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Abstract: Ordering of quotients is a critical aspect of cost-efficiency problems, which hold significant interest and
importance for suppliers of goods and services as well as consumers. Comparisons (ordering) are straightforward
when dealing with ordinary numbers, yet in many instances, the data are imprecise, vague, or subject to seasonal
variations. Consequently, such data may be unknown or derive from expert opinions. Unlike ordinary numbers,
fuzzy data render quotients only partially ordered. This study examines the linear ordering of quotients with fuzzy
data, expressed in terms of confidence intervals, α-cuts, or piecewise quadratic fuzzy numbers (PQFNs), within the
context of cost-efficiency problems. Moreover, the challenges associated with quotient ordering in cost-efficiency
problems are introduced.

Keywords: Cost efficiency; Linear ordering; Fuzzy sets; α-level sets; Piecewise quadratic fuzzy numbers;
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1 Introduction

Cost-efficiency is a crucial criterion in business management, representing a strategy for optimizing the balance
between cost expenditure and product design or activity execution. In recent years, decision-makers have increasingly
adopted the concept of cost-efficiency to navigate uncertain model parameters.

Consequently, as known, fuzzy set theory was introduced by Zadeh [1] to deal with fuzziness. Up to now, fuzzy
set theory has been applied to broad fields. Fuzzy numerical data can be represented by means of fuzzy subsets
of the real line, known as fuzzy numbers. For the fuzzy set theory development, we may referee to the papers of
Kaufmann and Gupta [2], and Dubois and Prade [3], they extended the use of algebraic operations of real numbers to
fuzzy numbers by the use a fuzzifaction principle. Bellman and Zadeh [4] introduced the concept of a maximizing
decision making problem. Subsequently, fuzzy sets have been extensively studied and applied in various domains
such as polynomial form fuzzy numbers [5], transportation problems [6], and critical path activity networks [7].

In the literature, interval numbers have been considered to address the uncertainty inherent in model parameters.
A fuzzy number is a reference to a fuzzy interval, which is understood as an interval extension of the fuzzy
number. Numerous authors have studied interval numbers, including Moore [8], Grzegorzewski [9], Abbasbandy
and Amirfakhrian [10, 11].

In the business context, cost-efficiency is typically measured by monitoring the output-to-cost ratio. Liu et al. [12]
presented a cost-efficiency model based on emergency resources, employing a multi-objective programming problem
for evaluation. Various cost-efficiency applications have been explored using the fuzzy concept, such as Payan and
Hekmatnia [13], Dehnokhalaji et al. [14], and Kumar [15], who determined total costs in an inventory management
problem. Chung et al. [16] investigated the optimization of cost-efficiency using an electric vehicle charge scheduling
approach. More recently, Nazila and Samira [17] presented work on generalized fuzzy cost-efficiency problems.

In other instances, cost-efficiency determination involves measuring the revenue generated against expenses
incurred. Yang et al. [18] examined fuzzy programming with nonlinear membership functions using piecewise
linear approximation. Several researchers have utilized piecewise linear membership functions, including Effati and
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Abbasiyan [19] for fuzzy linear programming and Coroianu et al. [20] for linear approximation of fuzzy numbers.
Sen and Pal [21] investigated a fuzzy separable quadratic programming model using piecewise linear approximation.
Chalco-Cano et al. [22] introduced the concept of generalized convexity of fuzzy mappings through linear ordering,
while Nayagam et al. [23] studied linear ordering for trapezoidal intuitionistic fuzzy numbers. Other applications of
piecewise quadratic fuzzy numbers have been explored by Gong et al. [24] and Khalifa and Kumar [25, 26] in the
context of discounting problems.

This study focuses on cost-efficiency problems involving linear ordering of quotients with fuzzy data expressed
in terms of closed interval approximation, α-cuts, or piecewise quadratic fuzzy numbers (PQFNs).

The remainder of the paper is organized as follows: Section 2 introduces some preliminaries needed in this paper.
Section 3 presents quotients with intervals of confidence, Section 4 presents quotients of α-cuts. Finally, concluding
remarks are reported in Section 5.

2 Preliminaries

In order to easily discuss the problem, it recalls basic rules and findings related to fuzzy numbers, piecewise
quadratic fuzzy numbers, close interval approximation and its arithmetic operations.

Definition 1 [27]. Fuzzy number: A fuzzy number Ã is a fuzzy set with a membership function defined as
πÃ(x) : ℜ → [0, 1], and satisfies:
1. Ã is fuzzy convex, i.e., πÃ(δx + (1− δ)y) ≥ min {πÃ(x), πÃ(y)} ;∀x, y ∈ ℜ ; 0 ≤ δ ≤ 1;
2. Ã is normal, i.e., ∃x0 ∈ ℜ for which πÃ (x0) = 1;
3. Supp(Ã) = {x ∈ ℜ : πÃ(x) > 0} is the support of Ã;
4. πÃ(x) is an upper semi- continuous (i.e., for each α ∈ (0, 1), the α - cut set Ãα = {x ∈ ℜ : πÃ ≥ α} is

closed.
Definition 2 [28]. A piecewise quadratic fuzzy number (PQFN) is denoted by ÃPQ = (a1, a2, a3, a4, a5), where

a1 ≤ a2 ≤ a3 ≤ a4 ≤ a5 are real numbers, and is defined by if its membership function µãPQ is given by (see
Figure 1)

µÃPQ
=


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Figure 1. Graph illustration of a PQFN
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The interval of confidence at level α for the PQFN is defined as
(
ÃPQ

)
α
= [a1 + 2 (a2 − a1)α, a5 − 2 (a5−

a4)α] ;∀α ∈ [0, 1].
Definition 3 [28]. Let ÃPQ = (a1, a2, a3, a4, a5) and B̃PQ = (b1, b2, b3, b4, b5) be two piecewise quadratic

fuzzy numbers. The arithmetic operations on ÃPQ and B̃PQ are:
(i) Addition: ÃPQ(+)B̃PQ = (a1 + b1, a2 + b2, a3 + b3, a4 + b4, a5 + b5).
(ii) Subtraction: ÃPQ(−)B̃PQ = (a1 + b5, a2 + b4, a3 + b3, a4 + b2, a5 + b1).

(iii) Scalar multiplication: kÃPQ =

{
(ka1, ka2, ka3, ka4, ka5) , k > 0,
(ka5, ka4, ka3, ka2, ka1) , k < 0.

Definition 4 [28]. An interval approximation [A] = [a−α , a
+
α ]of a PQFN Ã is called closed interval approximation

if: a−α = inf {x ∈ R : µÃ ≥ 0.5}, and a+α = sup {x ∈ R : µÃ ≥ 0.5}.
Definition 5. Associated ordinary number [28]. If [A] = [a−α , a

+
α ] is the close interval approximation of PQFN,

the Associated ordinary number of [A] is defined as Â =
aα+a+

α

2 .
Definition 6 [28]. Let [A] = [a−α , a

+
α ], and [B] = [b−α , b

+
α ] be two interval approximations of PQFN. Then the

arithmetic operations are:
1. Addition: [A](+)[B] = [a−α + b−α , a

+
α + b+α ],

2. Subtraction: [A](−)[B] = [a−α − b+α , a
+
α − b−α ],

3. Scalar multiplication: α[A] =

{
[αa−α , αa

+
α ] , α > 0

[αa+α , αa
−
α ] , α < 0

,

4. Multiplication: [A](×)[B] =
[
a+
α b−α+a−

α b+α
2 ,

a−
α b−α+a+

α b+α
2

]
,

5. Division: [A](÷)[B] =


[
2
(

a−
α

b−α+b+α

)
, 2

(
a+
α

b−α+b+α

)]
, [B] > 0, b−α + b+α ̸= 0[

2
(

a+
α

b−α+b+α

)
, 2

(
a−
α

b−α+b+α

)]
, [B] < 0, b−α + b+α ̸= 0

.

•Notation
In this section, some of notation needed in the paper are used:
N [N1, N2]: Numerator
D [D1, D2]: Denominator
Q [Q1, Q2]: Quotient, N(:)D
Â: Associated ordinary number
D(Ã, B̃): Distance between two fuzzy numbers Ã and B̃.

3 Quotients with Interval of Confidence

In order to begin with interval of approximations, we shall assume that all the data under consideration are
positive (i.e., that is, that they are elements of ℜ+

0 ).
A numerator N and denominator D will be represented by an interval confidence as follows:

N = [N1, N2] and D = [D1, D2].

Their quotient is, therefore,

Q = N(:)D = [N1, N2] (:) [D1, D2] =

[
N1

D2
,
N2

D1

]
, or [Q1, Q2] =

[
N1

D2
,
N2

D1

]
(1)

We shall now give a procedure to compare the quotients. Let A = [a1, a2] and B = [b1, b2] be two intervals of
confidence in R+

0 . Their upper bound is given by

A(∨)B = [a1, a2] (∨) [b1, b2] = [a1 ∨ b1, a2 ∨ b2] (2)

and their lower bound by

A(∧)B = [a1, a2] (∧) [b1, b2] = [a1 ∧ b1, a2 ∧ b2] (3)

To order A and B, we can use the sum of left and right distances,

D(A,A(∨)B) = |a1 − a1 ∨ b1|+ |a2 − a2 ∨ b2| (4)

D(B,A(∨)B) = |b1 − a1 ∨ b1|+ |b2 − a2 ∨ b2| (5)

By convention, if D(A,A(∨)B) < D(B,A(∨)B), then A will be preferred to B. If both distances are equal,
they will be indifferent.
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Instead of using the upper bound, the lower bound can also be considered. Thus,

D(A,A(∧)B) = |a1 − a1 ∧ b1|+ |a2 − a2 ∧ b2| (6)

D(B,A(∧)B) = |b1 − a1 ∧ b1|+ |b2 − a2 ∧ b2| (7)

By convention, if D(A,A(∧)B) > D(B,A(∧∨)B), then A will be preferred to B. If both distances are equal,
they will be indifferent.

The symbol > corresponds to the research of the maximum. This preference will be reversed if we use < instead
of > and in this case, this corresponds to the research of the minimum.

The proceeding formulas can be generalized for m intervals of confidence. The generalization is given by

(∨m
i=1Ai) = [∨m

i=1a1i,∨m
i=1a2i] ,

(∧m
i=1Ai) = [∧m

i=1a1i,∧m
i=1a2i] ,

D (Ai, (∨m
i=1Ai)) = |a1i − ∨m

i=1a1i|+ |a2i − ∨m
i=1a2i| ,

D (Ai, (∧m
i=1Ai)) = |a1i − ∧m

i=1a1i|+ |a2i − ∧m
i=1a2i| .

(8)

Because D is a distance (a scalar), it introduces a linear order (strict or non-strict). In the non- strict case,
equivalent classes are introduced. We shall now apply the foregoing discussion on linear- ordering to quotient
problem.

Q(1)(∨)Q(2) =

[
N

(1)
1

D
(1)
2

,
N

(1)
2

D
(1)
1

]
∨

[
N

(2)
1

D
(2)
2

,
N

(2)
2

D
(2)
1

]
=

[
N

(1)
1

D
(1)
2

∨ N
(2)
1

D
(2)
2

,
N

(1)
2

D
(1)
1

∨ N
(2)
2

D
(2)
1

]
(9)

and

Q(1)(∧∨)Q(2) =

[
N

(1)
1

D
(1)
2

,
N

(1)
2

D
(1)
1

]
∧

[
N

(2)
1

D
(2)
2

,
N

(2)
2

D
(2)
1

]
=

[
N

(1)
1

D
(1)
2

∧ N
(2)
1

D
(2)
2

,
N

(1)
2

D
(1)
1

∧ N
(2)
2

D
(2)
1

]
(10)

If we have n intervals of confidence then using (9), the distances can be computed in the same way.
Example 1
In this example, we consider a case of three intervals of confidence with numerators, denominators and their

quotient given by

N (1) = [5, 11], D(1) = [13, 17], Q(1) = [0.294, 0.846]
N (2) = [5, 11], D(2) = [13, 17], Q(2) = [0.173, 0.888]
N (3) = [3, 13], D(3) = [5, 11], Q(3) = [0.272, 2.600].

We look for the upper bound of the quotient and find

Q(1)(∨), Q(2)(∨)Q(3) = [0.294, 0.846](∨)[0.173, 0.888](∨)[0.272, 2.600] = [0.294, 2.600].

We compute now the respective distances

D
(
Q(1), Q(1)(∨), Q(2)(∨)Q(3)

)
= |0.294− 0.294|+ |0.846− 2.600| = 0 + 1.754 = 1.754,

D
(
Q(2), Q(1)(∨), Q(2)(∨)Q(3)

)
= |0.173− 0.294|+ |0.888− 2.600| = 0.121 + 1.712 = 1.833,

D
(
Q(3), Q(1)(∨), Q(2)(∨)Q(3)

)
= |0.181− 0.294|+ |2.600− 2.600| = 0.133 + 0 = 0.133.

From this we obtain a linear order of the three quotients as Q(1) > Q(2) > Q(3) because Q(3) is the nearest with
regard to the upper bound after Q(1) and Q(2).

4 Quotient with α-Cuts

We shall now extend our discussion of linear ordering to fuzzy numbers using α-cuts.
Let N1(α), N2(α), D1(α), D2(α) ∈ ℜ+

0 , and ∀α ∈ [0, 1]. Then, we have

N(α) = [N1(α), N2(α)] , D(α) = [D1(α), D2(α)] ,

Q(α) = [Q1(α), Q2(α)] =

[
N1(α)

D2(α)
,
N2(α)

D1(α)

] (11)
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Recall that the upper bound of the α-cuts is given by

A∗(α) = (∨n
i=1)Ai(α) = [∨n

i=1a1i(α),∨n
i=1a2i(α)] = [a∗1(α), a

∗
2(α)] . (12)

And that the lower bound of the α-cuts is

A∗(α) = (∧n
i=1)Ai(α) = [∧n

i=1a1i(α),∧n
i=1a2i(α)] = [a∗1

(α), a∗2
(α)] . (13)

The distances of the α-cuts are given by
For the upper bound:

D (Ai(α), A
∗(α)) =

∫ 1

α=0

|a1i(α)− a∗1(α)| dα+

∫ 1

α=0

|a2i(α)− a∗2(α)| dα, i = 1, . . . , n. (14)

And for the lower bound:

D (Ai(α), A∗(α)) =

∫ 1

α=0

|a1i(α)− a∗1(α)| dα+

∫ 1

α=0

|a2i(α)− a∗2(α)| dα, i = 1, . . . , n. (15)

These formulas will be applied now to the quotient problems with α-cuts

Qi(α) =

[
N1i(α)

D2i(α)
,
N2i(α)

D1i(α)

]
, i = 1, . . . , n. (16)

Example 2
Consider the following three fuzzy quotients

Q1 = N1(:)D1, Q2 = N2(:)D2, Q3 = N3(:)D3

where the numerical values are given in α-cuts for α = 0, 0.1, . . . 0.9, 1 as shown in Table 1, Table 2 and Table 3.

Table 1. Fuzzy quotient Q1(α), Example 2

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
N1(α) [7,11] [7,11] [7,10] [7,10] [8,10] [8,10] [8,10] [9,10] [9,10] 9 9
D1(α) [4,13] [4,12] [4,12] [5,12] [5,11] [5,11] [5,10] [6,10] [8,9] [8,9] 8
Q1(α) [0.538,2.75] [0.583,2.75] [0.583,2.5] [0.583,2] [0.727,2] [0.727,2] [0.8,2] [0.9,1.7] [1,1.250] [1,1.125] 1.125

Table 2. Fuzzy quotient Q2(α), Example 2

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
N2(α) [9,18] [9,17] [9,17] [10,16] [10,15] [10,15] [10,14] [10,13] [11,13] [11,12] 12
D2(α) [4,13] [4,13] [4,12] [5,11] [5,11] [6,10] [6,10] [6,10] [7,9] [8,9] 8
Q2(α) [0.692,4.5] [0.692,2.75] [0.583,4.25] [0.750,4.25] [0.909,3.2] [1,2.5] [1,2.33] [1,2.17] [1.22,1.86] [1.22.1.5] 1.5

Table 3. Fuzzy quotient Q3(α), Example 2

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
N3(α) [1,20] [2,19] [3,17] [4,15] [6,13] [7,12] [8,12] [8,12] [10,12] 11 11
D3(α) [3,18] [3,8] [4,8] [4,8] [4,8] [5,7] [5,7] [5,7] [6,7] [6,7] 7
Q3(α) [0.125,6.666] [0.250,6.33] [0.375,4.25] [0.5,3.75] [0.75,3.25] [1,2.4] [1.14,2.4] [1.14,2.4] [1.4,2] [1.571,1.83] 1.571

The first step is to find the upper bound Q1(∨)Q2(∨)Q3 which is given in Table 4.

Table 4. Upper bound of the three fuzzy quotients given in Table 1, Table 2 and Table 3

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
∨3

i=1Qi(α) [0.692,6.666] [0.692,6.333] [0.750,4.250] [0.909,3.750] [0.909,3.250] [1,2.5] [1.142,2.4] [1.142,2.4] [1.43,2] [1.571,1.83] 1.571

The second step is the computation of the distances which are given in Table 5, Table 6 and Table 7.
The total order of distance is 2.052<6.807<19.027.
Therefore, the ordering of the preference is Q3 > Q2 > Q1.
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Table 5. Computation of distance for fuzzy quotient Q1(α), Example 2

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Total
D(Q1,∨Qi) 4.070 3.692 1.917 2.076 1.432 0.773 0.742 0.976 1.178 1.279 0.982 19.027

Table 6. Computation of distance for fuzzy quotient Q2(α), Example 2

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Total
D(Q2,∨Qi) 2.166 2.083 0 0.550 0.250 0 0.209 0.376 0.349 0.682 0.142 6.807

Table 7. Computation of distance for fuzzy quotient Q3(α), Example 2

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Total
D (Q3,∨Qi) 0.567 0.442 0.375 0.409 0.249 0.1 0 0 0 0 0 2.052

5 Conclusions and Future Works

In this paper, we have provided a solution of linear ordering of fuzzy quotients for two different cases: quotients
with interval of confidence, and quotients with α-cuts. Such problems are often encountered in cost efficiency and
other related areas. In the Future work might contain the additional extension of this study to other fuzzy-like structure
(i.e., Neutrosophic set, interval-valued fuzzy set, Spherical fuzzy set, Pythagorean fuzzy set etc. In addition, one can
consider new fuzzy systems such as interval type-2, interval type-3, Possibility Interval-valued Intuitionistic fuzzy
set, Possibility Neutrosophic set, Possibility Interval-valued Neutrosophic set, Possibility Interval-valued fuzzy set,
Possibility fuzzy expert set etc., with applications in decision-making.
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