃ = {p̃ij}n×n, Basset et al. used expressions (3) and (4) to transform matrix P̃ = {p̃ij}n×n into the
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corresponding crisp deterministic pairwise comparison matrix P = {pij}n×n [9]. Nonetheless, it was observed
that the transformed crisp deterministic pairwise comparison matrix P = {pij}n×n, obtained by applying Basset et
al.’s method as discussed in previous section, does not satisfy the property pij + pji = 1; i, j = 1, 2, . . . , n, thus
not constituting a crisp pairwise comparison matrix. The following examples clearly indicate that the conditions
pij + pji = 1; ∀i, j are not necessarily satisfied for the elements pij of the transformed crisp matrix when applying
Abdel-Basset et al.’s method [9].

Therefore, it is scientifically incorrect to use Abdel-Basset et al.’s method [9], as discussed in previous section,
to determine the priority weights of a trapezoidal neutrosophic pairwise comparison matrix.

Example 4.1 Suppose

p̃ =

(
⟨(0.5, 0.5, 0.5, 0.5)⟩ ⟨(0.2, 0.3, 0.4, 0.5; 0.7, 0.2, 0.5)⟩

⟨(0.5, 0.6, 0.7, 0.8; 0.7, 0.2, 0.5)⟩ ⟨(0.5, 0.5, 0.5, 0.5)⟩

)
represents a consistent trapezoidal neutrosophic pairwise comparison matrix. Utilizing Abdel-Basset et al.’s
method [9], as described in previous section, the examined trapezoidal neutrosophic pairwise comparison matrix
will be converted into the corresponding crisp matrix.

P =

(
0.50 S(⟨(0.2, 0.3, 0.4, 0.5; 0.7, 0.2, 0.5)⟩)

S(⟨(0.5, 0.6, 0.7, 0.8; 0.7, 0.2, 0.5)⟩) 0.50

)
=

(
0.5 (0.2+0.3+0.4+0.5)

16 × 2 + (0.7− 0.2− 0.5)
(0.5+0.6+0.7+0.8)

16 × 2 + (0.7− 0.2− 0.5) 0.5

)

=

(
0.50 0.17
0.32 0.50

)
.

Using Step 6 of Abdel-Basset et al.’s method, the normalized priority weights are found to beP =
[
0.43, 0.57

]T
[9]. However, the condition pij +pji = 0.17+0.32 = 0.49 ̸= 1∀i, j is not satisfied for the transformed crisp matrix
P. Consequently, determining the priority weights of a crisp non-pairwise comparison matrix is a meaningless task
and may mislead the decision-maker. Thus, Abdel-Basset et al.’s method [9], as discussed in the previous section,
cannot be applied to determine the priority weights of the considered trapezoidal neutrosophic pairwise comparison
matrix.

4.1 Modified Method

To address the limitations and reduce the computational complexity inherent in Abdel-Basset et al [9], as
discussed in Section 4, a modified approach is proposed. Using the definition of the likelihood-based comparison
relations [11] to preserve the reciprocal property of crisp pairwise comparison matrices. The steps of the modified
approach for constructing crisp pairwise comparison matrices are as follows:

Step 1: A single-valued trapezoidal neutrosophic pairwise comparison matrix P̃ = {p̃ij}n×n, is constructed,

where p̃ij =
〈(

Laij ,Maij ,M
′
aij

Uaij

)
;Taij , Iaij , Faij

〉
; i ̸= j and p̃ij = 0.50; i = j; i, j = 1, 2, . . . , n represent-

ing (n − 1) judgments between the criterion with respect to the goal of the problem. The process is similar for
alternatives with respect to the corresponding criterion.

Step 2: The incomplete trapezoidal neutrosophic pairwise comparison matrix P̃ = {p̃ij}n×n, with (n − 1)
judgments, is transformed into the corresponding incomplete crisp pairwise comparison matrix P = {pij}n×n using
the specified ranking functions.

R1 (⟨(L,M,M ′, U) ;T, I, F ⟩) = 1

6
[(L+M +M ′ + U + T + I + F )]

R2 (⟨(L,M,M ′, U) ;T, I, F ⟩) = 1

6
[(L−M +M ′ + U + T + I + F )]

R3 (⟨(L,M,M ′, U) ;T, I, F ⟩) = 1

6
[(L+M −M ′ + U + T + I + F )]

R4 (⟨(L,M,M ′, U) ;T, I, F ⟩) = 1

6
[(L+M +M ′ − U + T + I + F )]

R5 (⟨(L,M,M ′, U) ;T, I, F ⟩) = 1

6
[(L+M +M ′ + U − T + I + F )]

R6 (⟨(L,M,M ′, U) ;T, I, F ⟩) = 1

6
[(L+M +M ′ + U + T − I + F )]

R7 (⟨(L,M,M ′, U) ;T, I, F ⟩) = 1

6
[(L+M +M ′ + U + T + I − F )]
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Step 3: The incomplete crisp pairwise comparison matrix P = {pij}n×n is transformed into a complete crisp
pairwise comparison matrix by employing Theorem 1 from the study [9] and the relation pij = 1− pji;∀i, j.

Step 4: The consistency of the transformed crisp pairwise comparison matrix P = {pij}n×n, obtained in Step
3, is examined.

Case (i): If the transformed crisp matrix P = {pij}n×n is consistent, the trapezoidal neutrosophic pairwise
comparison matrix P̃ = {p̃ij}n×n is also considered consistent, and the process proceeds to the next step.

Case (ii): If the transformed crisp matrix P = {pij}n×n is not consistent, the neutrosophic pairwise comparison
matrix P̃ = {p̃ij}n×n is also considered inconsistent, and the process returns to Step 2 to repair the matrix
P̃ = {p̃ij}n×n.

Step 5: The matrix P = [pij ]n×n is transformed into the matrix P ′ =
[
p′ij
]
n×n

, where p′ij =
pij∑n

k=1 pkj
, for

i, j = 1, 2, . . . , n.
Step 6: A column matrix, = [wi1]n×1 is determined, where, wi1 =

∑n
k=1 p′

ik

n for i = 1, 2, . . . , n.
Step 7: It is verified whether W (Ai) > W (Aj) or W (Ai) < W (Aj) or W (Ai) = W (Aj).
Case (i): If W (Ai) = W (Aj) then Ai = Aj ,
Case (ii): If W (A)i > W (Aj) then Ai > Aj ,
Case (iii): If W (Ai) < W (Aj) then Ai < Aj .

4.2 Exact Transformation of Trapezoidal Neutrosophic Pairwise Comparison Matrix into the Crisp Pairwise
Comparison Matrix

To accurately determine the weights of criteria and alternatives, it is essential to transform the trapezoidal
neutrosophic pairwise comparison matrix into the corresponding crisp pairwise comparison matrix without losing
information provided by the decision maker. By applying the steps of the modified method discussed in Section
4.1, it can be confirmed, through the example presented in Section 4, that the transformed crisp matrix consistently
preserves the additive reciprocal property of the crisp pairwise comparison matrix, i.e., aij = 0.5, i = j and
pij + pji = 1, i ̸= j,∀i, j = 1, 2, . . . , n. Consider the trapezoidal neutrosophic pairwise comparison matrix P̃ .

P̃ =



0.5

〈
(0.2, 0.3, 0.4, 0.5;
0.7, 0.2, 0.5)

〉
p13 p14

p21 0.5

〈
(0.6, 0.7, 0.75, 0.9;

0.5, 0.2, 0.1)

〉
p24

p31 p32 0.5

〈
(0.3, 0.4, 0.5, 0.8;
0.7, 0.2, 0.5)

〉
p41 p42 p43 0.5


Employing Step 2 of the modified method, as delineated in Section 5, the trapezoidal neutrosophic pairwise

comparison matrix P̃ is transformed into the corresponding crisp pairwise comparison matrix P1.

P1 =


0.5 0.4667 P13 P14

P21 0.5 0.6250 P24

P31 P32 0.5 0.5667
P41 P42 P43 0.5

 .

Subsequently, Step 3 of the modified method (Section 4.1) is utilized to convert the incomplete crisp pairwise
comparison matrix P1 into the corresponding complete crisp pairwise comparison matrix P2, with the following
values:

P13 = p12 + p23 − 0.5 = 0.5917, P31 = 1− P13 = 1− 0.5917 = 0.4083,

P32 = p31 + p12 − 0.5 = 0.3750, P21 = 1− P12 = 1− 0.4667 = 0.5333,

P14 = p13 + p34 − 0.5 = 0.6584, P24 = p21 + p14 − 0.5 = 0.6917,

P41 = 1− P14 = 1− 0.6584 = 0.3416, P42 = 1− P24 = 1− 0.6917 = 0.3083,

P43 = 1− P34 = 1− 0.5667 = 0.5333.

P2 =


0.5 0.4667 0.5917 0.6584

0.5333 0.5 0.6250 0.6917
0.4083 0.3750 0.5 0.5667
0.3416 0.3083 0.4333 0.5

 .

Consequently, it can be readily confirmed that the elements of the transformed crisp matrix P2 satisfy aij =
0.5, i = j and pij + pji = 1, i ̸= j,∀i, j = 1, 2, . . . , n, thus preserving the additive reciprocal property of the
additive pairwise comparison matrix. As a result, the crisp pairwise comparison matrix P2 is consistent, which
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implies that the corresponding trapezoidal neutrosophic pairwise comparison matrix is also consistent. Furthermore,
by implementing Steps 5, 6, and 7 of the modified method, as outlined in previous section, the corresponding
normalized priority weights of P2 are determined to be 0.2777, 0.2948, 0.2308, and 0.1967, respectively.

5 Illustrative Example

Abdel-Basset et al. [9] addressed a real-life problem of identifying the most popular search engine among
four available options: (i) Google, (ii) Yahoo Search, (iii) Ask, and (iv) Bing. The evaluation was based on four
criteria: (i) Core technology, (ii) Query functionality, (iii) Security, and (iv) User interface. The authors employed
their proposed method to illustrate the solution. However, as discussed in Section 4, Abdel-Basset et al.’s method
exhibited some shortcomings, which led to imprecise results for the real-life problem [9]. In this section, the exact
result of the same problem is derived using the modified method. The steps of the modified method are applied to
obtain the precise ranking of the MCDM problem [9] as follows:

Step 1: The decision maker’s information regarding the criteria relative to the problem’s goal is represented by
the incomplete trapezoidal neutrosophic pairwise comparison matrix P̃C . Similarly, the alternatives with respect to
criteria C1, C2, C3 and C4 are presented in matrices P̃AC1

, P̃AC2
, P̃AC3

and P̃AC4
, respectively.

P̃C =



0.5

〈
(0.2, 0.3, 0.4, 0.5;
0.7, 0.2, 0.5)

〉
p13 p14

p21 0.5

〈
(0.6, 0.7, 0.75, 0.9;

0.5, 0.2, 0.1)

〉
p24

p31 p32 0.5

〈
(0.3, 0.4, 0.5, 0.8;
0.7, 0.2, 0.5)

〉
p41 p42 p43 0.5



P̃AC1
=



0.5

〈
(0.5, 0.6, 0.7, 0.8;
0.7, 0.2, 0.5)

〉
p13 p14

p21 0.5

〈
(0.4, 0.5, 0.6, 0.7;
0.5, 0.2, 0.1)

〉
p24

p31 p32 0.5

〈
(0.2, 0.3, 0.4, 0.5;
0.6, 0.4, 0.2)

〉
p41 p42 p43 0.5



P̃AC2 =



0.5 p12

〈
(0.4, 0.5, 0.7, 0.9;
0.5, 0.2, 0.1)

〉
p14

p21 0.5 p23 p24

p31 p32 0.5

〈
(0.2, 0.5, 0.6, 0.8;
0.6, 0.4, 0.2)

〉
p41

〈
(0.2, 0.4, 0.5, 0.8;
0.3, 0.1, 0.5)

〉
p43 0.5



P̃AC3 =



0.5

〈
(0.6, 0.7, 0.9, 1;
0.7, 0.2, 0.5)

〉
p13 p14

p21 0.5

〈
(0.6, 0.7, 0.8, 0.9;
0.5, 0.2, 0.1)

〉
p24

p31 p32 0.5

〈
(0.2, 0.5, 0.6, 0.8;
0.6, 0.4, 0.2)

〉
p41 p42 p43 0.5



P̃AC4
=



0.5

〈
(0.5, 0.6, 0.7, 0.8;

0.7, 0.2, 0.5)

〉
p13 p14

p21 0.5

〈
(0.4, 0.5, 0.6, 0.7;

0.5.0.2, 0.1)

〉
p24

p31 p32 0.5

〈
(0.2, 0.3, 0.4, 0.5;
0.6, 0.4, 0.2)

〉
p41 p42 p43 0.5


.

Step 2: Steps 2 and 3 of the modified method, as discussed in Section 4.1, are applied to transform the incomplete
trapezoidal neutrosophic pairwise comparison matrix P̃C and the incomplete trapezoidal neutrosophic pairwise
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comparison matrices of alternatives P̃AC1 , P̃AC2 , P̃AC3 and P̃AC4 into the following crisp pairwise comparison
matrices:

PC =


0.5 0.4667 P13 P14

P21 0.5 0.6250 P24

P31 P32 0.5 0.5667
P41 P42 P43 0.5

 .

Now, using the Step 3 of the modified method, discussed in Section 5, to transform the incomplete crisp pairwise
comparison matrix PC into the corresponding complete crisp pairwise comparison matrix PC , by using the following
values:

P13 = p12 + p23 − 0.5 = 0.5917, P31 = 1− P13 = 1− 0.5917 = 0.4083,

P32 = p31 + p12 − 0.5 = 0.3750, P21 = 1− P12 = 1− 0.4667 = 0.5333,

P14 = p13 + p34 − 0.5 = 0.6584, P24 = p21 + p14 − 0.5 = 0.6917,

P41 = 1− P14 = 1− 0.6584 = 0.3416, P42 = 1− P24 = 1− 0.6917 = 0.3083,

P43 = 1− P34 = 1− 0.5667 = 0.5333.

PC =


0.5 0.4667 0.5917 0.6584

0.5333 0.5 0.6250 0.6917
0.4083 0.3750 0.5 0.5667
0.3416 0.3083 0.4333 0.5

 .

Similarly, for the alternatives as shown in matrices PAC1
, PAC1

, PAC2
, PAC3

and PAC4
respectively.

PAC1
=


0.5000 0.6667 0.5000 0.3000
0.3333 0.5000 0.4333 0.1333
0.5000 0.5667 0.5000 0.3667
0.7000 0.8667 0.6333 0.5000

PAC2
=


0.5000 0.1000 0.3833 0.2333
0.9000 0.5000 0.7833 0.5667
0.6167 0.2167 0.5000 0.3500
0.7667 0.4333 0.6500 0.5000



PAC3
=


0.5000 0.7667 0.9000 0.9500
0.2333 0.5000 0.6333 0.6833
0.1000 0.3667 0.5000 0.5500
0.0500 0.3167 0.4500 0.5000

PAC4
=


0.5000 0.6667 0.5000 0.3000
0.3333 0.5000 0.4333 0.1333
0.5000 0.5667 0.5000 0.3667
0.7000 0.8667 0.6333 0.5000


Step 3: Utilizing Step 3 of the modified method, as outlined in Section 4.1, the incomplete crisp pairwise

comparison matrix PC is transformed into the corresponding complete crisp pairwise comparison matrix, employing
the given values.

Step 4: Step 4 of the modified method, detailed in Section 4.1, is used to examine the consistency of all the
transformed crisp pairwise comparison matrices. It can be easily verified that the matrices PAC1

, PAC1
, PAC2

, PAC3

and PAC4
satisfy the property aij = 0.5, i = j and pij + pji = 1, i ̸= j,∀i, j = 1, 2, . . . , n i.e., thus preserving the

additive reciprocal property of the additive pairwise comparison matrix.
Step 5: Steps 5 and 6 of the modified method, presented in Section 4.1, are employed to obtain normalized

priority weights of criteria C1, C2, C3 and C4, which are 0.2777, 0.2948, 0.2308, and 0.1967, respectively. The
normalized priority weights of the alternatives corresponding to criteria C1, C2, C3 and C4 are shown in Table 1.

Table 1. Normalized priority weights of the alternatives corresponding to the criteria C1, C2, C3 and C4

Alternatives Priority weights
corresponding C1

Priority weights
corresponding C2

Priority weights
corresponding C3

Priority weights
corresponding C4

A1 0.2799 0.1541 0.4189 0.2799
A2 0.1944 0.3326 0.2575 0.1944
A3 0.2286 0.2165 0.1769 0.2286
A4 0.2970 0.2968 0.1466 0.2970

Table 2. Overall ranking order of the alternatives

Alternatives Abdel-Basset et al.’s existing Method [9] Proposed modified method
Ci Rank Ci Rank

A1 0.2681 1 0.2749 1
A2 0.2305 3 0.2497 3
A3 0.2073 4 0.2131 4
A4 0.2562 2 0.2622 2
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Step 6: Finally, using Step 6, the ranking of alternatives based on global priority weights, i.e., the product
of criteria and alternatives, is displayed in Table 2. The ranking order of the alternatives, as determined by both
Abdel-Basset et al.’s existing method [9] and the proposed modified method, is also presented in Table 2.

6 Conclusions

In this study, a modified neutrosophic AHP technique based on trapezoidal neutrosophic numbers has been
developed to address the limitations of the existing method proposed by Abdel-Basset et al [9]. A thorough
investigation of an essential property of the pairwise comparison matrix has been conducted, revealing that the
existing method fails to maintain the reciprocal property of the pairwise comparison matrix. Consequently, the
enhanced method has been introduced to preserve this property and improve the accuracy of the decision-making
process.

By applying the proposed modified method to the decision-making problem presented in Abdel-Basset et al.’s
work [9], a comparison has been made between the results obtained using the existing method and those derived
from the modified method. This comparison demonstrates the effectiveness and superiority of the modified method
in overcoming the shortcomings of the existing technique.
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