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Abstract: In the rapidly evolving industrial landscape, the decision-making process concerning which products to
manufacture, their quantity, and the methods of their production has become pivotal. This study endeavors to address
this need by advocating the most apt functional form of the production process for predominant manufacturing
sectors. The central objective has been the maximization of output through the application of the Cobb-Douglas
production function, investigated separately for both two-input and three-input scenarios. It is ascertained which of
the two models exhibits greater efficacy. Subsequently, parameters of the production function are estimated utilizing
advanced optimization subroutines.
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1 Introduction

Mathematical optimization, also referred to as mathematical programming, entails the selection of the most
fitting element based on specific criteria from an array of available alternatives [1]. Such optimization dilemmas
are encountered across various quantitative domains, encompassing computer science, engineering, operations
research, and economics. Historical scrutiny reveals a sustained interest in the pursuit of optimal solutions within
the mathematical domain [2]. At its core, an optimization problem might involve the maximization or minimization
of a real function, achieved by methodically determining input values from a permissible set and evaluating the
function’s outcome. Expanding optimization theories and techniques to encompass other formats is recognized as
a significant segment of applied mathematics. In broader terms, optimization seeks the “best available” values of a
target function within a specified domain, spanning diverse objective functions and domains.

Optimization has emerged as an indispensable instrument for decision-making and the scrutiny of physical
systems. Mathematically, an optimization issue is articulated as the quest for an optimal solution among a plethora
of feasible alternatives. In essence, optimization seeks the judicious selection of inputs to yield the most proficient
output. In the presented context, adjustments to various inputs in the production process aim to craft a more
efficient output paradigm. Relevantly, an optimization methodology was incorporated into a mathematical model [3].
Paramount in this context is the identification of the most efficacious model tailored for an optimization challenge. Post
modelling, available optimization techniques are employed for resolution. Subsequent to the problem’s resolution,
the efficacy of the derived solution is then assessed [4].

Typically, three pivotal components are discerned in optimization problems: the objective function awaiting
optimization, the undetermined decision variables, and constraints influencing the objective function. Conventionally,
optimization challenges are bifurcated into two categories: constrained and unconstrained optimization problems.
The former is characterized by restrictions imposed on the objective function, suggesting its applicability for select
decision variable values. In contrast, unconstrained problems lack such limitations, implying the objective function’s
validity across all decision variable values [5, 6].

In mathematical disciplines, nonlinear programming encompasses the resolution of optimization challenges
wherein some constraints or the objective function manifest nonlinearity. An optimization dilemma seeks the
extrema (be it maxima, minima, or stationary points) of an objective function over a set of indeterminate real
variables, all the while adhering to a suite of equalities and inequalities, collectively designated as constraints.
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Such dilemmas reside within the realm of mathematical optimization focused explicitly on nonlinear issues. The
maximization or minimization of a nonlinear optimization quandary can be approached through established nonlinear
programming methodologies. Situations arise wherein the objective or a constraint function deviates from linearity.
The objective function is discerned as nonlinear in this study, whilst linear constraints are implemented. Succinctly,
nonlinear programming strives to pinpoint the optimal solution to a problem, hemmed in by nonlinear constraints.
Occasionally, certain issues resist accurate modelling via linear programming, thus necessitating recourse to nonlinear
programming [7, 8].

Attention is herein directed towards a distinct production function known as the Cobb-Douglas production
function, introduced initially by Cobb and Douglas in 1928. In economic and econometric realms, this production
function is recognized for its distinct functional form, adeptly representing the technological interplay between
multiple inputs (notably physical capital and labor) and the resultant output. Historical accounts attribute the
development and empirical validation of the Cobb–Douglas function to Charles Cobb and Paul Douglas during
1927–1947, although Douglas acknowledged its prior conceptualization by Philip Wicksteed [9, 10]. Its foundation
rests on empirical investigations, with applications spanning entire economies [11]. This function inherently maps
various inputs to a problem and subsequently yields a singular output. The number of inputs can vary, hinging on
the production factors integral to an industry. Situations entailing more than two factors have been denoted as the
Generalized Cobb-Douglas production function [12, 13].

In an initial phase, a problem was tackled utilizing the two-factor Cobb-Douglas production function, yielding
outcomes aligned with findings presented in the study [14]. A subsequent phase witnessed an extension to a
three-factor Cobb-Douglas production function, with analogous techniques employed for resolution. Observations
indicated that the latter phase engendered more efficient production maximization than its predecessor.

2 Production Maximization

The optimization dilemma under examination is predicated upon three foundational factors:
i) Costs incurred by an enterprise during production, which encompass expenses levied on labor, capital, and

associated resources.
ii) Volume of production.
iii) Revenue derived from the sale of products based on prevailing market prices.
In the context of the water industry, water undergoes filtration in a series of purification tanks, subsequent chemical

addition, packaging, and eventual market distribution. The primary ambition of this sector remains twofold: either
to curtail incurred costs or to bolster production. The cumulative expenditure of the industry is articulated by a linear
function [14, 15].

K =

n∑
j=1

qixi +Rs = qTx+Rs. (1)

where, n epitomizes the factors of production.

x =


x1

x2

.

.

.
xn

 ,

embodies the vector representation of these production factors.

q =


q1
q2
.
.
.
qn

 ,

reflects the vector of production factor prices.
The production volume is elucidated by the subsequent relationship [16],

y = p(x) = p(x1, x2...xn). (2)
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Revenue amassed by the enterprise from its sales is denoted by:

S(y) = bT y, (3)

where,

y =


y1
y2
.
.
.
yn

 ,

signifies a vector detailing the volume of goods produced.

b =


b1
b2
.
.
.
bn

 ,

depicts the vector denoting prices of these manufactured goods.
The organization’s profit is discerned by the difference between the amassed revenue and the production costs:

Z(x, y) = S(y)−K(x). (4)

The objective set forth is the maximization of production at a designated level, resulting in optimal profit
realization.

3 Problem under Consideration

Central to economic governance lies the challenge of determining apt quantitative associations amidst factors
employed within the production process. Foremost among these influencing factors are human labor and capital.
The scale of production is inherently dependent upon the magnitude of these inputs, and their judicious application
becomes pivotal for enhancing managerial efficacy. Pertaining to the nexus between production yield and expended
effort, optimal decisions predominantly arise in one of two scenarios:

First, maximizing production yield (profits) with stipulated factor inputs.
Second, curtailing expenditures at a pre-determined production output level.
However, simultaneous optimization of both inputs and outputs emerges as a paradoxical endeavor. For deducing

the befitting correlation among these production elements within the water purification sector, it becomes imperative
to ascertain the functional interdependencies between aggregate production yields, expenditures, and the quantum
of production factors implicated. Cobb-Douglas production, initially for two inputs and subsequently for three, has
been utilized to navigate this quandary.

3.1 Production Maximization of Chemotronics Industry Using Two-Factor Cobb-Douglas Production Function

In this section, an examination of the Cobb-Douglas production functions for both “two-input” and “three-input”
scenarios, in context to the regional water purification sector, is undertaken. The production of an item necessitates
three integral inputs: capital, chemicals, and labor. During the primary phase, a two-factor Cobb-Douglas production
function was employed, rendering a cost function inclusive of the two production factors as:

C(X,Y ) = α1 + α2X+α3Y, (5)

where,
α1 epitomizes the industry’s fixed costs,
α2 denotes the per unit costs of labor hours,
α3 represents the per unit costs of capital,
X signifies labor hours,
Y quantifies the capital. Given values,

α1 = 75000, α2 = 1400 and α3 = 100.
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Substituting the aforementioned values into Eq. (5) yields:

C(X,Y ) = 75000 + 1400X + 100Y. (6)

For production, the Cobb-Douglas production function was employed, expressed as:

P = AXaY b, (7)

where, P represents production volume.
Industry-imposed constraints on these factors were:

200 < X < 360,

850 < Y < 960.

An assessment for the year 2020, focusing on the water industry, revealed data on the two pivotal inputs “human
labor and capital”, alongside their corresponding production outputs (Table 1).

Table 1. Input-output analysis of the water industry with two inputs

Months Labors(X) Capital(Y ) Production(P ) Ln(X) Ln(Y ) Ln(P )
January 300 900 35000 5.7037 6.8023 10.4631

February 280 860 34000 5.6347 6.7569 10.4341
March 304 906 36700 5.7170 6.8090 10.5105
April 315 922 35600 5.7525 6.8265 10.4801
May 296 862 35900 5.6903 6.7592 10.4884
June 318 916 36400 5.7620 6.8200 10.5023
July 292 888 33600 5.6767 6.7889 10.4222

August 300 934 35500 5.7037 6.8394 10.4772
September 320 914 39000 5.7683 6.8178 10.5713

October 328 910 38200 5.7930 6.8134 10.5505
November 294 876 33600 5.6835 6.7753 10.4222
December 330 880 36500 5.7990 6.7799 10.5050

From this analysis:

A = 246.0757, a1 = 0.6875 and a2 = 0.1536.

Within this framework, the production function served as the objective function, whilst the cost function acted
as the constraining parameter.

L(X,Y, λ) = P (X,Y ) + λH(X,Y ), (8)

where,
P (X,Y ) = 246.0757X0.6875Y 0.1536.

Incorporating this function into the earlier Eq. (8) gives:

L = 246.0757X0.6875Y 0.1536 + λ(435000− 1400X − 100Y ). (9)

Derivative calculations of L concerning X , Y , and λ, followed by equating each to zero, yielded several critical
relationships. The derivative with respect to X is given by

∂L

∂X
= 0,

Further derivatives concerning Y and λ procured:

169.1770X−0.3125Y 0.1536 + λ(−1400) = 0,

This consequently led to:

λ =
0.1208Y 0.1536

X0.3125
. (10)
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For
∂L

∂Y
= 0,

This yielded:
37.7972X0.6875Y −0.8464 + λ(−100) = 0.

The inference drawn from these equations was delineated as:

λ =
0.3779X0.6875

Y 0.8464
. (11)

Similarly, for
∂L

∂λ
= 0,

This culminated in:

1400X + 100Y = 510000. (12)

Upon juxtaposing Eqs. (10) and (11), the following was discerned:

0.1208Y 0.1536

X0.3125
=

0.3779X0.6875

Y 0.8464
,

This yielded:

Y = 3.1283X. (13)

Incorporating Eq. (13) into Eq. (12) produced:

1400X + 1003.1283X = 510000.

From this computation, the value of X was determined:

X = 297.7528. (14)

Consequently, from Eq. (13), the derivation for Y was:

Y = 931.46. (15)

Figure 1. Estimated versus actual production with two inputs for the industry

Figure 1 contrasts the actual versus the theoretical production for the industry during 2020. A noticeable
discrepancy between the two production values suggests that potential maximization of production has been
substantially achieved.
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3.2 Production Maximization of Water Industry Using Three-Factor Cobb-Douglas Function

In the subsequent analysis phase, this study extends to encompass three factors of production to ascertain the
cost function of the water industry. Employing a linear cost function defined as:

C(X,Y, Z) = α1 + α2X + α3Y + α4Z (16)

where,
α1 represents the fixed costs of the industry,
α2 epitomizes the unit costs of labor,
α3 denotes the unit costs of chemicals,
α4 represents the unit costs of capital,
X signifies the quantum of labor hours,
Y represents the volume of chemicals,
Z signifies the amount of capital.
Their respective operational ranges are demarcated as:

200 < X < 280,

50 < Y < 80,

850 < Z < 960.

Given constants:

α1 = 75000, α2 = 1250, α3 = 2000 and α4 = 100.

Inserting these into Eq. (16) yields:

C(X,Y, Z) = 75000 + 1250X + 2000Y + 100Z. (17)

The production function, as delineated in the study [16], adopts the form:

P = AXa1Y a2Za3 . (18)

A comprehensive data analysis concerning the water purifying industry, predicated upon the three inputs for the
fiscal year of 2020, is catalogued in Table 2.

Table 2. Input-output analysis of the water industry with three inputs

Months Labors(X) Chemicals(Y ) Capitals(Z) Production(P ) Ln(X) Ln(Y ) Ln(Z) Ln(P )
Jan 240 60 900 35000 5.4806 4.0943 6.8023 10.4631
Feb 225 55 860 34000 5.4161 4.0073 6.7569 10.4341

March 233 71 906 36700 5.4510 4.2626 6.8090 10.5105
April 251 64 922 35600 5.5254 4.1588 6.8265 10.4801
May 230 66 862 35900 5.4380 4.1896 6.7592 10.4884
June 256 62 916 36400 5.5451 4.1271 6.8200 10.5023
July 230 62 888 33600 5.4380 4.1271 6.7889 10.4222
Aug 245 55 934 35500 5.5012 4.0073 6.8394 10.4772
Sep 258 62 914 39000 5.5529 4.1271 6.8178 10.5713
Oct 262 66 910 38200 5.5683 4.1896 6.8134 10.5505
Nov 239 55 876 33600 5.4764 4.0073 6.7753 10.4222
Dec 270 60 880 36500 5.5984 4.0943 6.7799 10.5050

For the purposes of this investigation, data from the industry spanning January to December 2020 was
meticulously collated, with results subsequently computed on a monthly basis. Through rigorous analysis, the
coefficients were derived as:

A = 283.7124, a1 = 0.4638, a2 = 0.2741, and a3 = 0.1704.

Inserting these coefficients into Eq. (18) yielded:

P = 283.7124X0.4638Y 0.2741Z0.1704. (19)
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To further the analysis, the Lagrange method of undetermined multipliers was employed, expressed as:

L(X,Y, Z, λ) = P (X,Y, Z) + λH(X,Y, Z), (20)

where,

H(X,Y, Z) = 510000− 1250X − 2000Y − 100Z. (21)

The integration of Eqs. (19) and (21) into (20) led to:

L = 283.7124X0.4638Y 0.2741Z0.1704 + λ(510000− 1250X − 2000Y − 100Z). (22)

Partial derivatives of L with respect to X , Y , Z, and λ were then calculated, and subsequently set to zero. From
these conditions, the following was obtained:

∂L

∂X
= 0,

For
131.5858X−0.5362Y 0.2741Z0.1704 + λ(−1250) = 0,

where, λ was isolated as:

λ =
131.5858Y 0.2741Z0.1704

1250X0.5362
. (23)

Similarly, for
∂L

∂Y
= 0,

This culminated in:
77.7655X0.4638Y −0.7259Z0.1704 + λ(−2000) = 0,

where, λ was isolated as:

λ =
77.7655X0.4638Z0.1704

2000Y 0.7259
. (24)

For
∂L

∂Z
= 0,

Upon execution of partial differentiation, the following was procured:

48.3445X0.4638Y 0.2741Z−0.8296 + λ(−100),

where, the value of λ was elucidated as:

λ =
48.3445X0.4638Y 0.2741

100Z0.8296
. (25)

Similarly, for
∂L

∂λ
= 0,

This yielded:

510000− 1250X − 2000Y − 100Z = 0. (26)

Eqs. (23) and (24) were juxtaposed, from which the following relation was inferred:

131.5858Y 0.2741Z0.1704

1250X0.5362
=

77.7655X0.4638Z0.1704

2000Y 0.7259
.

This consequently led to:

X = 2.7073Y. (27)
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In a similar vein, a comparison between Eqs. (24) and (25) indicated:

77.7655X0.4638Z0.1704

2000Y 0.7259
=

48.3445X0.4638Y 0.2741

100Z0.8296
.

This consequently led to:

Z = 12.4334Y. (28)

By integrating Eqs. (27) and (28) into Eq. (26), it was deduced:

510000− 1250(2.7073Y )− 2000Y − 100(12.4334Y ) = 0.

This culminated in:
6627.465Y = 510000.

Thus,

Y = 76.9524. (29)

Incorporating Eq. (29) into Eqs. (27) and (28) respectively, the values were ascertained as:

X = 208.3332

Z = 956.7799
(30)

For the culmination of this methodology, Figure 2 was produced, juxtaposing both the estimated and the actual
production in the water industry throughout the year 2020.

Figure 2. Estimated versus actual production of the water industry for three inputs in 2020

4 Conclusion

From the comprehensive analyses undertaken, it has been deduced that Cobb-Douglas production functions
remain instrumental in addressing econometric challenges. Initially, the predicament was approached via the two-
input Cobb-Douglas production function, subsequently extending to its three-input counterpart. Maximization of
the production value was achieved in both scenarios.

Clear disparities in production values were observed in the presented figures. Such disparities arise, primarily
because, in the two-input model, the third parameter is either assimilated as an average across the remaining
parameters or perceived as a constant overhead. Conversely, in the three-input variant, all production factors are
orchestrated in an optimally refined manner.

The empirical evidence suggests that the three-input Cobb-Douglas production function manifests enhanced
efficiency and efficacy compared to its two-input analogue.
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