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Abstract: Reducing the devastating effects of earthquakes is the main objective of planning for earthquake response.
The decision-making process is essential to this attempt. However, it is particularly difficult because of the inherent
uncertainties. A sophisticated methodological approach was proposed to handle these uncertainties in this study.
The approach makes use of Fermatean probabilistic hesitant fuzzy sets (FePHFSs), and emphasizes the resilience
of algebraic operations and their crucial role in improving the effectiveness of decision-making. In particular, a
noteworthy development in the field of multiple attribute decision making (MADM) is the introduction of novel
probabilistic hesitant fuzzy sets (PHFSs) aggregation operators, which are created by carefully synthesizing algebraic
operations with the Combined Compromise Solution (CoCoSo) method. A key component of this technique is the
application of the CoCoSo strategy, which is well known for its resilience in optimal goal selection and uses various
aggregation strategies to effectively navigate the complex, multicriteria decision-making environment. A thorough
numerical case study illustrates the adaptability and efficacy of this method and highlights its potential in practical
settings. Decision-makers now have a new and effective tool that helps them make better informed and trustworthy
decisions even in the face of uncertainty by combining PHFS with the CoCoSo technique. This method offers
real-world implications for improving disaster response plans in addition to advancing the theory of decision support
systems.

Keywords: Fermatean probabilistic hesitant fuzzy sets; Probabilistic hesitant fuzzy sets; Algebraic t-norm &
t-conorm; CoCoSo method; Decision making

1 Introduction

Leading the way in disaster management, earthquake response planning requires carefully thought out plans
to minimize possible damage and save lives and property. Earthquakes are inherently unpredictable and have a
wide-ranging impact. Therefore, it is critical that response planning processes incorporate sound decision-making
processes. Effective decision-making is crucial in this situation since it forms the basis of successful reaction tactics.
With so many moving parts, unknowns, and trade-offs, the decision-making process in earthquake response planning
is inherently complicated. To attain the best results, it is essential to have a thorough grasp of seismic risks in
addition to a smart decision-making methodology that can handle scenarios with multiple criteria with ease. The
goal of this research is to improve the field of earthquake response planning by presenting an integrated methodology
that combines algebraic operations and Fermatean PHFSs. The complex relationships between these factors are
investigated. It aims to improve decision-making procedures and raise the effectiveness of earthquake response
plans. This study centers on the possible revolutionary influence of these breakthroughs in the field of catastrophe
management.

As the intricacy of decision-making in earthquake response planning is addressed, it becomes clear that a smart,
flexible instrument is required. In this case, MADM proves to be useful and effective. Well-known for its effectiveness
in decision analysis, MADM works especially well in situations where a variety of factors and characteristics affect
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the choice of the best response plan. The methodical manner in which MADM evaluates and ranks alternatives,
taking into consideration a wide range of frequently contradictory factors, is what makes it so strong.

Within the domain of earthquake response planning, where crucial choices impact the distribution of resources,
staffing levels, and execution of mitigating actions, MADM provides a methodical framework to skillfully handle
innate uncertainties and intricacies. Fermatean PHFSs are integrated into MADM. This improves its capacity to
capture the complex interactions between decision factors. By addressing the hesitation and imprecision frequently
linked to seismic risk assessments, this integration improves the process of making decisions.

The application of MADM in earthquake response planning goes beyond its ability to perform systematic analysis.
It appears as a driving force behind decision outcomes optimization, efficiency promotion, and general response
strategy effectiveness augmenting. It is hoped that investigating Fermatean PHFSs and algebraic operations in the
MADM framework can reveal a revolutionary instrument. This tool gives decision-makers useful insights while still
acknowledging the complexity of earthquake response preparation. This study aims to shed light on the unmatched
value of MADM in this crucial area and emphasize how crucial it is for making wise decisions in the face of seismic
uncertainty.

Zadeh proposed the idea of fuzzy sets (FSs) in 1965. This laid the groundwork for a fundamental method of
handling uncertainty in MADM problems. Rather than specifying the value of an alternative ξi exactly at a given
criterion ςj , the intrinsic imprecision is acknowledged by proposing that the value be roughly δij . The FS is defined
as 𭟋 = {δj , µ∆(δj)|δj ∈ ∆} on ∆ = δ1, δ2, ..., δn, where µ∆(δj) denotes the positive grade of membership for
δj ∈ ∆. Notably, the typical FS framework does not take into account negative grades of δj ∈ ∆. But there have
been doubts about these sets’ dependability. This has prompted the creation of a number of extensions in disciplines
including engineering, medical diagnostics, and decision-making. Under certain conditions, extensions such as
intuitionistic FSs (IFSs) [1], Pythagorean FSs [2], and Fermatean FSs (FeFSs) [3] have been proposed to address
uncertainty more effectively by incorporating both positive and negative grades of δj ∈ ∆. Unlike intuitionistic FSs
and Pythagorean FSs, FeFSs excel in representing imprecise human judgments during decision-making and handling
a broader range of uncertainty [4–7].

Recognizing the superior capabilities of FeFSs, numerous studies have incorporated FeFS methodologies to
address complex MADM problems. Notably, Verma [8] extended the WASPAS method within an FeFS framework
for the selection of healthcare waste disposal sites [9]. In response to the challenges posed by COVID-19, Garg et
al. [10] utilized FFS aggregation functions in assessing COVID-19 facilities. Furthermore, Sergi and Sari [11] applied
FeFSs to handle the uncertainty associated with parameters in capital budgeting. Fuzzy transportation challenges
were successfully addressed by Sahoo [12] through the utilization of FeFS parameters and a score function.

The introduction of hesitant fuzzy sets (HFS) [13] has significantly enhanced traditional FS in the realm of
MCDM, particularly in efficiently managing uncertainties posed by expert judgments. A comprehensive overview
and future perspective on HFSs was provided in a study by Rodrguez et al. [14], which elucidated that HFSs (i)
enhance the elicitation of expert preferences and (ii) offer a more versatile and flexible preference structure, thereby
reducing uncertainties.

The amalgamation of HFSs with IFSs led to the creation of a novel FS category termed intuitionistic hesitant
fuzzy sets, as investigated by Peng et al. [15]. Additionally, the integration of HFSs with Pythagorean FSs resulted
in the development of Pythagorean hesitant fuzzy sets, introduced by Khan et al. [16]. In a subsequent advancement,
Kirisci [17] presented Fermatean hesitant fuzzy sets, a fusion of HFS and FFS, and demonstrated their application
in a medical case study. Nonetheless, certain limitations in HFS, such as information loss and the oversight
of occurrence probabilities, were identified [14]. Addressing these issues, Qian et al. [18] introduced PHFSs,
integrating probability elements into HFS. Constructed on this basis, Batool et al. [19] improved the idea even more
by introducing Pythagorean PHFSs, which are limited by the requirement that the square sum of the positive and
negative hesitant adhesions’ degrees be less than or equal to 1.

Comparing FePHFSs to Pythagorean PHFSs, a substantial improvement has been made. Motivated by the
limitations of Pythagorean PHFSs, where the square sum of positive and negative hesitant grades is constrained to be
less than or equal to one. A more comprehensive constraint is introduced by FePHFSs, which limits the cube total of
positive and negative hesitant grades to be less than or equal to one. Consequently, FePHFSs is utilized to effectively
address expert uncertainties while efficiently considering the occurrence probability of expanding the application
domains. For example, Sahoo [20] extended the Technique for Order of Preference by Similarity to Ideal Solution
(TOPSIS) method with FeFSs for the purpose of bridge selection. To find the best sanitizer, Akram et al. [21] used
TOPSIS with FeFSs and Einstein averaging operators to tackle the problems brought on by COVID-19. Additionally,
the optimization of laboratory selection for COVID-19 testing was achieved by Gül [22] through the amalgamation of
SAW, ARAS, and VIKOR methods within an FeFS framework. These studies collectively underscore the adaptability
and efficacy of FeFSs across diverse decision-making contexts. Further related work is detailed in literature [23–28].

The structure of this article is as follows: The introduction section provides a comprehensive overview of the
study. Section 2 is dedicated to elucidating fundamental concepts crucial for understanding the subsequent material.
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Section 3 introduces a novel methodology employing FePHFS. Thereafter, Section 4 presents a case study focusing
on earthquake response, accompanied by a detailed discussion. The article culminates with Section 5, which
summarizes the key findings and conclusions.

2 Preliminaries

This section elucidates key concepts fundamental to the methodology employed in this research, focusing on
their implications and contributions to the field.

Definition 2.1: Let ℑ denote a universal set. A FePHFS on ℑ is defined as:

Θ = {θ, χℏ·(θ)/℘, ϱℏ·(θ)/℘
• | θ ∈ Θ} (1)

where, θ ∈ Θ, χℏ�(θ) and ϱℏ�(θ) represent sets comprising certain values within the range [0,1]. These sets χℏ�(θ)℘
and ϱℏ�(θ)/℘

•, known as probable positive and negative grades respectively, and ℘, ℘• signifies the probabilities of
the grades.

Additionally, 0 ≤ ℏ�i ,ð�j ≤ 1 and 0 ≤ ℘i, ℘
•
j ≤ 1,

∑⋏
i=1 ℘i ≤ 1&

∑⋏
j=1 ℘

•
i ≤ 1, with ⋏ being a positive

integer, indicate the cardinality of the FePHFS. It is imperative that the following criteria are satisfied:(
min (χℏ�(θ))

)3
+
(
max (ϱℏ�(θ))

)3 ≤ 1,
(
max (χℏ�(θ))

)3
+
(
min (ϱℏ�(θ))

)3 ≤ 1 (2)

In this context, a Fermatean probabilistic hesitant fuzzy number (FPHFN) is represented by the pair (χℏ�∗
(θ)/℘∗,

ϱℏ�∗
(θ)/℘•

∗).
Definition 2.2: Given two FePHFNs, Θ1 =

(
χℏ�1

(θ)/℘1, ϱℏ�1
(θ)/℘•

1

)
and Θ2 =

(
χℏ�2

(θ)/℘2, ϱℏ�2
(θ)/℘•

2

)
, the

fundamental operational laws are established as follows:

1. Θ1 ∪Θ2 =

{⋃
ℏ�1∈χℏ�1

,℘1∈℘

ℏ�2∈χℏ�2
,℘2∈℘

(
max (ℏ�1/℘1, ℏ�2/℘2)

)
,
⋃

ð�1∈ϱℏ�1
,℘•

1∈℘•

ð�2∈ϱð�2
,℘•

2∈℘•

(
min (ð�1/℘•

1,ð�2/℘•
2)

)}
.

2. Θ1 ∩Θ2 =

{⋂
ℏ�1∈χℏ�1

,℘1∈℘

ℏ�2∈χℏ�2
,℘2∈℘

(
min (ℏ�1/℘1, ℏ�2/℘2)

)
,
⋃

ð�1∈ϱℏ�1
,℘•

1∈℘•

ð�2∈ϱð�2
,℘•

2∈℘•

(
max (ð�1/℘•

1,ð�2/℘•
2)

)}
.

3. If Θ2 =

(
χℏ�2

(θ)/℘2, ϱℏ�2
(θ)/℘•

2

)
, then Θc

2 =

(
ϱℏ�2

(θ)/℘•
2, χℏ�2

(θ)/℘2

)
.

Definition 2.3: For two FePHFNs, Θ1 =
(
χℏ·1

(θ)/℘1, ϱℏ·1
(θ)/℘•

1

)
and Θ2 =

(
χℏ·2

(θ)/℘2, ϱℏ·2
(θ)/℘•

2

)
, and a

given λ > 0, their operations are articulated as:

1. Θ1 ⊕Θ2 =

{⋃
ℏ�1∈χℏ�1

,℘1∈℘

ℏ�2∈χℏ�2
,℘2∈℘

(
3
√

ℏ3�1 + ℏ3�2 − ℏ3�1ℏ3�2/℘1℘2

)
,
⋃

ð�1∈ϱℏ�1
,℘•

1∈℘•

ð�2∈ϱð�2
,℘•

2∈℘•

(
ð�1ð�2/℘•

1℘
•
2

)}
.

2. Θ1 ⊗Θ2 =

{⋃
ℏ�1∈χℏ�1

,℘1∈℘

ℏ�2∈χℏ�2
,℘2∈℘

(
ℏ�1ℏ�2/℘1℘2

)
,
⋃

ð�1∈ϱℏ�1
,℘•

1∈℘•

ð�2∈ϱð�2
,℘•

2∈℘•

(
3
√

ð3�1 + ð3�2 − ð3�1ð3�2/℘
•
1℘

•
2)

)}
.

3. ⋋Θ2 =

{⋃
ℏ�2∈χℏ�2

,℘2∈℘

(
3

√
1−

(
1− ℏ3�2

)⋋
/℘2

)⋃
ð�2∈ϱℏ�2

,℘•
2∈℘•

(
ð⋋�2/℘

•
2

)}
.

4. Θ⋋
2 =

{⋃
ℏ�2∈χℏ�2

,℘2∈℘

(
ℏ⋋�2/℘2

)⋃
ð�2∈ϱℏ�2

,℘•
2∈℘•

(
3

√
1−

(
1− ð3�2

)⋋
/℘•

2

)}
.

Definition 2.4: The score function for a FePHFN, represented as Θ =
(
χℏ�∗

(θ)/℘∗, ϱℏ�∗
(θ)/℘•

∗
)
, is defined as

follows:

ℶ(Θ) =

(
1

■Θ

∑
ℏ�i∈χℏ�i

,℘i∈℘

(
ℏ�i℘i

))3

−

(
1

♦Θ

∑
ð�i∈ϱℏ�i

,℘•
i ∈℘•

(
ð�i℘•

i

))3

(3)

where, ■Θ and ♦Θ denote the number of elements in respective sets χℏ�i
and ϱℏ�i

.
Definition 2.5: An accuracy function for any FePHFN, denoted as Θ =

(
χℏ�∗

(θ)/℘∗, ϱℏ�∗
(θ)/℘•

∗
)
, is formulated

as:

ℸ(Θ) =

(
1

■Θ

∑
ℏ�i∈χℏ�i

,℘i∈℘

(
ℏ�i℘i

))3

+

(
1

♦Θ

∑
ð�i∈ϱℏ�i

,℘•
i ∈℘•

(
ð�i℘•

i

))3

(4)
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where, ■Θ and ♦Θ represent the number of elements in χℏ�i
and ϱℏ�i

, respectively.
Definition 2.6: Given FePHFNs Θ1 =

(
χℏ�1

(θ)/℘1, ϱℏ�1
(θ)/℘•

1

)
and Θ2 =

(
χℏ�2

(θ)/℘2, ϱℏ�2
(θ)/℘•

2

)
, the follow-

ing relationships are established:
1. ℶ(Θ1) > ℶ(Θ2) ⇒ Θ1 > Θ2.
2. ℶ(Θ1) < ℶ(Θ2) ⇒ Θ1 < Θ2.
3. If ℶ(Θ1) = ℶ(Θ2), then go for accuracy:

• ℸ(Θ1) > ℸ(Θ2) ⇒ Θ1 > Θ2.
• ℸ(Θ1) < ℸ(Θ2) ⇒ Θ1 < Θ2.
• ℸ(Θ1) = ℸ(Θ2) ⇒ Θ1 ≈ Θ2.

Definition 2.7: For a collection of FePHFNs, termed ∆i =
(
χℏ�i

/℘i, ϱℏ�i
/℘•

i

)
(i = 1, 2, ..., ℓ), and a Fermatean

probabilistic hesitant fuzzy weighted average (FePHFWA) ℓ →, the FePHFWA operator is defined as:

FePHWA(Θ1,Θ2, . . . ,Θℓ) = Ξ1Θ1 ⊕ Ξ2Θ2 ⊕ · · · ⊕ ΞℓΘℓ

=

ℓ∑
i=1

ΞiΘi (5)

where, Ξ = (Ξ1,Ξ2, ...,Ξℓ) are identified as the weights, and Ξi ≥ 0,
∑ℓ

i=1 Ξi = 1.
Definition 2.8: For any collection of FePHFNs, represented as ∆i =

(
χℏ�i

/℘i, ϱℏ�i
/℘•

i

)
(i = 1, 2, ..., ℓ), the

aggregation outcome utilizing the FePHFWA is defined by:

FePHWA(Θ1,Θ2, . . . ,Θℓ) =

{ ⋃
ℏ�i∈χℏ�i
℘i∈℘

3

√√√√1−
ℓ∏

i=1

(
1− (ℏ�i)

3
)Ξ

/

ℓ∏
i=1

℘i,
⋃

ð�i∈ϱℏ�i
℘•

i ∈℘•

ℓ∏
i=1

(ð�2)
Ξ
/

ℓ∏
i=1

℘•
i

}
. (6)

Definition 2.9: Considering a set of FePHFNs, denoted as ∆i =
(
χℏ�i

/℘i, ϱℏ�i
/℘•

i

)
(i = 1, 2, ..., ℓ), and the

Fermatean probabilistic hesitant fuzzy weighted geometric (FePHFWG) operator: FePHFN ℓ → FePHFN, the
FePHFWG operator is articulated as:

FePHWG(Θ1,Θ2, . . . ,Θℓ) = Ξ1Θ1 ⊗ Ξ2Θ2 ⊗ · · · ⊗ ΞℓΘℓ

=

ℓ∏
i=1

ΞiΘi. (7)

where, Ξ = (Ξ1,Ξ2, ...,Ξℓ) are designated as the weights, and Ξi ≥ 0,
∑ℓ

i=1 Ξi = 1.
Definition 2.10: For any collection of FePHFNs, indicated as ∆i =

(
χℏ�i

/℘i, ϱℏ�i
/℘•

i

)
(i = 1, 2, ..., ℓ), the

aggregation result derived from the application of the FePHFWG operator is:

FePHWG(Θ1,Θ2, . . . ,Θℓ) =

{ ⋃
ℏ�i∈χℏ�i
℘i∈℘

ℓ∏
i=1

(ℏ�i)
Ξ
/

ℓ∏
i=1

℘i,
⋃

ð�i∈ϱℏ�i
℘•

i ∈℘•

3

√√√√1−
ℓ∏

i=1

(
1− (ð�i)

3
)Ξ

/

ℓ∏
i=1

℘•
i

}
. (8)

3 FePHFS-CoCoSo Methodology

The objective of this section is to develop an innovative decision-making method termed the Fermatean prob-
abilistic hesitant fuzzy combined compromise solution (FePHFS-CoCoSo), thereby handling MADM situations,
particularly those in which FePHFNs are used to express the decision information. The FePHFS-CoCoSo approach
focuses on using the CoCoSo methodology. The objective is to determine the priority order of different schemes by
using an aggregation operator and a score function that is provided.

This approach combines the previously described models with FePHFS. The purpose is to achieve increased
accuracy and consistency in decision-making when faced with uncertainty. A systematic illustration of the FePHFS-
CoCoSo method’s technique highlights the strategy used to achieve more reasonable and accurate decision analysis
in uncertain circumstances.
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3.1 Construction of a Comprehensive Decision Matrix Incorporating FePHFS for Decision-Making

This subsection focuses on the integration of FePHFS with MADM approaches to manage inherent ambiguity in
scenarios involving decision-making. The best decisions are made when the best possibilities are carefully chosen,
and algorithms are essential to this process. According to this paradigm, an algorithm is a methodical series of
processes that are purposefully created in order to determine the optimal solution for a certain problem. A novel
algorithm integrating FePHFS information is proposed. A collection of α options (ξ = ξ1, ξ2, ..., ξα) and λ criteria
(ς = ς1, ς2, ..., ςβ) can be accommodated by this algorithm. The choice matrix Γ = α×β[λ£ג] includes all these
components. The algorithm provides decision-makers with a methodical tool to navigate intricate decision scenarios
and provides an organized way to handle uncertainty inside the FePHFS framework. Weight vectors, denoted as
Ξh = {Ξ1,Ξ2, ...,Ξλ}, signify the relative importance of various properties.

Algorithm
Step 1: A decision matrix Γ = α×β[λ£ג] was first created. It includes criteria (ςλ) and options ξ£, each of which
has a particular weighting (Ξλ).

Γ = α×β[λ£ג]



(
χℏ�11

/℘11, ϱℏ�11
/℘•

11

) (
χℏ�12

/℘12, ϱℏ�12
/℘•

12

)
· · · · · ·

(
χℏ�1λ

/℘1λ, ϱℏ�1λ
/℘•

1λ

)
(
χℏ�21

/℘21, ϱℏ�21
/℘•

21

) (
χℏ�22

/℘22, ϱℏ�22
/℘•

22

)
· · · · · ·

(
χℏ�2λ

/℘2λ, ϱℏ�2λ
/℘•

2λ

)
...

...
. . .

...
...(

χℏ�£1
/℘£1, ϱℏ�£1

/℘•
£1

) (
χℏ�£2

/℘£2, ϱℏ�£2
/℘•

£2

)
· · · · · ·

(
χℏ�£λ

/℘£λ, ϱℏ�£λ
/℘•

£λ

)


Step 2: The data is normalized. Then particular attention is paid to the attributes related to costs.

Γ♣ =

{
,λ£ג if Benefit Attribute,
,c£λג if Cost Attribute,

where, λ£ג =
(
χℏ�£λ

/℘£λ, ϱℏ�£λ
/℘•

£λ

)
and c£λג =

(
ϱℏ�£λ

/℘•
£λ, χℏ�£λ

/℘£λ

)
.

Step 3: The normalized group decision matrix Γ♣ = α×β[λ£ג] and the FePHFWA operator are utilized to determine
the weighted sum measure.

FePHWA(Θ1,Θ2, . . . ,Θℓ) =

{ ⋃
ℏ�i∈χℏ�i

,℘i∈℘

3

√√√√1−
ℓ∏

i=1

(
1− ℏ3�i

)Ξ
/

ℓ∏
i=1

℘i,
⋃

ð�i∈ϱℏ�i
,℘•

i ∈℘•

ℓ∏
i=1

(ð�2)
Ξ
/

ℓ∏
i=1

℘•
i

}
.

Step 4: The weighted sum measure is determined utilizing the normalized group decision matrix Γ♣ = α×β[λ£ג]

and the FePHFWG operator.

FePHWG(Θ1,Θ2, . . . ,Θℓ) =

{ ⋃
ℏ�i∈χℏ�i

,℘i∈℘

ℓ∏
i=1

(ℏ�2)
Ξ
/

ℓ∏
i=1

℘i,
⋃

ð�i∈ϱℏ�i
,℘•

i ∈℘•

3

√√√√1−
ℓ∏

i=1

(
1− (ð�i)

3
)Ξ

/

ℓ∏
i=1

℘•
i

}
.

Step 5: The weighted product measure, denoted as, ∇(ξi), and the weighted sum measure, denoted as, ℧(ξi), scores
are calculated.
Step 6: The relative importance measure of the scheme is calculated using three appraisal score strategies.

¥1
i =

∇i + ℧i∑£
i=1(∇i + ℧i)

, (9)

¥2
i =

∇i

mini ∇i
+

℧i

mini ℧i
, (10)

¥3
i =

σ∇i + (1− σ)℧i

σmaxi ∇i + (1− σ)maxi ℧i
, σ ∈ [0, 1]. (11)

Step 7: The ultimate appraisal index ¥i was computed by amalgamating the aforementioned three scoring strategies.

¥i =
3

√
¥1

i¥
2
i¥

3
i +

¥1
i +¥2

i +¥3
i

3
. (12)

Step 8: The schemes are arranged in decreasing order based on their ¥i values.
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4 Case Study

Earthquake disaster response planning is of paramount significance in safeguarding communities and minimizing
the devastating impacts of seismic events, which involves the meticulous organization of resources, personnel, and
infrastructure to effectively respond to the immediate aftermath of an earthquake. The significance lies in its
capacity to save lives through swift evacuation, search and rescue operations, and the provision of critical medical
aid. Furthermore, the planning encompasses long-term recovery efforts, emphasizing the restoration of essential
infrastructure for sustained community resilience. The criticality of every instant is emphasized in catastrophe
scenarios. The efficacy of a well-executed response plan is recognized as crucial in determining the difference
between life and death. Prioritizing effective resource allocation, promptly dispatching emergency services, and
restoring critical systems are essential to building communities that can withstand earthquakes.

Making decisions in the framework of earthquake catastrophe response planning is urgent and vital, because
post-earthquake surroundings are dynamic and frequently unpredictable, emergency responders and decision-makers
must act quickly and with knowledge. These choices have an immediate effect on the safety of the impacted people
and set the stage for long-term healing.

The effectiveness of disaster response is acknowledged to be greatly impacted by decisions made regarding the
order of importance for evacuation routes, the deployment of search and rescue teams, the distribution of medical
resources, and the restoration of vital infrastructure. The pressing nature of these choices emphasizes the need for
thorough planning, efficient channels of communication, and the flexibility to adjust plans as conditions change.

Decision-makers in earthquake catastrophe response must weigh immediate life-saving measures against longer-
term rehabilitation initiatives. The distribution of resources, which includes medical care, evacuation planning, and
infrastructure repair, requires a strategic understanding of the particular difficulties posed by seismic disasters as
well as a careful assessment of priorities. The foundation of earthquake disaster response planning is determined to
be effective decision-making. It affects the effectiveness and success of response operations as well as the resilience
of impacted communities in the end.

The preparation for earthquake response includes shelter setting and evacuation (ξ1), search and rescue operations
(ξ2), medical aid and emergency healthcare (ξ3), and infrastructure assessment and restoration (ξ4). A thorough
evacuation strategy is first created. It leads residents toward approved safe areas and makes emergency shelters
with the bare requirements accessible is essential. Search and rescue operations are prioritized to locate and assist
individuals trapped in collapsed buildings or other dangerous situations. In addition, medical triage centers and
emergency healthcare facilities must be established. The purposed is to treat injured patients and provide the required
medical assistance. Finally, to support the entire recovery process, it is essential to quickly analyze and prioritize the
restoration of vital infrastructure, including as roads, bridges, and utility services.

The following factors must be taken into account while analyzing certain criteria for earthquake reaction over
chosen alternatives:

• Impact on saving lives (ς1): Every option’s capacity to preserve lives and safeguard the welfare of the
impacted populace is assessed.

• Resource efficiency (ς2): The efficient utilization of resources, encompassing manpower, equipment, and
supplies, for each alternative is assessed.

• Long-term recovery (ς3): The impact of each alternative on the long-term recovery and resilience of the
community post-earthquake is considered.

Step 1: An analysis is initiated with a FePHF information matrix, denoted as Matrix 3. This matrix encompasses
four alternatives ξ = {ξ1, ξ2, ξ3, ξ4} and three criteria ς = {ς1, ς2, ς3}, as indicated in Table 1. Each criterion is
assigned specific weightings Ξ1 = 0.314,Ξ2 = 0.355,Ξ3 = 0.331.

Table 1. FePHF information matrix analysis

ς1 ς2 ς3
ξ1 (0.2/0.6, 0.3/0.4)(0.3/1) (0.45/1)(0.2/0.6, 0.8/0.4) (0.7/0.9, 0.6/0.1)(0.6/0.7, 0.7/0.3)
ξ2 (0.8/0.3, 0.1/0.7)(0.1/1) (0.5/1)(0.3/0.7, 0.4/0.3) (0.9/0.1)(0.3/0.6, 0.2/0.4)
ξ3 (0.05/0.5, 0.2/0.5)(0.1/1) (0.1/1)(0.3/0.4, 0.4/0.6) (0.5/0.5, 0.6/0.5)(0.3/0.9, 0.1/0.1)
ξ4 (0.4/0.4, 0.6/0.6)(0.5/1) (0.7/1)(0.1/0.5, 0.1/0.5) (0.2/0.1)(0.3/0.2, 0.6/0.8)

Step 2: In this instance, normalization of the data is deemed unnecessary due to the absence of cost requirements.
Steps 3 & 4: The FePHF information matrix (Table 1) is utilized, applying the FePHFWA and the FePHFWG
operators to determine the weighted sum and product measures.
Step 5: The scores for both the weighted sum measure∇(ξi) and the weighted product measure℧(ξi) are determined,
as presented in Table 2.
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Table 2. Score values

∇ (ξi) ℧(ξi)
0.0013 -0.0014
0.0519 0.0125
0.0008 -0.0003
0.0227 0.0077

Steps 6 & 7: The relative importance measure of each scheme is calculated using three distinct appraisal score
strategies, followed by the computation of the ultimate appraisal index ¥i, as illustrated in Table 3.
Step 8: The schemes are ranked in descending order based on their ¥i values, as indicated in Table 3.

Table 3. Computation outcomes of the extended FePHF-CoCoSo method

Alternatives ¥1
i ¥2

i ¥3
i ¥i Ranking

ξ1 -0.0007 2.7145 -0.0010 0.9163 3
ξ2 0.6762 57.8461 1 23.2352 1
ξ3 0.0049 1.2194 0.0073 0.4459 4
ξ4 0.3195 23.7801 0.4726 9.7221 2

5 Conclusion

In summary, this study introduces an innovative approach to earthquake response planning, integrating FePHFSs
and algebraic operations within the framework of decision-making. The critical role of decision-making in re-
sponse planning is emphasized, highlighting the significant impact of aggregation operators in formulating effective
strategies. The novel aggregation operators, derived from the synthesis of algebraic operations and the CoCoSo
method, offer a promising development in enhancing MADM processes. The comprehensive numerical case study
presented herein not only demonstrates the adaptability and efficacy of this methodology but also establishes a robust
framework for addressing the uncertainties inherent in earthquake response planning and decision-making.
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