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Abstract: In the rapidly evolving domain of digital finance, the interplay between cryptocurrencies and external
variables such as financial and social media indicators warrants thorough examination. This investigation employs a
novel, entropy-weighted Multiple Attribute Decision Making (MADM) model to decipher these intricate relationships.
The study’s foundation is an expansive dataset, meticulously compiled to encompass a broad spectrum of financial
data alongside diverse social media indicators. Central to this analysis is the employment of the Stepwise Weight
Assessment Ratio Analysis (SWARA) method, meticulously applied to ascertain the relative importance of various
social media indicators. Complementing this, the Complex Proportional Assessment (COPRAS) methodology is
adeptly utilized to derive utility functions for each cryptocurrency under scrutiny. The analytical prowess of neural
network regressions is harnessed to delineate the influence exerted by a multitude of financial indicators on these
utility functions. The findings of this research are pivotal in understanding the dynamics within the cryptocurrency
market. Bitcoin and Ripple emerge as pivotal entities, primarily functioning as primary conduits for market shocks.
In contrast, Ethereum is identified as a stabilizing force, predominantly absorbing such fluctuations. A nuanced
aspect of this study is the differential impact of social media indicators on various cryptocurrencies. Bitcoin and
Ethereum display a negative correlation with these indicators, suggesting a complex, possibly inverse relationship
with social media dynamics. Conversely, Litecoin, Dogecoin, and Ripple exhibit a positive responsiveness, indicating
a heightened susceptibility to social media attention, sentiment, and prevailing uncertainty.

Keywords: Cryptocurrency; Social media; Bitcoin; Ripple; Ethereum; Litecoin; Dogecoin; Multiple Attribute
Decision Making

1 Introduction

Cryptocurrency, a concept that revolutionized the financial sector, operates as a virtual currency on a decentralized
ledger [1]. Circulating through peer-to-peer networks, it negates the necessity for mediators such as financial or
governmental authorities [2]. Originating in 2008, the cryptosystem, pioneered by Satoshi Nakamoto through the
Bitcoin project, marked a pivotal shift in the digital financial landscape [3]. Regarded as a digital counterpart of
traditional currency [4], its transactional presence in the digital business realm has escalated rapidly [2]. Among
various cryptocurrencies, Bitcoin stands out due to its unique features of decentralization, speed, anonymity, and
transparency, which distinctly separate it from traditional currencies [1]. The decentralization aspect, in particular,
makes Bitcoin’s price movements highly sensitive to investors’ perceptions rather than institutional regulations [3].

The increasing popularity of cryptocurrencies extends beyond early adopters and enthusiasts, attracting widespread
attention. However, recent incidents like the Terra-Luna episode and the 2022 bear market have underscored the
complexities in valuing these digital assets, revealing their susceptibility to market sentiment [5]. Hence, elucidating
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the cause-effect and feedback relationships between cryptocurrencies and social network indicators has become
imperative. Yet, the impact of social media indicators on the utility function of cryptocurrencies remains under-
explored. This research focuses on eight pivotal social media indicators: BBC Breaking News; (US) Department of
State; Donald Trump; Elon Musk; Twitter-based Economic Policy Uncertainty (EPU); Google Trends; Risk Aversion;
and United Nations. In the domain of cryptocurrency analysis, the influence of social media and governmental entities
is increasingly recognized as pivotal. The BBC, as a prominent UK-based news broadcasting platform, significantly
impacts audience reactions, eliciting both positive and negative responses [6]. The United States Department of
State, responsible for foreign policy and relations, plays a substantial role in influencing the predictability, returns,
and volatility of digital currencies [1]. The tweets of the former US President Donald Trump are considered a
notable indicator within the cryptocurrency utility function, reflecting their impact on market dynamics [7]. Similarly,
Elon Musk, a globally recognized entrepreneur, wields considerable influence over the decentralized cryptocurrency
market through his Twitter activities [8]. This study also incorporates Twitter-based EPU as a tool to gauge economic
variability, providing insights into market conditions [1]. Google Trends, which tracks and analyzes user search
behavior, is identified as a valuable predictor of Bitcoin returns [5]. Furthermore, this research considers various
financial proxies that encapsulate investor risk aversion and economic uncertainty, contributing to the development of a
utility-based aversion coefficient [6]. The role of the United Nations is also examined, given its significant presence in
the cryptocurrency market and its efforts towards integrating digital currency into global sustainability initiatives [1].
Additionally, this study analyzes data from six major cryptocurrencies: Bitcoin, Ethereum, Dogecoin, Ripple, Litecoin,
and Tether, all notable for their market capitalization. A diverse array of financial indicators, including precious metal
prices, oil prices, major stock indices, the EUR/USD exchange rate, the VIX, the MSCI ACWI ETF, and Tesla stock
prices, are incorporated to comprehensively assess the dynamics of the cryptocurrency market.

Extensive research within behavioral and financial economics has led to the prediction of cryptocurrency price
fluctuations and their extrinsic correlation with social media and financial catalysts. In the realm of behavioral
economics, it is posited that emotions shape investor sentiments, thereby influencing their decision-making process
regarding financial investments [9]. These sentiments, in turn, significantly impact the pricing, return, and volatility of
digital assets within the financial market [10]. Such evidence underscores the pivotal role of sentiment in the pricing
mechanisms of digital financial assets, including Bitcoin.

A recent advancement in behavioral finance is the utilization of social media platforms to gauge investor
sentiment [3]. These platforms offer a plethora of perspectives, opinions, and information, aiding decision-makers
in the financial realm [11]. Platforms like Twitter and various chat tools have been identified as primary sources
for financial analysts, investors, and regulatory bodies in making key financial decisions [12]. Empirical studies
have highlighted the influence of social media on Bitcoin, with particular attention to Twitter’s impact on market
dynamicsor [4, 7–10]. For instance, Huynh [7] investigated the correlation between sentiments expressed in Donald
Trump’s tweets and Bitcoin price movements, employing textual analysis to identify spillover effects. Similarly,
research has examined Elon Musk’s influence on Bitcoin price volatility through his Twitter activities, employing
Granger causality to understand the relationship with market returns [8]. Yousaf et al. [4] explored the interconnection
between the S&P 500 Twitter sentiment index and various asset classes, revealing that investor sentiments have a
pronounced impact during periods of positive or negative sentiment shocks.

However, previous studies have often focused exclusively on individual social media platforms, such as Twitter or
stock market sentiment indices, without considering a comprehensive view of all relevant social media platforms.
This study aims to fill this gap by examining a wider array of the above eight social media indicators. Furthermore,
earlier research did not fully explore diverse financial indicators that could provide insights into both predictive and
commodity aspects of the financial market [6].

The structure of this paper is organized into four additional sections. Section 2 presents a detailed literature review,
followed by an explanation of the methodology in Section 3. Section 4 delves into the analysis and discussion of
results. Finally, conclusions are drawn in Section 5.

2 Literature Review

The allure of cryptocurrency has captivated financial investors, policymakers, and regulatory bodies globally [5],
as evidenced by its remarkable 2394% market growth from 2016 to 2017 [2]. Increasingly perceived as a financial
safeguard against global economic volatility, cryptocurrencies are being integrated into investment portfolios for
their hedging capabilities against traditional financial instruments like gold and the US dollar, as well as against
business policy uncertainty and shocks in the Asia Pacific region [1]. Consequently, an upsurge in investment towards
this virtual currency is observed [13]. However, the hedging potential of these digital assets is intricately linked to
social media and web analytics platforms, such as Twitter and Google Trends. It is posited that cryptocurrency price
fluctuations are more influenced by public perceptions than institutional regulations [2]. This observation has spurred
behavioral economists and academics to investigate the relationship between cryptocurrency price variations and
social media networks [1]. Diverging from existing studies, financial researchers are also exploring the interplay
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between traditional financial assets and the heterogeneous nature of cryptocurrency assets [6]. This paper synthesizes
two prominent strands of the cryptocurrency literature. The first strand investigates the interaction between traditional
and alternative financial assets with cryptocurrencies, including their time-varying effects. The second, an emerging
research area, examines how media attention and social networks influence cryptocurrency behavior.

In their research, Kumar et al. [14] utilized a Generalized Vector Autoregression (VAR) framework, discovering
that indices such as S&P500 and NASDAQ have a more significant influence on cryptocurrencies like Bitcoin and
Ethereum, rather than vice versa. Similarly, Ciner et al. [15] employed a LASSO quantile regression approach,
finding that US government bond indices and small-cap returns are predictive of the tail behavior of cryptocurrency
returns. Elsayed et al. [16] investigated the spillover effect between cryptocurrencies and other assets, identifying that
cryptocurrency policy uncertainty significantly impacts return spillovers to other variables, while gold predominantly
receives both return and volatility spillovers. Another set of studies, including those by Kumar et al. [14], have
examined the interconnectedness between traditional assets and cryptocurrencies in a time-varying manner. They
observed a notable increase in connectedness of returns and volatility among these markets following the onset of the
COVID-19 pandemic.

While research linking sentiment to cryptocurrencies is burgeoning, it remains underdeveloped. Yousaf et
al. [4] noted that the connectedness between the S&P 500 Twitter Sentiment Index and traditional assets (excluding
cryptocurrencies) is stronger at the extremes of the return distribution. This finding indicates a pronounced impact of
sentiment during extreme positive or negative sentiment shocks. Including cryptocurrencies, Naeem et al. [17] applied
the bivariate cross-quantilogram method of Han et al. [18], finding a strong and persistent predictive relationship
between happiness sentiment and most cryptocurrency returns. Behavioral economists have increasingly focused on
the connection between social media sentiments and investor perceptions and attitudes, recognizing their influence in
predicting cryptocurrency prices [3]. Bollen et al. [19], employing neural networks and causality networks, linked
social media sentiments to cryptocurrency price forecasting. Wolk [2] explored the relationship between social media
platforms and price prediction, using a multi-model approach. However, none of these studies have incorporated an
integrated perspective of social media sentiment, encompassing heterogeneous drivers like news headlines, economic
variability information, and business policy updates. This study aims to provide a comprehensive view, encompassing
a range of social media indices to explore their impact on cryptocurrency market price variations. Alongside social
media drivers, this research incorporates a variety of financial indicators, contributing significantly to understanding
the speculative price fluctuations of crypto assets from a behavioral finance perspective.

3 Methodology
3.1 Research Sample and Data Collection Procedures

The methodology of this study is predicated on an analysis of secondary datasets, from which seventeen distinct
variables were selected, categorized under ’social media indicators’ and ’financial indicators’ (refer to Table 1).

Table 1. Bitcoin price drivers

Category List of Variables

Social media
indicators

BBC Breaking News, (US) Department of State, United Nations,
Donald Trump; Elon Musk, Google Trends, EPU based on Twitter,

financial indices for measuring the amount of risks and the prices of risks

Financial
indicators

Prices of Gold, Platinum, Palladium, and Silver
Prices of oil Brent and WTI

the NASDAQ and S&P500 indexes
Price of Tesla stock

The influence of the BBC as a social media indicator on Bitcoin price direction is significant, given its standing as
a reputable information source in the United Kingdom [6]. The BBC’s impact on audience perception is dual-natured:
positive when broadcasting hopeful events and negative when focusing on adverse aspects of human nature [10]. The
US Department of State’s announcements are considered to have a direct influence on Bitcoin price fluctuations.
Similarly, the United Nations is acknowledged for its leading role in the digital currency sphere [2]. The tweets of
former US President Donald Trump are also analyzed for their impact on cryptocurrency, despite Twitter not being an
official channel for policy communication in the US. Trump’s tweets are found to correlate directly with Bitcoin’s
trading volumes, volatility, and returns [7, 20]. Elon Musk’s tweets are also considered due to their notable influence
on the cryptocurrency market [8]. Parameters such as time, date, username, photos, hashtags, like counts, reply
counts, and mentions are used to analyze and visualize Musk’s impact on the digital currency world [21].

In the field of cryptocurrency market analysis, Google Trends has emerged as a pivotal tool for predicting investor
attitudes and perceptions. This web-based search tool offers extensive data on specific search terms over designated
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time intervals [2]. It has been observed that a higher frequency of Google searches correlates with increased positive
returns in Bitcoin, leading to a surge in trading volume [1]. Furthermore, the concept of EPU has gained prominence
in discussions about drivers of Bitcoin returns. An increase in global EPU is found to adversely affect Bitcoin
returns [22]. Interestingly, the predictive power of the EPU index on Bitcoin returns exhibits geographical variance.
For instance, the EPU index in China is effectively predictive of Bitcoin returns, while the EPU indexes of the United
States and Japan do not demonstrate such predictive capacity [1]. In this study, the category of ’Twitter-based EPU’ is
utilized to gauge economic variability. Additionally, this research integrates a ’risk-aversion index’ into its utility
function to represent the crypto market’s risk perspective. This index comprises financial indices related to risk
aversion and economic uncertainty, formulated as a utility-based aversion coefficient [1].

Data pertaining to the query ’Bitcoin’ was sourced from Google Trends [2]. This includes the total number of
mentions of ’Bitcoin’, scaled and compared across various timeframes. Subsequently, the log return of Bitcoin was
calculated based on the obtained time series.

To analyze the correlation between influential individuals’ Twitter posts and Bitcoin price movements, raw data
from the Twitter accounts of Donald Trump and Elon Musk were collected [7, 8]. A textual analysis was conducted to
differentiate between positive and negative sentiments, following the approach of Loughran and McDonald [23]. Two
proxy variables were developed for positive and negative words:

Positivity/negativity =
The number of positive / negative words

Total nuber of words
× 100 (1)

For the financial indicators influencing Bitcoin price fluctuations, this study considers the prices of precious metals
(Gold, Platinum, Palladium, Silver), oil (Brent and WTI), stock indices (NASDAQ and S&P500), and Tesla stock
prices. These indicators offer alternative investment perspectives due to their predictive and commodity aspects in the
crypto market [1]. Data sources include MSCI (ACWI), Yahoo Finance (EUR/USD, Tesla), the NASDAQ Composite
(NASDAQ), and SP Global (S&P 500) for financial indicators, and the London Bullion Market Association and Fred
Economic Data for Metal and Petroleum data [4].

3.2 Proposed Model

In the domain of MADM, various models have been employed to compute attribute weightings [24, 25], notably
including the Entropy Method [24, 26], Information Entropy Weight (IEW) [27], Analytic Hierarchy Process (AHP)
or [24, 28, 29], Fuzzy AHP [30, 31], and Rough AHP [32]. Recently, SWARA has been recognized for its efficacy
in calculating attribute weights within performance measurement frameworks [33]. Liang and Ding [34] have
emphasized the significance of accurately determining these weights, noting the potential for bias due to inherent
uncertainties and subjectivity in scaling. Information entropy, conceptualized as a probabilistic measure of uncertainty,
plays a pivotal role in this context [35]. It captures the variability in randomness levels across different analysis
sub-groups. An attribute’s discriminatory power is directly proportional to its information entropy value.

This study utilizes information entropy to establish the initial order of importance for social media indicators
in SWARA, facilitating the computation of unbiased weights. These weights are then utilized as inputs in the
COPRAS method. Unlike other MADM approaches, COPRAS effectively establishes a utility function for each
cryptocurrency [36, 37]. The concept of utility, fundamental in economics and MADM, quantifies latent perceptions
or preferences across various criteriaor [38–40]. COPRAS’s utility function approach, favored for its simplicity, lacks
stringent requirements on latent preference structures beyond the aggregation formula, thus straightforwardly linking
social media indicators to partial value functions [41, 42]. This additive aggregation’s simplicity renders the approach
particularly suitable for subsequent multivariate analysis inputs [43].
3.2.1 SWARA

The following steps outline the SWARA methodology applied in this research [44]:
Step 1: Social media indicators are initially sorted based on their information entropy, from highest to lowest.
Step 2: The first-ranked social media indicator is assigned a null latent preference value. Subsequent social media

indicators are assigned preferences relative to the first, based on their pairwise relative importance. This is denoted by
Sj , representing the ratio of comparison between a given social media indicator and the one with the highest entropy.

Step 3: Pairwise social-media efficiency Kj is calculated using the formula:

Kj =

{
1, j = 1
Sj + 1, j > 1

(2)
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Step 4: Relative weights (qj) for each social media indicator are computed, based on their sorted pairwise
efficiency and importance rank:

qj =

{
1 j = 1

Kj−1

Kj
j > 1

(3)

Step 5: Final weights are determined as Wj =
qj∑n

k=1 qk
, where Wj denotes the weight of each social media

indicator j.
3.2.2 COPRAS

The COPRAS method, introduced over two decades ago [37], has been widely explored in various research
contexts. It has been combined with SWARA or [45–47], integrated into Fuzzy COPRAS [48], and applied alongside
other MCDM methods [49, 50]. This section outlines the application of COPRAS in deriving utility functions for
cryptocurrencies based on the social media importance weights identified in the previous section.

Step 1: A decision matrix X is constructed, encompassing m time-series observations and n cryptocurrencies:

X =

 a11 . . . a1n
...

. . .
...

am1 · · · amn

 i = 1, 2, . . . n; j = 1, 2, . . . ,m (4)

Step 2: The decision matrix X is normalized:

xij =
xij∑n
j=1 xij

(5)

Resulting in:

X̄ =

 x̄11 . . . x̄1n

...
. . .

...
x̄m1 . . . x̄mn

 (6)

Step 3: A weighted normalized decision matrix is computed:

x̂ij = x̄ij × wij ; i = 1, 2, . . . , n; j = 1, 2, . . . ,m (7)

Thus:

X̂ =

 x̂11 . . . x̂1n

...
. . .

...
x̂m1 . . . x̂mn

 ; i = 1, 2, . . . , n; j = 1, 2, . . . ,m (8)

Step 4: The larger, more preferable values, denoted as Pi, are summed:

Pi =

k∑
j=1

xij (9)

Step 5: The smaller, more preferable values, denoted as Ri, are summed:

Ri =

k∑
j=k+1

xij (10)
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The number of cryptocurrencies to be minimized is determined by the difference m− k.
Step 6: The minimization of Ri is performed as per Eq. (8):

Rmin = min
i

Ri; i = 1, 2, . . . , n (11)

Step 7: The relative significance of each cryptocurrency Qi is calculated:

Qi = Pi +
Rmin

∑n
i=1 Ri

Ri

∑n
i=1

Rmin

Ri

(12)

Step 8: The optimal cryptocurrency i, indicated by K, is identified:

K = max
i

Qi; i = 1, 2, . . . , n (13)

Step 9: Cryptocurrencies are prioritized in descending order.
Step 10: The utility degree N of each subsequent cryptocurrency i is determined:

Ni =
Qi

Qmax
× 100% (14)

3.2.3 Transfer entropy
The information flow between two cryptocurrencies, denoted as i and j, is measured by integrating Shannon

Entropy [51] and Kullback-Leibler distance [52], assuming a Markov process with k and l levels or factors,
respectively [53]. Given the probability distributions p(i) and p(j) for cryptocurrencies i and j, and the joint
probability p(i, j), the information flow from cryptocurrency j to i is defined by the following equation [54]:

TJ→I(k, l) =
∑
i,j

p
(
it+1, i

(k)
t , j

(l)
t

)
· log

p
(
it+1 | i(k)t , j

(l)
t

)
p
(
it+1 | i(k)t

)
 (15)

This equation quantifies the deviation from the generalized Markov process p
(
it+1 | i(k)t

)
= p

(
it+1 | i(k)t , j

(l)
t

)
at the marginal conditional distribution odds-ratio log

(
p
(
it+1|i(k)

t ,j
(l)
t

)
p
(
it+1|i(k)

t

) )
.

Analogously, the information flow from i to j is measured, allowing for the determination of causation direction
between two cryptocurrencies based on the net information flow. This flow is computed as the difference between
flows from i to j and vice versa. The statistical significance of the net information flow between cryptocurrencies is
ascertained through bootstrapping the inherent probability distributions for each factor/level in each criterion, enabling
repeated execution of this Markov process.
3.2.4 Neural network regression

The response of each cryptocurrency to a set of financial indicators is analyzed using Artificial Neural Networks
(ANNs), specifically focusing on Multi-Layer Perceptron (MLP) network architecture, known for its efficacy in
forecasting [55]. The ANN regression reveals the non-linear impacts of financial indicators on the variations of
each cryptocurrency, while controlling for its latent utility function. The Connection Weight Approach (CWA), as
described by Olden et al. [56] and Olden and Jackson [57], is utilized for quantifying the relative importance of each
financial indicator on the response levels of each cryptocurrency.

This methodological approach is characterized by two distinctive features. Firstly, it elucidates cause-effect
and feedback relationships among cryptocurrencies’ utility functions, influenced by the entropy levels of social
media indicators. The maximal entropy principle, an established concept in information theory, posits that the most
representative probability distribution for a given cryptocurrency’s utility function is one with the highest entropy.
Secondly, this research diverges from previous studies by investigating the impact of financial indicators on the utility
functions of various cryptocurrencies. By computing the information entropy of each social media indicator, the
focus is directed towards the most significant criteria for policy making, and their socio-demographic drivers, which
are otherwise indeterminable a priori.
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4 Results and Discussion

Descriptive statistics for the social media indicators, considered as proxies for the utility function of cryptocurrencies,
are presented in Table 2. Drawing on the work of Garcı́a-Medina and Huynh [1], variables listed in Table 1 are
posited as potential influencers of Bitcoin price direction.

Table 2. Descriptive statistics for the social media indicators

Variables Min Max Mean Median SD CV Skewness Kurtosis IE Signal
BBC Breaking News -28.55 26.29 0.00 0.05 3.53 5206.64 -0.18 15.46 0.48 pc
Department of State -33.51 34.97 0.00 0.02 4.06 -3133.82 0.09 8.42 0.45 nc

Donald Trump -33.93 30.96 0.00 0.01 4.83 37110.38 0.05 5.21 0.58 nc
Elon Musk -9.39 13.42 0.00 0.02 1.89 536.25 0.07 3.84 0.50 pc

EPU Twitter -1.64 1.95 0.00 -0.01 0.30 342.83 0.30 3.58 0.51 nc
Google Trends -1.40 1.23 0.00 -0.01 0.19 104.81 0.26 6.81 0.46 pc
Risk Aversion -1.18 1.30 0.00 0.00 0.07 945.99 3.75 164.43 0.49 nc
United Nations -9.48 13.49 0.00 -0.01 3.27 4901.91 0.17 0.27 0.20 pc

Note: pc = positive criterion; nc = negative criterion

The Twitter-based Economic Policy Uncertainty index (EPU-Twitter) is formulated using daily tweet data
containing keywords related to economic uncertainty [1]. The ’risk-aversion’ category includes financial indices
reflecting risk aversion and economic uncertainty, conceptualized as a utility-based risk-aversion coefficient [1].
The influence of news sentiment, particularly from BBC Breaking News, on the cryptocurrency market has been
acknowledged in recent studies [58, 59]. RavenPack News Analytics is employed to process real-time news from the
BBC [13]. The United Nations is also included, given its significant role in promoting digital currency for achieving
financial security and sustainable investment [60].

In the current utility function, BBC Breaking News, Elon Musk, Google Trends, and the United Nations are
designated as positive criteria. Positive BBC headlines are seen to boost investor enthusiasm, leading to an immediate
increase in Bitcoin returns [11]. Elon Musk’s tweets, characterized by a positive tone, have been influential in guiding
investor perceptions about Bitcoin trading [8]. Google Trends data reflects an optimistic pursuit of information about
crypto assets, correlating positively with Bitcoin returns [2]. The United Nations’ efforts to integrate digital currency
transactions with sustainability goals are perceived positively by financial investors [60].

Conversely, the Department of State, Donald Trump, EPU Twitter, and risk aversion variables are regarded as
negative criteria. Post-2018, cryptocurrency trading platforms have become more sensitive to Donald Trump’s
negative sentiments, with his tweets acting as a predictive driver for Bitcoin trading dynamics [7]. Increases in EPU
Twitter and Risk Aversion are posited to deter demand for cryptocurrencies, thereby reducing their prices.

Figure 1 presents density plots for the social media indicator weights computed using SWARA, based on their
respective information entropy distributions. The United Nations, EPU Twitter, and Elon Musk emerge as the most
relevant criteria, indicating that cryptocurrency utility functions are largely influenced by perspectives on technological
innovation and global socio-economic stability. The least relevant criteria, Risk Aversion, and BBC Breaking News,
pertain to daily issues and natural risk aversion related to blockchain technology. However, the closeness of SWARA
weights across social media indicators is evident in the overall distribution of the utility function, as depicted in
Figure 1. The utility functions exhibit a positive bias, with all COPRAS scores exceeding 0.60 (Figure 2), suggesting
the endogenous nature of cryptocurrencies and the potential for obscuring the impacts of other financial indicators as
drivers for investment decisions (Table 3).

Figure 1. Bar plot for the social media information entropy weights computed using SWARA
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Figure 2. COPRAS utility function results

Table 3. Descriptive statistics for cryptocurrencies and financial indicators

Variables Type Min Max Mean Median SD CV Skewness Kurtosis IE
Bitcoin Cryptocurrency -0.4647 0.2251 0.0025 0.0025 0.0424 16.7035 -0.8916 12.6782 0.4641

Dogecoin Cryptocurrency -0.4929 0.6244 0.0026 0.0000 0.0669 25.5714 1.2287 14.9545 0.4275
Ethereum Cryptocurrency -0.5507 0.2901 0.0034 0.0016 0.0566 16.7036 -0.3983 9.6467 0.4105
Litecoin Cryptocurrency -0.4491 0.5114 0.0025 0.0000 0.0606 24.0914 0.6904 10.4821 0.4164

TETHER Cryptocurrency -0.0526 0.0566 0.0000 0.0000 0.0062 1683.1773 0.3249 19.9915 0.4845
Ripple Cryptocurrency -0.6163 1.0274 0.0027 -0.0016 0.0753 28.1859 2.2856 36.0601 0.4982

VIX Financial Index -0.2998 0.7682 -0.0061 -0.0123 0.0810 -13.2466 1.4136 8.4054 0.4267
ACWI Financial Index -0.1190 0.0782 0.0006 0.0011 0.0115 19.6832 -1.1392 20.3782 0.4519

EUR.USD Financial Index -0.0206 0.0146 0.0002 0.0003 0.0042 20.1828 0.0335 0.8875 0.4856
NASDAQ Financial Index -0.1300 0.0960 0.0008 0.0016 0.0145 18.9881 -0.3594 11.7130 0.4575
S.P.500 Financial Index -0.1277 0.0897 0.0006 0.0009 0.0125 19.8839 -0.5703 20.4388 0.5584
Tesla Financial Index -0.2365 0.1814 0.0017 0.0018 0.0371 22.4521 -0.3723 5.4746 0.4477
Gold Metal -0.0586 0.0497 0.0006 0.0010 0.0082 14.8633 -0.6582 5.5414 0.4592

Palladium Metal -0.2220 0.1881 0.0015 0.0023 0.0197 12.9791 -0.9180 20.4254 0.3313
Platinum Metal -0.1364 0.1009 0.0004 0.0006 0.0145 37.4108 -0.9049 10.6682 0.3818

Silver Metal -0.1612 0.0770 0.0005 0.0007 0.0164 35.7171 -1.1281 13.0138 0.4165
DCOILBRENTEU Petroleum -0.6437 0.4120 -0.0004 0.0009 0.0374 -98.9822 -3.1391 80.8329 0.4533

DCOILWTICO Petroleum -0.2814 0.4258 0.0006 0.0023 0.0358 60.2056 0.7347 38.2336 0.3780

Transfer entropy and neural network results, elucidating cause-effect relationships among cryptocurrencies and
financial indicators, are depicted in Figure 3 Additionally, Table 4 details the optimal ANN architecture for each
regression, determined after cross-validating the trained models with a randomly selected 20% of the sample. It is
observed that Bitcoin and Ripple are pivotal cryptocurrencies, influencing the behavior of other coins such as Tether,
Ethereum, Litecoin, and Dogecoin, each representing unique aspects of the cryptocurrency universe.

Economically, the findings underscore Bitcoin’s role as a significant information transmitter to other cryptocur-
rencies (Figure 3). Ripple, in contrast, shows a unique dynamic, where its past values are observed to reduce
uncertainty in Bitcoin and influence fluctuations in other cryptocurrencies. Interestingly, Litecoin demonstrates a
more independent trajectory, being influenced only by Bitcoin and not acting as a shock transmitter.

The analysis confirms the significant role of Ripple in transmitting shocks within the cryptocurrency market,
aligning with the findings of Assaf et al. [61] and Neto [62]. While Assaf et al. [61] reported Ripple’s information
transmission to Bitcoin and Ethereum, Neto [62] observed Ripple returns influencing attention in Ethereum and
Bitcoin, with Litecoin having a limited capacity to transmit shocks. The unique position of Ripple, partly due to
Ripple Labs’ majority ownership and the SEC lawsuit implications, suggests that Ripple movements convey critical
information about the future of cryptocurrency regulation, a crucial aspect of this market. Therefore, these results are
congruent with the notion that Ripple movements carry regulatory information, positioning it as a shock transmitter
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rather than an absorber.

Figure 3. Results for the transfer entropy analysis (arrows among cryptocurrencies: green denotes positive feedback
and red negative feedback) and for the ANN regressions for each cryptocurrency (green denotes a positive impact of

the financial indicator on the cryptocurrency and red a negative impact)
Note: All results were controlled by COPRAS utility function scores.

Table 4. Best neural network architecture validation

Cryptocurrency Number of Layers Neurons per Layer Dropout RMSE MAE
Bitcoin 4 150 0 0.047 0.032

Dogecoin 2 200 0.15 0.054 0.029
Ethereum 2 100 0 0.050 0.029
Litecoin 1 200 0 0.052 0.032

TETHER 4 150 0.6 0.060 0.033
Ripple 4 100 0 0.054 0.027

Validation with 5 folds cross-validation. MAE stands for mean absolute error and RMSE stands for root mean squared error. Dropout is the total
amount of regularization in neural networks.

Asymmetries have been observed in the relationship between social media indicators and cryptocurrencies.
Bitcoin, Ripple, and Ethereum exhibit different behaviors compared to Tether, Litecoin, and Dogecoin. Risk aversion,
typically a negative predictor for the return of risky assets, adversely affects Bitcoin, Ripple, and Ethereum, while
positively impacting the other cryptocurrencies. Notably, this positive relationship is anticipated for Tether, a
stablecoin, where an increase in risk aversion heightens demand.

Other noteworthy relationships between social media indicators and cryptocurrencies have been identified. The
EPU Twitter, while adversely predicting Bitcoin and Ethereum, positively influences Ripple, Tether, Litecoin, and
Dogecoin. This suggests that price movements in these cryptocurrencies increase with heightened uncertainty in
social media. The sentiments in tweets by Donald Trump and Elon Musk also resonate differently across the crypto
market. While Trump’s tweets predominantly negatively affect the market (except for Litecoin), Musk’s tweets
positively influence Dogecoin and Ripple (negatively impacting the remaining cryptocurrencies).

Bitcoin and Ethereum emerge as the most negatively affected cryptocurrencies by social media indicators in the
sample. For Bitcoin, seven out of eight relationships are negative, with only the United Nations showing a positive
predictive relationship. In contrast, Ethereum exhibits negative associations in six out of eight relationships, with
BBC Breaking News and the Department of State as exceptions, showing positive predictive relationships. Conversely,
Litecoin, Dogecoin, and Ripple react positively to most social media indicators. Notably, Litecoin and Dogecoin
are positively influenced by Twitter sentiment (Elon Musk) and uncertainty (EPU Twitter). In contrast to Litecoin,
Dogecoin also responds positively to investor attention (Google Trends), suggesting a strong linkage to social media
attention, sentiment, and uncertainty.

5 Conclusions

This study, utilizing a novel neural-MCDM model, has rigorously analyzed the interplay between cryptocurrencies
and a spectrum of financial and social media indicators. It is determined that Bitcoin and Ripple, along with Ethereum,
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function as primary shock transmitters and absorbers, respectively, within the realm of cryptocurrencies. A notable
asymmetry is identified in the interactions between social media indicators and various cryptocurrencies. Specifically,
Bitcoin and Ethereum are more adversely influenced by social media indicators compared to Tether, Ripple, Litecoin,
and Dogecoin. Conversely, Litecoin, Dogecoin, and Ripple exhibit positive responses to social media influences, with
Litecoin and Dogecoin being particularly sensitive to Twitter sentiment, including that of Elon Musk, and uncertainty
as reflected in the EPU Twitter Index. Furthermore, Dogecoin is observed to react positively to increased investor
attention on Google Trends, indicating a strong tie to social media dynamics.

This study contributes significantly to the growing body of literature in behavioral finance that explores the
influence of social media platforms on investor sentiment. It extends upon existing research that predominantly
focuses on individual social media platforms, offering a more comprehensive view by incorporating an array of
platforms including Twitter, various news services, and Google Trends. This integrated approach provides novel
insights into the diverse relationships between different social media indicators and cryptocurrencies, each with
distinct characteristics. By applying the transfer entropy method, this research elucidates the cause-effect and feedback
dynamics among the utility functions of major cryptocurrencies, influenced by the entropy levels of social media
indicators. This approach sheds light on the heterogeneous nature of these relationships, enhancing the understanding
of how social media indicators differentially impact cryptocurrencies. In doing so, the study offers valuable insights
into the complex web of interactions that shape the cryptocurrency market.

Addressing the identified gaps in existing research, this study revisits a secondary dataset comprising a blend
of social media and financial indicators. It employs a novel neural-MCDM model, structured in three stages, to
derive unbiased utility functions for various cryptocurrencies. This approach, anchored in information entropy,
evaluates the latent significance of each social media indicator in the computation of each cryptocurrency’s utility
function, leveraging the SWARA model for weight computation. Compared to alternative methodologies, information
entropy offers reduced bias and enhanced robustness against overlooked assumptions, facilitating a more nuanced
interpretation of how distinct cryptocurrencies’ utility functions, as determined by COPRAS, are influenced by various
social media indicators.

The findings, both anticipated and unanticipated, reveal that Bitcoin and Ripple, along with Ethereum, function as
primary shock transmitters and absorbers, respectively, in the cryptocurrency sphere. Notably, the significant role of
Ripple, aligning with the research of Assaf et al. [61]and Neto [62], suggests its potential as a conveyer of information
regarding future cryptocurrency regulations, particularly in light of Ripple Labs’ ongoing legal challenges with the
SEC. Bitcoin and Ethereum are observed to be more negatively impacted by social media indicators compared to
Litecoin, Dogecoin, and Ripple, which exhibit positive responses to these influences. Despite discernible patterns, the
unique characteristics of each cryptocurrency must be considered when assessing their interactions with social media
indicators.

The insights garnered from this research are invaluable for policymakers and regulators, enhancing their
understanding of the intricate relationship between cryptocurrencies and social media indicators. It is imperative for
governmental actions to acknowledge the distinct sensitivities of different cryptocurrencies to social media influences,
including attention, sentiment, uncertainty, and posts from government or tech leaders. Such understanding is crucial
for navigating the complexities of the digital asset industry, particularly in terms of policy development and regulation.
By comprehending the specific channels through which investor sentiment may influence the cryptocurrency market,
stakeholders can better anticipate and respond to fluctuations within this dynamic sector.
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