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Abstract: This investigation explores the scheduling of n jobs on a single machine, where each job possesses a common due date, and processing time is characterized by pentagonal fuzzy numbers (PFNs). The primary objective is to minimize the aggregate of inventory holding and penalty costs, addressing the critical impact of earliness and tardiness on profitability. It is identified that earliness leads to increased inventory carrying costs and potential degradation in product quality, whereas tardiness undermines customer goodwill and inflicts reputational damage through delayed payments. Consequently, the scheduling dilemma that seeks to minimize the combined penalties of earliness and tardiness, whilst adhering to a common due date on a single machine, emerges as a pivotal and challenging endeavor in optimizing goods delivery within production settings. Recognized as a non-deterministic polynomial-time hardness (NP-hard) problem, this task underscores the complexity and competitive nature inherent in manufacturing operations. To navigate the uncertainties embedded in this problem, a fuzzy logic approach, augmented by a heuristic algorithm, is employed. Through this methodology, the problem is addressed in a manner that encapsulates the vagueness and imprecision inherent in processing time, thereby facilitating more resilient and adaptable scheduling decisions. The efficacy of this approach is demonstrated via a computational example, underscoring its potential to enhance decision-making in the realm of job scheduling. 

Keywords: Optimization; Job scheduling problem; Common due date; Earliness; Tardiness; Processing time; Pentagonal fuzzy numbers; Closed interval approximation; Decision making 1 Introduction

Single-machine scheduling (SMS) problems require complex computations; analyzing such problems is vital for better understanding them. Among SMS problems, those related to earliness and tardiness are more important. 

Completing jobs or tasks earlier than their due dates should be discouraged as much as completing jobs or tasks later than their due dates. In the real world, since customer experts receive the product on a specific date, scheduling based on the due date is also an essential task in production planning. Earliness leads to inventory and maintenance carrying costs, while tardiness leads to customer dissatisfaction and loss of goodwill and reputation [1]. Many authors addressed the SMS problem using heuristic and metaheuristic approaches [2–4]. Yazdani et al. [5] studied a scheduling problem with multiple unavailability periods and distinct due dates to minimize the maximum earliness and tardiness of the jobs. Touat et al. [6] studied a new scheduling problem considering both production and flexible preventive maintenance on a single machine with human resources as constraints. They proposed a mathematical formulation of the studied problem expressed in constrained programming as a set of linear constraints. Komaki et al. [7] conducted a joint survey of their templates for assembly flow shops. 

Zadeh [8] first proposed the philosophy of fuzzy sets. Zimmermann [9] introduced fuzzy optimization and linear programming with multiple objective functions. Later, several researchers worked on fuzzy set theory [10–16]. 

Dubois [17] studied the theory and applications of fuzzy sets and systems. Kaufmann and Gupta [18] reviewed
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several fuzzy mathematical models and their applications to engineering and management sciences. Xie et al. [19]

investigated a SMS problem with fuzzy due dates and precedence constraints. Mahavi Mazdeh et al. [20] developed a model for a single-machine bi-criteria scheduling problem aiming to minimize the total delay and work-in-process cost. Chanas and Kasperski [21] investigated two approaches to the SMS problem: fuzzy processing time and fuzzy due dates. Xie et al. [22] introduced a single-machine problem of (n+1) jobs involving a particular fuzzy time delay structure and developed optimal solutions for the scheduling model in several cases. Khalifa [23] considered an SMS problem involving fuzzy due dates to aim to minimize the total penalty cost. El-Wahed Khalifa et al. [24]

applied a closed interval approximation for piecewise quadratic fuzzy numbers to solve the constrained multistage machine flow-shop scheduling problem based on the fuzzy bending approach. Bicakci et al. [25] examined the relationship between setup time and release dates, considering the overall scheduling literature, and also proposed a new mixed-integer linear programming formulation with O(n2) binary decision variables and O(n2) constraints for obtaining the optimal solution. Alharbi and El-Wahed Khalifa [26] introduced a flow shop scheduling problem with a pentagonal processing time of jobs to minimize the rental cost of the machine in compliance with the rental policy. 

Recently, an enormous number of researchers studied scheduling problems in different environments [27–32]. 

In this study, the n-job SMS problem with fuzzy pentagonal common due date and processing time for minimizing the sum of total inventory and penalty costs, whereas earliness and tardiness are harmful to profitability, is considered. 

A fuzzy approach with the help of a heuristic approach is proposed for solving the problem. 

This study is organized in the following sections: Section 2 introduces some necessary preliminary information. 

Section 3 formulates n jobs to be processed on a single machine. A heuristic approach is developed for solving the problem under study in Section 4. Section 5 introduces an example to illustrate the proposed approach. Finally, some concluding remarks are reported in Section 6. 

2 Preliminaries

To easily discuss the problem, basic rules and findings related to fuzzy numbers are recalled, such as PFNs, arithmetic operations of PFNs, closed interval approximation, and its ranking function. 

Definition 1. Proposed by Zadeh [8], a fuzzy set e A is a set of real numbers. R is called fuzzy if its membership function µ (x) : R → [0, 1]. They have the following properties: e

A

(i) µ (x) is an upper semi-continuous membership function; 

e

A

(ii) e

A is a convex fuzzy set, i.e., µ (δx + (1 − δ)y) ≥ min µ (x), µ (y)  for all x, y ∈ R, and 0 ≤ δ ≤ 1 ; e

A

e

A

e

A

(iii) e

A is normal, i.e., ∃x0 ∈ R, for which µ (x0) = 1; 

e

A

(iv) Supp( e

A) = x ∈ R : µ (x) > 0  is the support of e

A, and the closure cl(Supp( e

A)) is a compact set. 

e

A

Definition 2. Proposed by Abbasbandy and Hajiari [33], a fuzzy number ˜

AP = (a1, a2, a3, a4, a5) , a1 ≤ a2 ≤

a3 ≤ a4 ≤ a5 on R is said to be a PFN if its membership function is as follows:



0, 

x < a1, 













x−a1



w1

, for a1 ≤ x ≤ a2, 



a



2 −a1











x−a2



1 − (1 − w1)

, for a2 ≤ x ≤ a3, 



a



3 −a2

µ

=

1, for x = a3, 

e

AP









a4−x



1 − (1 − w2)

, for a3 ≤ x ≤ a4, 



a



4 −a3











a5−x



w2

, for a4 ≤ x ≤ a5, 



a



5 −a4





0, for x > a5. 

Figure 1 shows the graphical representation of the PFN e

AP . 

Definition 3. Let e

AP = (a1, a2, a3, a4, a5), and e

BP = (b1, b2, b3, b4, b5) be two PFNs and v ̸= 0. The arithmetic operations on e

AP , and e

BP are

(i) Addition: e

AP ⊕ e

BP = (a1 + b1, a2 + b2, a3 + b3, a4 + b4, a5 + b5), 

(ii) Subtraction: e

AP ⊖ e

BP = (a1 − b5, a2 − b4, a3 − b3, a4 − b2, a5 − b1), 

(iii) Multiplication: e

AP ⊗ e

BP = (a1b1, a2b2, a3b3, a4b4, a5b5), 





(iv) Division:

a1

e

AP ⊘ e

BP =

, a2 , a3 , a4 , a5 , 

b5

b4

b3

b2

b1





(v) Inverse:

1

e

A−1 =

, 1 , 1 , 1 , 1

, 

P

b5

b4

b3

b2

b1



(ka

(vi) Scaler multiplication: k

1, ka2, ka3, ka4, ka5) mk > 0, 

e

AP =

(ka5, ka4, ka3, ka2, ka1) , k < 0. 
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Figure 1. Graphical representation of PFN

Definition 4. The associated ordinary number corresponds to the PFN e AP = (a1, a2, a3, a4, a5), which is defined





by R

e

AP = b

A = a1+a2+2a3+a4+a5 . 

6

Definition 5. An interval approximation [A] = aL, aU 

α

α

of PFN e

AP is said to be a closed interval approximation if

n

o

n

o

aL = inf

x ∈

≥ 1

= Sup x ∈

≥ 1

α

R : µ

, and aU

α

R : µ

. 

e

AP

2

e

AP

2

Definition 6. If [A] = aL, aU 

α

α

is the closed interval approximation of PFNs, then the associated ordinary number of [A] is denoted by Re[A] and is defined by Re[A] = aL+aU

α

α . 

2

Definition 7. Let [A] = aL, aU 

, bU 

α

α

and [B] = bL

α

α

be two closed interval approximations of PFNs. Then, the

arithmetic operations on [A] and [B] are defined as follows: (i) Addition: [A] ⊕ [B] = aL + bL, aU + bU 

α

α

α

α . 

(ii) Subtraction: [A] ⊖ [B] = aL − bU , aU − bL

α

α

α

α . 



kaL, kaU  , k > 0, 

(iii) Scalar multiplication: k[A] =

α

α

kaU , kaL , k < 0. 

α

α

(iv) Multiplication: [A] ⊗ [B] =  1 aU · bL + aL · bU  , 1 aL · bL + aU · bU . 

2

α

α

α

α

2

α

α

α

α



h



aL





aU

i

α

α



2

, 2

, [B] > 0, bL + bU ̸= 0, 

bL+bU

bL+bU

α

α

(v) Division: [A] ⊘ [B] =

α

α

α

α

h



aU





aL

i

α

α



2

, 2

, [B] < 0, bL + bU ̸= 0. 

bL+bU

bL+bU

α

α

α

α

α

α

Definition 8. The order of relations between e

AP and e

BP based on the associated ordinary number corresponding to the PFNs is defined as follows:









(i) e

AP ≽ e

BP if and only if R e

AP

≥ R e

BP , 









(ii) e

AP ≼ e

BP if and only if R e

AP

≤ R e

BP , 









(iii)

∼

e

AP = e

BP if and only if R e

AP = R e

BP . 

3 Problem Formulation

Considering n jobs to be processed on a single machine, the processing time is denoted as ˜

ti for job i = 1, n. It

P

is assumed that all jobs are ready for processing at time zero and have the same common due date e DP . In addition, 

no more than one job can be processed at any point. Each job i requires exactly one operation, and its processing time ˜

pi is a PFN. If a job i is completed before the due date, its earliness is given by ˜

E

= ˜

d

, where ˜

c

is

P

iP

P − ˜

ciP

iP

the completion time of the job. On the other hand, if a job i is completed after the desired date, its delay is given by e

Tl = ˜

c

− ˜

d

P

iP

P . Each job i has its own unit earliness penalty γi and unit tardiness penalty δi. The problem aims to find the order in which these n jobs should be processed to minimize the sum of total earliness and tardiness costs. 

The problem can be mathematically formulated as

n

X n







o

min

˜

e

F =

γi max dP − ˜

ci , 0 + δ

˜

c

− ˜

d

(1)

P

i max

iP

P , 0

i=1

where, ˜

ci , i = 1, n is the fuzzy completion time of job i, the fuzzy common due date is denoted as ˜

d

P

P , and γi and

δi are the unit penalty costs associated with earliness and tardiness, respectively. 
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4 A Heuristic Approach

In this section, a heuristic approach to minimize the sum of total earliness and tardiness costs can be illustrated in the following steps:

Step 1: After sorting and numbering the n jobs in non-increasing order of processing time ˜

ti , with i = 1, n, it leads

P

to Re ˜t 











1

≥ Re ˜t2 . . . ≥ Re ˜ti−1 ≥ Re ˜ti ≥ Re ˜ti+1 . . . ≥ Re ˜tn , which can be represented in Table 1. 

Table 1. n jobs in non-increasing order of processing time ˜

tiP

Ji

J1

J2

. . . 

Ji−1

Ji

Ji+1

. . . 

Jn

Re ˜

t 













i

Re ˜

t1

Re ˜

t2

. . . 

Re ˜

ti−1 Re ˜ti

Re ˜

ti+1 . . . 

Re ˜

tn

The calculation is as follows:

1. The total processing time T = Pn

Re ˜

t , 

i=1

I

2. f

T0P = ˜

TP ⊖ e

DP , and f

E0P = e

DP . 

Two empty sets, SE = ∅

= ∅

0

and ST

0

, are introduced. 

Step 2: Considering a job J



1 with processing time R ˜

tI

= max Re ˜

ti, i = 1, n , then f

T1P = f

T0P , and

f

E1P = f

E0P are set. 









- If R f

T1P

< R f

E1P , then SE = SE + {J

= ST

1

0

1} and ST

1

0 are set. 









- If R f

T1P

≥ R f

E1P , then ST = ST + {J

= SE

1

0

1} and SE

1

0 are set. 

Step 3: Considering a job Ji with processing time Re ˜ti, i = 1, n, 

- If previous job Ji−1 ∈ SE , then

and

⊖ t

i−1

e

TlP = g

Tl−1P

f

ElP = ]

El−1P

g

l−1P are computed. 

- If previous job Ji−1 ∈ ST , then

⊖ t

and

i−1

e

TlP = g

Tl−1P

g

l−1P

f

ElP = ]

El−1P are computed. 

Step 4: The assignment decision is calculated. 









- If R f

T1P

< R f

E1P , then SE = SE + {J

= ST

1

are set. 

i−1

1} and ST

i

i−1









- If R f

T1P

≥ R f

E1P , then SE = ST

+ {J

= SE

1

are set. 

i−1

i} and SE

i

i−1

Step 5: Iteration terminates when all jobs are assigned to either SE

n or ST

n . 

Step 6: The optimal schedule is ˆ

S = SE, ST  

n

n

, i.e., jobs are scheduled based on their sequencing in SE

n , followed

by ST

n . In this step, SE

n and ST

n are jobs in non-increasing and non-decreasing order of processing time, respectively. 

Remark 1: The procedure only involves n iterations as compared to n ! possible schedules. 

5 Numerical Example

Considering a 10− job scheduling problem with a common due date, then e DP = (30, 35, 45, 50, 60) is tabulated

in Table 2. 

The heuristic approach is applied to determine the optimal scheduling decision as follows: Step 1: The total processing time is estimated. 

10

˜

X

T

˜

P =

ti = (71, 87, 102, 122, 135), 

P

i=1

˜

T0 =

P

e

TP ⊖ e

DP = (71, 87, 102, 122, 135) ⊖ (30, 35, 45, 50, 60) = (11, 37, 57, 87, 132), and f

E0P = e

DP = (30, 35, 45, 50, 60). 

Now, two empty sets, SE =

=

0

∅ and ST

0

∅, are introduced. 

Step 2: Consider a job J1 with ˜

t2

= (18, 19, 20, 21, 22), then

P

f

T1P = f

T0P = (11, 37, 57, 87, 132) and f

E1P =

f

E0P = (30, 35, 45, 50, 60), are set. 









R f

T1P

> R f

E1P

⇒ ST = ST + {J

= SE = {}. 

1

0

1} = {J1} and SE

1

0
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Table 2. Pentagonal fuzzy processing time of the 10- job scheduling problem J

˜

i

tiP

J1

(18, 19, 20, 21, 22)

J2

(14, 17, 18, 20, 21)

J3

(11, 13, 15, 18, 20)

J4

(7, 9, 10, 12, 14)

J5

(6, 8, 9, 11, 13)

J6

(5, 7, 9, 10, 11)

J7

(4, 5, 7, 9, 10)

J8

(3, 4, 6, 8, 9)

J9

(2, 3, 5, 7, 8)

J10

(1, 2, 4, 6, 7)

Total

(71, 87, 102, 122, 135)

Step 3: Considering a job J2 with ˜

t2

= (14, 17, 18, 20, 21), and J

= ˜

T

⊖ ˜

t

=

P

1

∈ ST

1 , then

˜

T2P

1P

1P

(11, 37, 57, 87, 132), ⊖(18, 19, 20, 21, 22) = (−11, 16, 37, 68, 114) and

f

E2p = f

E1p = (30, 35, 45, 50, 60)

are computed. 

The assignment decision is calculated as follows:









R

˜

T2

< R

⇒ SE = SE + {J

= ST = {J

P

f

E2P

2

0

2} = {J2} and ST

2

1

1} . 

Step 4: Considering a job J3 with ˜

t3 = (11, 13, 15, 18, 20), and J

= ˜

T

= (−11, 16, 37, 68, 114)

P

2 ∈ SE

2 , then ˜

T3P

2P

and f

E3P = f

E2P ⊖ ˜ti = (30, 35, 45, 50, 60) ⊖ (14, 17, 18, 20, 21) = (9, 15, 27, 33, 46) are computed. 

P

The assignment decision is calculated as follows:









R

˜

T3

< R

⇒ ST = ST + {J

= SE = {J

P

f

E3p

3

2

3} = {J1, J3} and SE

3

2

2} . 

Step 5: Considering a job J4 with ˜

t4 = (7, 9, 10, 12, 14), and J

= ˜

T

⊖˜

t

= (−11, 16, 37, 68, 114)⊖

P

3 ∈ ST

3 , then ˜

T4P

3P

3P

(11, 13, 15, 18, 20) = (−31, −2, 22, 55, 103)

and

e

E4 =

P

f

E3P = (9, 15, 27, 33, 46) are computed. 

The assignment decision is calculated as follows:









R

˜

T4

< R

⇒ SE = SE + {J

= ST = {J

P

f

E4P

4

3

4} = {J2, J34} and ST

4

3

1, J3} . 

Step 6: Considering a job J5 with ˜

t5 = (6, 8, 9, 11, 13), and J

= ˜

T

= (−31, −2, 22, 55, 103)

P

4 ∈ SE

4 , then ˜

T5P

4P

and

e

E5 =

⊖ ˜

t

= (9, 15, 27, 33, 46) ⊖ (7, 9, 10, 12, 14) = (−15, 3, 17, 24, 37) are computed. 

P

e

E4P

4P

The assignment decision is calculated as follows:









R

˜

T5

< R

⇒ ST = ST + {J

= SE = {J

P

f

E5P

5

4

5} = {J1, J3, J5} and SE

5

4

2, J4} . 

Step 7: Considering a job J6 with ˜

t6 = (5, 7, 8, 10, 11), and J

= ˜

T

⊖˜

t

= (−31, −2, 22, 55, 103)⊖

P

5 ∈ ST

5 , then ˜

T6P

5P

5P

(6, 8, 9, 11, 13) = (−44, −13, 13, 47, 97) and f

E6P = f

E5P = (−15, 3, 17, 24, 37) are computed. 

The assignment decision is calculated as follows:









R

˜

T6

< R

⇒ SE = SE + {J

= ST = {J

P

f

E6P

6

5

6} = {J2, J4, J6} and ST

6

5

1, J3, J5} . 

Step 8: Considering a job J7 with ˜

t7 = (4, 5, 7, 9, 10), and J

= ˜

T

= (−44, −13, 13, 47, 97)

P

6 ∈ SE

6 , then ˜

T7P

6P

and

e

E7 =

⊖ ˜

t

= (−15, 3, 17, 24, 37) ⊖ (5, 7, 8, 10, 11) = (−26, −7, 9, 17, 32) are computed. 

P

e

E6P

6P

15

The assignment decision is calculated as follows: R

˜

T7

< R

⇒ ST = ST + {J

= SE = {J

P

f

E7P

7

6

7} = {J1, J3, J5, J7} and SE

7

5

2, J4, J6} . 

Step 9: Considering a job J8 with ˜

t8 = (3, 4, 6, 8, 9), and J

= ˜

T

⊖˜

t

= (−44, −13, 13, 47, 97)⊖

P

7 ∈ ST

7 , then ˜

T8P

7P

7P

(4, 5, 7, 9, 10) = (−54, −22, 6, 42, 95)

and

e

E8 =

P

f

E7P = (−26, −7, 9, 17, 32) are computed. 

The assignment decision is calculated as follows:









R

˜

T8

< R

⇒ ST = ST + {J

= ST = {J

P

f

E8P

8

7

8} = {J2, J4, J6, J8} and ST

8

7

1, J3, J5, J7} . 

Step 10: Considering a job J9 with ˜

t9 = (2, 3, 5, 7, 8), and J

= ˜

T

= (−54, −22, 6, 42, 95)

P

8 ∈ SE

8 , then ˜

T9P

8P

and f

E9P = f

E8P ⊖ ˜t8P = (−26, −7, 9, 17, 32) ⊖ (−54, −22, 6, 42, 95) = (−121, −49, 3, 33, 86) are computed. 

The assignment decision is calculated as follows:









R

˜

T9

< R

⇒ ST = ST + {J

= SE = {J

P

g

E9P

9

8

9} = {J1, J3, J5, J7, J9} and SE

9

8

2, J4, J6, J8} . 

Step 11: Considering a job J10 with ˜

t10 = (1, 2, 4, 6, 7), and J

⊖˜

t

= ˜

T

= (−54, −22, 6, 42, 95)⊖

P

9 ∈ ST

9 , then ˜

T9P

9P

8P

(2, 3, 5, 7, 8) = (−62, −29, 1, 71, 93)

and

g

E10P = f

E9P = (−121, −49, 3, 33, 86) are computed. 

The assignment decision is calculated as follows:









R

˜

T

˜

10

< R E

⇒ SE = ST E + {J

= ST = {J

P

10P

10

9

10} = {J2, J4, J6, J8, J10} and ST

10

9

1, J3, J5, J7, J9} . 

At the end of the iteration, all jobs are assigned to either SE

10 or ST

10. 

It is noted that jobs SE = {J

=

10

2, J4, J6, J8, J10} are in the required non-increasing order, while jobs in ST

10

{J1, J3, J5, J7, J9} are in the non-decreasing order (not required). Thus, the fuzzy optimal schedule is given by ˆ

S = {J2, J4, J6, J8, J10; J9, J7, J5, J3, J1}, which can be illustrated in Table 3. 

Table 3. The fuzzy optimal schedule







J

˜





i

ti

˜

c

R (˜

c

) − R

P

iP

i

e

DP



P



J2

(14, 17, 18, 20, 21)

(14, 17, 18, 20, 21)

27

J4

(7, 9, 10, 12, 14)

(21, 26, 28, 32, 35)

17

J6

(5, 7, 8, 10, 11)

(26, 33, 36, 42, 46)

9

J8

(3, 4, 6, 8, 9)

(29, 37, 42, 50, 55)

3

J10

(1, 2, 4, 6, 7)

(30, 39, 46, 56, 62)

1

J9

(2, 3, 5, 7, 8)

(32, 42, 51, 63, 70)

6

J7

(4, 5, 7, 9, 10)

(36, 47, 58, 72, 80)

13

J5

(6, 8, 9, 11, 13)

(42, 55, 67, 83, 93)

22

J3

(11, 13, 15, 18, 20)

(53, 68, 82, 101, 113)

37

J1

(18, 19, 20, 21, 22)

(71, 87, 102, 122, 135)

57

Sum

—

—

192







Therefore, ˆ

V = P10 R (˜

c

) − R

= 192 (days). 

i=1

i

e

DP



P



Now, a few selected schedules, S1 = {J1, J2J3, J4J5, J6J7, J8J9, J10}, are computed for comparison. 







Hence, ˆ

V





1 = P10

R (˜

c

) − R

= 320 (days), and S

i=1

i

e

DP

2 = {J9, J7J5, J3J1, J2J4, J6J8, J10}. 



P









Hence, ˆ

V





2 = P10

R (˜

c

) − R

=342(days). 

i=1

i

e

DP



P



It is evident that all of the schedules illustrated in Tables 4 and 5 give the total earliness and tardiness of more than 192 (days). 
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Table 4. The first comparison







J

˜





i

ti

˜

c

R (˜

c

) − R

P

iP

i

e

DP



P



J1

(18, 19, 20, 21, 22)

(18, 19, 20, 21, 22)

25

J2

(14, 17, 18, 20, 21)

(32, 36, 38, 41, 43)

7

J3

(11, 13, 15, 18, 20)

(43, 49, 53, 59, 63)

8

J4

(7, 9, 10, 12, 14)

(50, 58, 63, 71, 77)

18

J5

(6, 8, 9, 11, 13)

(56, 66, 72, 88, 90)

27

J6

(5, 7, 8, 10, 11)

(61, 73, 80, 98, 101)

35

J7

(4, 5, 7, 9, 10)

(65, 78, 87, 107, 111)

42

J8

(3, 4, 6, 8, 9)

(68, 82, 93, 115, 120)

48

J9

(2, 3, 5, 7, 8)

(70, 85, 98, 122, 128)

53

J10

(1, 2, 4, 6, 7)

(71, 87, 102, 122, 135)

57

Sum

—

—

320

Table 5. The second comparison







J

˜





i

ti

˜

c

R (˜

c

) − R

P

iP

i

e

DP



P



J9

(2, 3, 5, 7, 8)

(2, 3, 5, 7, 8)

40

J7

(4, 5, 7, 9, 10)

(6, 8, 12, 16, 18)

33

J5

(6, 8, 9, 11, 13)

(12, 16, 21, 27, 31)

24

J3

(11, 13, 15, 18, 20)

(23, 29, 36, 45, 51)

9

J1

(18, 19, 20, 21, 22)

(41, 48, 56, 66, 73)

9

J2

(14, 17, 18, 20, 21)

(55, 65, 74, 86, 94)

29

J4

(7, 9, 10, 12, 14)

(62, 74, 84, 98, 108)

39

J6

(5, 7, 8, 10, 11)

(67, 81, 92, 108, 119)

47

J8

(3, 4, 6, 8, 9)

(70, 85, 98, 116, 128)

53

J10

(1, 2, 4, 6, 7)

(71, 87, 102, 122, 135)

57

Sum

—

—

342

An Alternative Approach

For individuals requiring elevated precision in their analytical endeavors, an alternative methodology is herein proposed. Initially, optimization is conducted utilizing the associated ordinary number Re[A] = aL+aU

α

α . Subse-

2

quently, the true optimization is computed using V for the closed interval approximation at α = 1 . 

2

An approach is delineated whereby approximations of closed intervals, derived from PFNs, are subjected to opti-h

i

mization. This procedure is depicted in Table 6. Table 7 shows the calculation of Re [˜

c





i

] and Re [˜

c

] − Re

, 

P

i

e

DP



P



h

i

with

e

DP = [35, 50]. 







Therefore, ˆ

V = P10 R (˜

c

) − R

= 199 (days). 

i=1

i

e

DP



P



This process can be extended to other types of scheduling problems. In addition, it is noted that hybrid numbers can be used in some particular cases. 
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Table 6. Closed interval approximation of processing time for the 10-job scheduling problem J

˜

i

tiP

J1

[19, 21]

J2

[17, 20]

J3

[13, 18]

J4

[9, 12]

J5

[8, 11]

J6

[7, 10]

J7

[5, 9]

J8

[4, 8]

J9

[3, 7]

J10

[2, 6]

Total

[87, 122]

Table 7. Closed interval approximation of the optimal schedule h

i

J

˜





i

ti

Re [˜

c

]

Re [˜

c

] − Re

P

iP

i

e

DP



P



J2

[17, 20]

[17, 20]

26.5

J4

[9, 12]

[26, 32]

16

J6

[7, 10]

[33, 42]

7.5

J8

[4, 8]

[37, 50]

1.5

J10

[2, 6]

[39, 56]

2.5

J9

[3, 7]

[42, 63]

7.5

J7

[5, 9]

[47, 72]

14.5

J5

[8, 11]

[55, 83]

24

J3

[13, 18]

[68, 101]

39.5

J1

[19, 21]

[87, 122]

59.5

Sum

—

—

199

6 Conclusions and Future Works

In the conducted study, a heuristic approach was employed to optimize the aggregate costs associated with earliness and tardiness in a scheduling problem for n jobs on a SMS, wherein processing time was characterized by PFNs. The integration of a common due date was a pivotal aspect of the research, aimed at addressing the complexities of scheduling within uncertain operational environments. This approach involved only n iterations and was computationally expensive for large problems. In addition, it has been assumed that the unit earliness and tardiness costs are constant for all jobs. The advantages of this approach are that it can be applied to multiple machines, development in supply chain management, the Internet, and e-commerce. In the future, this study might be extended to other fuzzy-like structures, i.e., neutrosophic set, interval-valued fuzzy set, spherical fuzzy set, pythagorean fuzzy set, etc. In addition, new fuzzy systems can be considered, such as interval type-2, interval type-3, possibility interval-valued intuitionistic fuzzy set, possibility neutrosophic set, possibility interval-valued neutrosophic set, possibility interval-valued fuzzy set, possibility fuzzy expert set, etc., with applications in decision-making. 
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Abstract: This investigation explores the scheduling of n jobs on a single machine, where each job possesses a
common due date, and processing time is characterized by pentagonal fuzzy numbers (PFNs). The primary objective
is to minimize the aggregate of inventory holding and penalty costs, addressing the critical impact of earliness and
tardiness on profitability. It is identified that carliness leads to increased inventory carrying costs and potential
degradation in product quality, whereas tardiness undermines customer goodwill and inflicts reputational damage
through delayed payments. Consequently, the scheduling dilemma that seeks to minimize the combined penalties
of carliness and tardiness, whilst adhering to a common due date on a single machine, emerges as a pivotal and
challenging endeavor in optimizing goods delivery within production settings. Recognized as a non-deterministic
polynomial-time hardness (NP-hard) problem, this task underscores the complexity and competitive nature inherent
in manufacturing operations. To navigate the uncertainties embedded in this problem, a fuzzy logic approach,
augmented by a heuristic algorithm, is employed. Through this methodology, the problem is addressed in a manner
that encapsulates the vagueness and imprecision inherent in processing time, thereby facilitating more resilient
and adaptable scheduling decisions. The efficacy of this approach is demonstrated via a computational example,
underscoring its potential to enhance decision-making in the realm of job scheduling.

Keywords: Optimization; Job scheduling problem; Common due date; Earliness; Tardiness; Processing time;
Pentagonal fuzzy numbers; Closed interval approximation; Decision making

1 Introduction

Single-machine scheduling (SMS) problems require complex computations; analyzing such problems is vital
for better understanding them. Among SMS problems, those related to earliness and tardiness are more important.
Completing jobs or tasks earlier than their due dates should be discouraged as much as completing jobs or tasks later
than their due dates. In the real world, since customer experts receive the product on a specific date, scheduling
based on the due date is also an essential task in production planning. Earliness leads to inventory and maintenance
carrying costs, while tardiness leads to customer dissatisfaction and loss of goodwill and reputation [1]. Many
authors addressed the SMS problem using heuristic and metaheuristic approaches [2—4]. Yazdani et al. [5] studied a
scheduling problem with multiple unavailability periods and distinct due dates to minimize the maximum earliness
and tardiness of the jobs. Touat et al. [6] studied a new scheduling problem considering both production and flexible
preventive maintenance on a single machine with human resources as constraints. They proposed a mathematical
formulation of the studied problem expressed in constrained programming as a set of linear constraints. Komaki et
al. [7] conducted a joint survey of their templates for assembly flow shops.

Zadeh [8] first proposed the philosophy of fuzzy sets. Zimmermann [9] introduced fuzzy optimization and linear
programming with multiple objective functions. Later, several researchers worked on fuzzy set theory [10-16].
Dubois [17] studied the theory and applications of fuzzy sets and systems. Kaufmann and Gupta [18] reviewed
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