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Abstract: The Spherical fuzzy rough set (SFRS), which is based on approximations and is handled in this work, is a key
idea for handling uncertainty when data is taken from real-world situations. The most adaptable operational laws based
on the parameter for fuzzy frameworks are the Aczel-Alsina t-norm (AATN) and Aczel-Alsina t-conorm (AATCN),
which are crucial for data interpolation. In this paper, operators based on AATN and AATCN are developed: spherical
fuzzy rough Aczel-Alsina weighted geometric (SFRAAWG), spherical fuzzy rough Aczel-Alsina ordered weighted
geometric (SFRAAOWG), and spherical fuzzy rough Aczel-Alsina hybrid weighted geometric (SFRAAHWG). A
few fundamental properties of the generated SFRAAWG, SFRAAOWG, and SFRAAHWG operators are defined
and given examples. The multi-criteria decision-making (MADM) problem is applied to the developed SFRAAWG
operator. Additionally, the sensitivity of the SFRAAG operator is examined. The developed AOs are compared to a
few pre-existing AOs and their significance is evaluated.

Keywords: Spherical fuzzy set (SFS); Rough set (RS); Spherical fuzzy rough set (SFRS); Aczel-Alsina t-norm
(AATN); Aczel-Alsina t-conorm (AATCN); Multi-criteria decision-making (MADM)

1 Introduction

We resolve the MADM problem in this paper. Decision makers can use the defined decision alternatives when the
decision environment is complex. The lack of complete information could affect the results of decisions. The fuzzy
set (FS) theory was first presented by Zadeh [1]. In this theory, an element’s belongingness to a set is described by its
membership grade (MG). On occasion, it is demonstrated that the applicability of the FS concept is limited. For
instance, all information pertaining to two or more aspects is independent of the other. With the aid of an MG and a
non-membership grade (NMG), Atanassov [2] introduced the intuitionistic FS (IFS), a adjusted version of the FS
that can holder complex and indefinite data. The IFS theory has been functional to many different problems and has
gathered a lot of helpfulness [2]. The IFS data set is limited, though, and is predicated on the illogical requirement that
the total of MG and NMG lie inside the unit [0,1]. Yager [3] introduced the idea of Pythagorean fuzzy sets (PyFS), a
modified form of IFS, to deal with messy and erroneous data. Like IFS, PyFS has a controlled range and is based on
the condition that the sum of the squares for MG and NMG fall confidential the assortment [0,1]. (0.5, 0.9) cannot be
observed as a PyFV if the sum of the squares of the MG and NMG for a particular PyFV exceeds the unit interval, for
instance, if MG is set at 0.5 and NMG is set at 0.9. To solve this issue, Yager [4] produced the q-rung orthopair fuzzy
set (q-ROFS), which can handle complex and uncertain conditions, such as the effort mentioned above. A q-ROF
value (q-ROFV) is a pair of MG and NMG such that the sum of their particular q powers must fall within the unit
interval. We can choose any MG and NMG from [0,1] for each duplet (MG, NMG) by using the parameter q. The q is
such that 0 ≤ MGq +NMGq ≤ 1. There is also a certain amount of abstinence and refusal in human opinion. This
suggests that these kinds of perplexing problems are beyond the capabilities of the earlier generalized form of FS
structures. Cuong and Kreinovich [5] first defined a Picture Fuzzy Set (PFS) that includes abstinence great (AD),
MG, and NMG in order to address these kinds of problems. PFS’s range is likewise contained in the interval [0,1].
Subsequently, Mahmood et al. [6] proposed that the spherical FS (SFS) is the generalized form of PFS. After making
some modifications, Ullah et al. [7] introduced a new concept known as the spherical FS (SFS) by taking the qth.

Helmers and Weiss [8] developed the idea of assessing the battery life cycle using MADM. Helmers et al. [9]
introduced the concept of a life cycle evaluation based on real data from MADM for electric vehicles. Lundström and
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Hellström [10] increased the app’s scope for assessing electric automobiles. Stopka et al. [11] evaluated electric car
charging with the use of a traction supply system based on MADM. Wieckowski et al. [12] conducted a careful and
complex analysis to advance the theory on electric vehicles in MADM. Naeem and Ali [13] presented the concept of
AASF AOs and its application in solar energy. Ali and Naeem [14] developed the concept of AA AOs in the context of
MADM. Ali [15] advanced the theory of analysis on AA AOs in SF, demonstrating its application in MADM. Hussain
et al. [16] applied MADM to the evaluation of solar panels. Akram et al. [17] provided a theoretical foundation on
AA AOs with applications in energy resources. Shahabad et al. [18] formulated a theory of energy planning using
SFAOs. Akram and Ashraf [19] introduced the concept of SFRs in MADM. Zheng et al. [20] developed the theory of
SFRs employing the average aggregation operator and its applications in MADM. Zeng et al. [21] proposed a new
concept of SFRs in a hybrid model with the TOPSIS method. Huang et al. [22] discussed the concept of SFRs with
applications in MADM. Mohammad et al. [23] utilized SFRs in smart e-tourism data management. Hashmi et al. [24]
applied SFRs in MADM. Hussain and Pamucar [25] used rough sets with Schweizer-Sklar TNM and TCM. Hussain
et al. [26] presented the concept of PyFRS with the AA aggregation operator. Sarfraz [27] discussed the application
of MADM in the context of recycled water.

An important role in information aggregation is played by the t-norm (TNM) and t-conorm (TCNM) [28].
Numerous TNM and TCNM varieties have been introduced, based on various variables. To name a few, Dombi [29]
were instances of TNMs and TCNMs. Consequently, these TNMs and TCNMs have been used to create a number of
AOs. The foundation for AOs [30, 31] is the Frank TNM and TCNM. The AOs [32] originate from the Einstein
TNM and TCNM. The core elements of the AOs [33, 34] are the Einstein TNM and TCNM. Moreover, AOs begin
with Einstein TNM and TCNM [35]. AOs in are predicated on Frank’s TCNM and TNM [36, 37]. Moreover, AOs
are based on Frank TNM and TCNM [38]. Important operational laws known as AATNM and AATCNM were
introduced by Aczél and Alsina [39] and help with the fusion of information based on parameters. The flexibility
of the AATNM and AATCNM makes them appropriate for use with any fuzzy framework. Senapati et al. [40]
introduced the concepts of AATCNM and the AATNM to resolve the MADM problem. Its application is also made
feasible by the significance of the AATNM and AATCNM [41].

SFRS is a tool for handling imprecise and imperfect data since it can remove unimportant characteristics early
on and aggregate information based on approximations. As discussed above, in order to get around MADM issues,
researchers have developed AOs for a SFRS framework based on different TNMs and TCNMs. Furthermore,
Figueroa-Garcı́a [42] assessed multiple TNM and TCNM types and found that the AATNM and AATCNM were the
most advantageous and versatile in the combination of data. We found that the literature lacks geometric AOs for the
SFRS based on AATNM and AATCNM. The objective of this work is to determine the geometric AOs (GAOs) for
SFRS based on AATNM and AATCNM.

This article’s main contribution is as follows.
• To begin with, in order to address the SFRVs, new operational laws have been introduced. As a result, AATNM

and AATCNM are the foundation for a few basic SFRV operations.
• We have created some new methods for the fusion of data in the form of the SFRV collection, based on the

operational laws for the SFRVs that were developed using the AATNM and AATCNM. In this study, the
operators SFRAAWG, SFRAAOWG, and SFRAAHWG are developed.

• We look into a few basic and required requirements for the developed operators.
• An algorithm is given to explain how the developed AOs are applied in the section of Solar Panel, demonstrating

the use of the suggested operators.
• The application of the suggested AOs in the section of Solar Panel is demonstrated by solving a numerical

example.
• The obtained results are compared with some previous results to provide justification.
Section 2 presents the basic ideas for developing the GAOs for SFRS based on AATNM and AATCNM. Section 3

develops the procedures for SFRS values (SFRVs) based on the AATNM and AATCNM. Based on the operational
laws for SFRVs, the SFRAAWG, SFRAAOWG, and SFRAAHWG operators are developed in Section 3. A number
of essential traits are also mentioned and illustrated in Section 3. Section 4 suggests how to use the newly created
SFRAAWG operator. Section 4 also contains the resolution to the SFRAAWG operator’s MAGDM problem. In
Section 4, the obtained results are analyzed at different parameter values and then compared with earlier studies. The
results are graphically displayed and tabulated. The research is finally summarized in Section 5.

2 Methodology

We go over some fundamental ideas in this section, including SFS, RS, SFRS, and the score function for SFR
values (SFRVs), AATN, and AATCN.
Definition 1 [2]: Let P represent the cosmos. Then, an expression defined as an SFS in P is

Z =
{
z,
(
ξz, Ϋz, bz

)
: z ∈ P

}
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In this case, Ϋz : P → [0, 1], ξz : P → [0, 1], bz : P → [0, 1] such that the requirement 0 ≤ n2z+Ϋ2
z+b2z ≤ 1. The

MD,AD, and NMD are represented by the numbers ξz, Ϋz and bz . Let Z =
(
ξz, Ϋz, bz

)
, ZQ =

(
ξzQ, ΫzQ, bzQ

)
for Q = 1, 2 are two SFVs and b > 0 be any real number. The SFVs’ fundamental functions are then listed below.

1. Z1 ∪ Z2 =
(
∨ (ξz1, ξz2) ,∧

(
Ϋz1, Ϋz2

)
,∧ (bz1, bz2)

)
;

2. Z1 ∩ Z2 =
(
∧ (ξz1, ξz2) ,∨

(
Ϋz1, Ϋz2

)
,∨ (bz1, bz2)

)
;

3. Z1 ⊕ Z2 =
(√

ξ2z1 + ξ2z2 − ξ2z1ξ
2
z2, Ϋz1, Ϋz2, bz1, bz2

)
;

4. Z1 ⊗ Z2 =

(
ξz1ξz2,

√
Ϋ2

z1 + Ϋ2
z1 − Ϋ2

z1Ϋ
2
z1,

√
b2z1 + b2z1 − b2z1b

2
z1

)
;

5. Zc =
(
Ϋz, ξz, bz

)
, where Zc is the complement of the SFV Z;

6. σZ =

(√
1− (1− ξ2Z)

σ
, Ϋσ

Z , b
σ
Z

)
;

7. Zσ =

(
ξσZ ,

√
1−

(
1− Ϋ2

Z

)σ

,
√
1− (1− b2Z)

σ
)

.

Definition 2 [43]: Let Ω ∈ P × P be a relation, and let P be the universe. Next
1. Ω is reflexive iff (λ, λ)∀λ ∈ P
2. Ω is symmetric if (λ,ℵ) ∈ Ω then (ℵ, λ) ∈ Ω∀λ,ℵ ∈ P
3. Ω is transitive if ∀λ,ℵ, ω ∈ P if (ℵ, ω) ∈ Ω and (ω, λ) ∈ Ω then (ℵ, λ) ∈ Ω

Definition 3 [43]: Let P be the universal set and Ω be the relation. Compared to mapping Ω∗ : P → A(P ) is

Ω∗(a) = {λ ∈ P : (a, λ) ∈ Ω}, for a ∈ P

where, (P,Ω) is referred to as the crisp space of the approximation and Ω∗(a) is designated as the successor
neighborhood of an element a concerning Ω. The definitions of the LA and UA for any set W ⊆ P are given below.

ΩLA(W) = {λ ∈ Ω | Ω∗(λ) ⊆ W}
ΩUA(M) = {λ ∈ Ω | Ω∗(λ) ∩W ̸= ϕ}

The set
{(

ΩLA(W),ΩUA(W)
)}

m is said to be an RS based on LA and UA.
Definition 4 [43]: Let Ω be the relation from SFS(P × P ) and P be the universal set. Then

1. Ω is reflexive iff nΩ(λ, λ) = 1 and ΫΩ(λ, λ) = 0∀λ ∈ P
2. Ω is symmetric if ∀(λ,ℵ) ∈ P × P then ξΩ(ℵ, λ) = ξΩ(λ,ℵ)∀λ,ℵ ∈ P and ΫΩ(ℵ, λ) = ΫΩ(λ,ℵ)
3. Ω is transitive if ∀λ,ℵ, ω ∈ P if (ℵ, ω) ∈ Ω and (ω, λ) ∈ Ω then ξΩ(ℵ, λ) ≥

∨
[ξΩ(ℵ, ω) ∧ ξΩ(ω, λ)] and

ΫΩ(ℵ, λ) ≥
∧[

ΫΩ(ℵ, ω) ∧ ΫΩ(ω, λ)
]
.

Definition 5 [44]: The SF space of the approximation is defined as (P,Ω) where P is the universal set and Ω ∈
P × P is the SF relation. The definitions of the SFLA and SFUA are given below for any set W ⊆ SFS(P )

ΩSFUA(W) =
{
λ, ξΩSFUA(W)(λ), ΫΩSFUA(W)(λ), bΩSLUA(W)(λ) | λ ∈ P

}

ΩSFLA(W) =
{
λ, ξΩSFLA(W)(λ), ΫΩSFLA(W)(λ), bΩSLLA(W)(λ) | λ ∈ P

}
where,

ξΩSFUA(W)(λ) =
∨
ℵ∈P

[
ξΩ(λ)(λ,ℵ) ∨ ξW(λ)

]

ΫΩSFUA(W)(λ) =
∧
ℵ∈P

[
ΫΩ(λ)(λ,ℵ) ∧ ΫW(λ)

]

bΩSFUA(W)(λ) =
∧
ℵ∈P

[
bΩ(λ)(λ,ℵ) ∧ ΫW(λ)

]

ξΩSFUA(W)(λ) =
∧
ℵ∈P

[
ξΩ(λ)(λ,ℵ) ∧ ξW(λ)

]
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ΫΩSFLA(W)(λ) =
∨
ℵ∈P

[
ΫΩ(λ)(λ,ℵ) ∨ ΫW(λ)

]

bΩSFLA(W)(λ) =
∨
ℵ∈P

[
bΩ(λ)(λ,ℵ) ∨ ΫW(λ)

]
With condition0 ≤ ξΩSFUA(W)(λ)+ΫΩSFUA(W)(λ)+bΩSFUA(W)(λ) ≤ 1 and 0 ≤ ξΩSFLA(W)(λ)+ΫΩSFLA(W)(λ)+

bΩSFLA(W)(λ) ≤ 1. The set
{(

ΩSFLA(W),ΩSFUA(W),ΩSFUA(W)
)}

is said to be an SFRS based on SFLA and
SFUA.
Definition 6 [39]: The definition of the AATN and

𭟋Θ
X (U , β) =


𭟋C(U , β) if Θ = 0

min(U , β) if Θ → ∞
e−((− lnU)Θ+(− lnU)Θ)

1/Θ

otherwise.

And AATCN is defined as

SΘ
X (U , β) =


𭟋C(U , β) if Θ = 0

max(U , β) if Θ → ∞

1− e
−
(
(− ln(1−U2))

Θ
+(− ln(1−β2))

Θ
)1/Θ

otherwise.

where, Θ ∈ [0,∞].

3 Aggregation Operators Based on AATN and AATCN

The operational laws of SFRVs based on the AATN and AATCN are contained in this section.
Definition 7: Let R̂Q =

((
ξℵbQ , Ϋℵb

Q , bℵbQ

)
,
(
ξ∂bQ , Ϋ∂b

Q , b∂bQ

))
, Q = 1, 2 be the assembly of SFRVs. Then

R̂1 ⊕ R̂2 =



√
1− e

−
(
(−ℵn(1−(ξℵb

1 )2))Θ+(−ℵn(ξℵb
2 )2)Θ

)1/Θ

,

e
−
((

−ℵnΫℵb
1

)Θ
+
(
−ℵnΫℵb

2

)Θ
)1/Θ

,

e
−
((

−ℵnbℵb
1

)Θ
+
(
−ℵnbℵb

2

)Θ
)1/Θ





√
1− e

−
(
(−ℵn(1−(ξ∂b

1 )2))Θ+(−ℵn(ξ∂b
2 )2)Θ

)1/Θ

,

e
−
((

−ℵnΫ∂b
1

)Θ
+
(
−ℵnΫ∂b

2

)Θ
)1/Θ

,

e
−
((

−ℵnb∂b
1

)Θ
+
(
−ℵnb∂b

2

)Θ
)1/Θ




R̂1 ⊗ R̂2 = (1)



√
1− e

−
(
(−ℵn(1−(ξℵb

1 )2))Θ+(−ℵn(ξℵb
1 )2)Θ

)1/Θ

,

e
−
((

−ℵnΫℵb
1

)Θ
+
(
−ℵnΫℵb

2

)Θ
)1/Θ

,

e
−
((

−ℵnbℵb
1

)Θ
+
(
−ℵnbℵb

2

)Θ
)1/Θ





√
1− e

−
(
(−ℵn(1−(ξ∂b

1 )2))Θ+(−ℵn(ξ∂b
1 )2)Θ

)1/Θ

,

e
−
((

−ℵnΫ∂b
1

)Θ
+
(
−ℵnΫ∂b

2

)Θ
)1/Θ

,

e
−
((

−ℵnb∂b
1

)Θ
+
(
−ℵnb∂b

2

)Θ
)1/Θ




Definition 8: Let R̂Q =

((
ξℵbQ , Ϋℵb

Q , bℵbQ

)
,
(
ξ∂bQ , Ϋ∂b

Q , b∂bQ

))
, Q = 1, 2, · · · ,Λ be the assembly of the SFRVs and

wQ is the weight of the Qth SFRV such that
∑Λ

Q=1 wQ = 1. Then

SFRAAWG(R̂1, R̂2, · · · , R̂Λ) =

Λ⊗
Q=1

R̂
wQ

Q =


e
−
(∑Λ

Q=1(−ℵn(ξℵb
Q ))

Θ
)1/Θ

,√
1− e

−
(∑Λ

Q=1(−ℵn(1−Ϋℵb
Q ))

Θ
)1/Θ

,√
1− e

−
(∑Λ

Q=1(−ℵn(1−bℵb
Q ))

Θ
)1/Θ




e
−
(∑Λ

Q=1(−ℵn(ξ∂b
Q ))

Θ
)1/Θ

,√
1− e

−
(∑Λ

Q=1(−ℵn(1−Ϋ∂b
Q ))

Θ
)1/Θ

,√
1− e

−
(∑Λ

Q=1(−ℵn(1−b∂b
Q ))

Θ
)1/Θ

 (2)

The following investigation is made into some SFRAAWG operator attributes.
In Theorem 1, we explain that the SFRAAWG operator’s aggregated value is also an SFRV.
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Theorem 1: Let R̂Q =
((

ξℵbQ , Ϋℵb
Q , bℵbQ

)
,
(
ξ∂bQ , Ϋ∂b

Q , b∂bQ

))
, Q = 1, 2, · · · ,Λ be the assembly of the SFRVs and

wQ is the weight of the Qth SFRV. Then the value obtained after the aggregation is SFRV and

SFRAAWG(R̂1, R̂2, · · · , R̂Λ) =
e
−
(∑Λ

Q=1(−ℵn(ξℵb
Q ))

Θ
)1/Θ√

1− e
−
(∑Λ

Q=1(−ℵn(1−(Ϋℵb
Q )2))

Θ
)1/Θ√

1− e
−
(∑Λ

Q=1(−ℵn(1−(bℵb
Q )2))

Θ
)1/Θ




e
−
(∑Λ

Q=1(−ℵn(ξ∂b
Q ))

Θ
)1/Θ√

1− e
−
(∑Λ

Q=1(−ℵn(1−(Ϋ∂b
Q )2))

Θ
)1/Θ√

1− e
−
(∑Λ

Q=1(−ℵn(1−(b∂b
Q )2))

Θ
)1/Θ


Proof: We prove Theorem 1 in the following way by applying the mathematical induction principle.

First, we check for Λ = 2

SFRAAWG(R̂1, R̂2) =
e
−
(∑2

Q=1(−ℵn(ξℵb
Q ))

Θ
)1/Θ√

1− e
−
(∑2

Q=1(−ℵn(1−(Ϋℵb
Q )2))

Θ
)1/Θ√

1− e
−
(∑2

Q=1(−ℵn(1−(bℵb
Q )2))

Θ
)1/Θ




e
−
(∑2

Q=1(−ℵn(ξ∂b
Q ))

Θ
)1/Θ√

1− e
−
(∑2

Q=1(−ℵn(1−(Ϋ∂b
Q )2))

Θ
)1/Θ√

1− e
−
(∑2

Q=1(−ℵn(1−(b∂b
Q )2))

Θ
)1/Θ


Which is an SFRV.
Now, consider Eq. (2) true for Λ = n

SFRAAWG(R̂1, R̂2, . . . , R̂n) =
e
−
(∑n

Q=1(−ℵn(ξℵb
Q ))

Θ
) 1

Θ√
1− e

−
(∑n

Q=1(−ℵn(1−(Ϋℵb
Q )2))

Θ
) 1

Θ√
1− e

−
(∑n

Q=1(−ℵn(1−(bℵb
Q )2))

Θ
) 1

Θ




e
−
(∑n

Q=1(−ℵn(ξ∂b
Q ))

Θ
) 1

Θ√
1− e

−
(∑n

Q=1(−ℵn(1−(Ϋ∂b
Q )2))

Θ
) 1

Θ√
1− e

−
(∑n

Q=1(−ℵn(1−(b∂b
Q )2))

Θ
) 1

Θ


We have to prove Eq. (2) true for Λ = n+ 1, which is as follows:

SFRAAWG(R̂1, R̂2, . . . , R̂n, R̂n+1) =
e
−
(∑n

Q=1(−ℵn(ξℵb
Q ))Θ+(−ℵn(ξℵb

n+1))
Θ
) 1

Θ

,√
1− e

−
(∑n

Q=1(−ℵn(1−(Ϋℵb
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
Next, we have,

SFRAAWG(R̂1, R̂2, . . . , R̂n+1) =
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
Which is SFRV. Hence proof is completed.
In Theorem 1, we prove that the SFRAAWG operator is idempotent.

Theorem 2 (Idempotency): Let R̂Q = ((ξℵbQ , Ϋℵb
Q , bℵbQ ), (ξ∂bQ , Ϋ∂b

Q , b∂bQ )), Q = 1, 2, · · · ,Λ be the collec-
tion of the SFRVs and wQ is the weight of the Qth SFRV. Let R̂Q = ((ξℵbQ , Ϋℵb

Q , bℵbQ ), (ξ∂bQ , Ϋ∂b
Q , b∂bQ )) =

((ξℵb, Ϋℵb, bℵb), (ξ∂b, Ϋ∂b, b∂b)) = R̂, ∀Q = 1, 2, · · · ,Λ. Then

SFRAAWG(R̂1, R̂2, . . . , R̂Λ) = ((ξℵb, Ϋℵb, bℵb), (ξ∂b, Ϋ∂b, b∂b)) = R̂
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Proof: As R̂Q =
((

ξℵbQ , Ϋℵb
Q , bℵbQ

)
,
(
ξ∂bQ , Ϋ∂b

Q , b∂bQ

))
=

((
ξℵb, Ϋℵb, bℵb

)
,
(
ξ∂b, Ϋ∂b, b∂b

))
, so we have
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
= ((ξℵbQ , Ϋℵb

Q , bℵbQ ), (ξ∂bQ , Ϋ∂b
Q , b∂bQ ))R̂

Hence proof is completed.
Theorem 3 (Boundedness): Let R̂Q = ((ξℵbQ , Ϋℵb

Q , bℵbQ ), (ξ∂bQ , Ϋ∂b
Q , b∂bQ )), Q = 1, 2, . . . ,Λ be the assembly of the

SFRVs and wQ is the weight of the Qth SFRV. Let R̂s
Q is the smallest and R̂g

Q is the greatest SFRV. Then

R̂s
Q ≤ SFRAAWG(R̂1, R̂2, . . . , R̂Λ) ≤ R̂g

Q

Theorem 4 (Monotonicity): Let R̂Q = ((ξℵbQ , Ϋℵb
Q , bℵbQ ), (ξ∂bQ , Ϋ∂b

Q , b∂bQ )), Q = 1, 2, . . . ,Λ and R̂v
Q =

((ξvℵbQ , Ϋvℵb
Q , bvℵbQ ), (ξv∂bQ , Ϋv∂b

Q , bv∂bQ )) be the assemblages of the SFRVs such that R̂Q ≤ R̂v
Q. Then

SFRAAWG(R̂1, R̂2, . . . , R̂Λ) ≤ SFRAAWG(R̂v
1, R̂

v
2, . . . , R̂

v
Λ)

The SFRAAWG operator gathers the data into SFRVs without the need for any separation. Sorting the SFRVs can
also be used to pool them for better results. Thus, the following is the definition of the SFRAAOWG operator.

Definition 9: Let R̂Q = ((ξℵbQ , Ϋℵb
Q , bℵbQ ), (ξ∂bQ , Ϋ∂b

Q , b∂bQ )), Q = 1, 2, . . . ,Λ be the collection of the SFRVs and wQ

is the weight of the Qth SFRV.

SFRAAOWG(R̂1, R̂2, . . . , R̂Λ) =
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 (3)

In this case, L(Q) is the SFRV permutation (Q = 1, 2, . . . ,Λ) such that L(Q − 1) > L(Q). Some of the
fundamental properties of the SFRAAWG operator are examined in the ensuing study.

SFRV is also the aggregate value that the SFRAAOWG operator obtains, according to Theorem 5.
Theorem 5: Let R̂Q = ((ξℵbQ , Ϋℵb

Q , bℵbQ ), (ξ∂bQ , Ϋ∂b
Q , b∂bQ )), Q = 1, 2, . . . ,Λ be the assembly of the SFRVs and wQ is

the weight of the Qth SFRV. Then the value obtained after the aggregation is SFRV and

SFRAAOWG(R̂1, R̂2, . . . , R̂Λ) =
e
−
(∑Λ

Q=1(−ℵn(ξℵb
L(Q)))

Θ
)1/Θ

,√
1− e

−
(∑Λ

Q=1

(
−ℵn(1−(Ϋℵb
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
Theorem 6 (Idempotency): Let R̂Q = ((ξℵbQ , Ϋℵb

Q , bℵbQ ), (ξ∂bQ , Ϋ∂b
Q , b∂bQ )), Q = 1, 2, . . . ,Λ be the assem-

bly of the SFRVs and wQ is the weight of the Qth SFRV. Let R̂Q = ((ξℵbQ , Ϋℵb
Q , bℵbQ ), (ξ∂bQ , Ϋ∂b

Q , b∂bQ )) =

((ξℵb, Ϋℵb, bℵb), (ξ∂b, Ϋ∂b, b∂b)) = R̂,∀Q = 1, 2, . . . ,Λ. Then

SFRAAOWG(R̂1, R̂2, . . . , R̂Λ) = ((ξℵb, Ϋℵb), (ξ∂b, Ϋ∂b)) = R̂
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Theorem 7 (Boundedness): Let R̂Q = ((ξℵbQ , Ϋℵb
Q , bℵbQ ), (ξ∂Qb, Ϋ

∂
Qb, b

∂
Qb)), Q = 1, 2, . . . ,Λ be the assembly of the

SFRVs and wQ is the weight of the Qth SFRV. Let R̂s
Q be the smallest and R̂g

Q the greatest SFRV. Then

R̂s
Q ≤ SFRAAOWG(R̂1, R̂2, . . . , R̂Λ) ≤ R̂g

Q

Theorem 8 (Monotonicity): Let R̂Q = ((ξℵbQ , Ϋℵb
Q , bℵbQ ), (ξ∂bQ , Ϋ∂b

Q , b∂bQ )), Q = 1, 2, . . . ,Λ and R̂v
Q =

((ξvℵbQ , Ϋvℵb
Q , bvℵbQ ), (ξv∂bQ , Ϋv∂b

Q , bv∂bQ )) be the collections of the SFRVs such that R̂Q ≤ R̂v
Q.

SFRAAOWG(R̂1, R̂2, . . . , R̂Λ) ≤ SFRAAOWG(R̂v
1 , R̂

v
2 , . . . , R̂

v
Λ)

The SFRAAWG and SFRAAOWG operators combine the data using the weights, either in an ordered or unordered
manner. Nonetheless, weights can identify facades in both designated GAOs. Therefore, to solve the problem, we
define the SFRAAHWG operator as follows.
Definition 10: Let R̂Q = ((ξℵbQ , Ϋℵb

Q , bℵbQ ), (ξ∂bQ , Ϋ∂b
Q , b∂bQ )), Q = 1, 2, . . . ,Λ be the assembly of the SFRVs and wQ

is the weight of the Qth SFRV. Then

SFRAAHWG(R̂1, R̂2, . . . , R̂Λ) =
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 (4)

The SFRVs (Q = 1, 2, . . . ,Λ) are permuted to produce L(Q− 1) > L(Q) and ˜̂
R = zwR̂ which exhibits a strong

balancing coefficient z. Here are some studies of the fundamental properties of the SFRAAHWG operator.
SFRV also applies to the aggregate value generated by the SFRAAHWG operator, according to Theorem 9.

Theorem 9: Let R̂Q = ((ξℵbQ , Ϋℵb
Q , bℵbQ ), (ξ∂bQ , Ϋ∂b

Q , b∂bQ )), Q = 1, 2, . . . ,Λ be the assembly of the SFRVs and wQ is
the weight of the Qth SFRV. The value that results from the aggregation is then SFRV and

SFRAAHWG(R̂1, R̂2, . . . , R̂Λ) =
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
Theorem 10 (Idempotency): Let R̂Q = ((ξℵbQ , Ϋℵb

Q , bℵbQ ), (ξ∂bQ , Ϋ∂b
Q , b∂bQ )), Q = 1, 2, . . . ,Λ be the assem-

bly of the SFRVs and wQ is the weight of the Qth SFRV. Let R̂Q = ((ξℵbQ , Ϋℵb
Q , bℵbQ ), (ξ∂bQ , Ϋ∂b

Q , b∂bQ )) =

((ξℵb, Ϋℵb, bℵb), (ξ∂b, Ϋ∂b, b∂b)) = R̂,∀Q = 1, 2, . . . ,Λ. Then

SFRAAHWG(R̂1, R̂2, . . . , R̂Λ) = ((ξℵb, Ϋℵb, bℵb), (ξ∂b, Ϋ∂b, b∂b)) = R̂

Theorem 11 (Boundedness): Let R̂Q = ((ξℵbQ , Ϋℵb
Q , bℵbQ ), (ξ∂bQ , Ϋ∂b

Q , b∂bQ )), Q = 1, 2, . . . ,Λ be the assembly of the
SFRVs and wQ is the weight of the Qth SFRV. Let R̂s

Q be the smallest and R̂g
Q the greatest SFRV. Then

R̂s
Q ≤ SFRAAHWG(R̂1, R̂2, . . . , R̂Λ) ≤ R̂g

Q

Theorem 12 (Monotonicity): Let R̂Q = ((ξℵbQ , Ϋℵb
Q , bℵbQ ), (ξ∂bQ , Ϋ∂b

Q , b∂bQ )), Q = 1, 2, . . . ,Λ and R̂v
Q =

((ξvℵbQ , Ϋvℵb
Q , bvℵbQ ), (ξv∂bQ , Ϋv∂b

Q , bv∂bQ )) be the assemblies of the SFRVs such that R̂Q ≤ R̂v
Q. Then

SFRAAHWG(R̂1, R̂2, . . . , R̂Λ) ≤ SFRAAOWG(R̂v
1, R̂

v
2, . . . , R̂

v
Λ)
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4 A Multi-Attribute Decision Making Method Based on Suggested Research and Uses

Finding the best option out of all the viable options that are assessed based on various attributes is a MADM
problem. Suppose that the set of q is {Q1,Q2, . . . ,Qq}. A group of options from which one is to be chosen based
on the characteristics {G1,G2, . . . ,Gr}, where r is the number of characteristics. The set of h experts with weights
Wn ∈ [0, 1], n = 1, 2, . . . , h such that

∑h
n=1 Wn = 1 is denoted by {X1, X2, . . . , Xh}. The procedures for selecting

a substitute are outlined below.
Step 1: Expert data is collected in the form of SFRVs, with the result that ((ξℵbQ , Ϋℵb

Q , bℵbQ ), (ξ∂bQ , Ϋ∂b
Q , b∂bQ )). If a

“cost” attribute already exists, we have to update it by getting the complement and swapping out the MD and NMD so
that ((ξℵbQ , Ϋℵb

Q , bℵbQ ), (ξ∂bQ , Ϋ∂b
Q , b∂bQ )).

Step 2: After normalization, the data in the form of SFRVs is combined with the known GAOs operator to determine
the unique aggregated value of each alternative’s characteristics.
Step 3: Next, the total individual SFRVs to calculate the overall value of the aggregation against each alternative,
characteristics are aggregated with the help of the GAO’s operator.
Step 4: Each option is assessed using the combined SFRVs and score values.
Step 5: With the score values from step 4, we use them to order the options.

Positive impact of Solar Panel: Counselors who participate in the solar panel segment learn about the life-changing
possibilities of using solar energy. Students gain knowledge of the financial advantages, which include long-term
energy bill savings and possible government incentives, in addition to the environmental benefits, which include
lowering carbon emissions and protecting natural resources. Through a thorough examination of the installation,
maintenance, and integration of solar panels into their lifestyle or business operations, clients gain the necessary
knowledge and self-assurance to commence their journey towards sustainable energy.

Importance of Solar Panel: The potential of solar panels to transform energy production and provide a sustainable
substitute for fossil fuels while reducing the environmental effects of conventional energy sources is what makes them
so important. Solar panels help reduce greenhouse gas emissions, fight climate change, and protect natural resources
by utilizing the power of sunlight. Furthermore, solar energy improves energy security and independence for people,
communities, and countries by offering a dependable and renewable source of electricity. The widespread use of solar
panels promotes technological innovation, job creation, and energy access for marginalized populations in addition to
its positive effects on the environment and economy. This leads to the development of a cleaner, more resilient, and
equitable energy future.

Effects of Solar Panel: Solar panels have a significant and wide-ranging impact on our lives, changing how
we generate and use energy. Solar panels provide many advantages by utilizing sunlight, such as lower electricity
costs, increased energy independence, and less environmental impact. By reducing greenhouse gas emissions
and dependency on finite fossil fuels, solar energy helps to preserve natural resources and fight climate change.
Furthermore, the use of solar panels increases access to clean, reasonably priced electricity for people and communities
worldwide while also promoting technological innovation, job creation, and community resilience. Solar panels have
the potential to have a positive impact on almost every aspect of our lives, from powering homes and businesses
to providing electricity to remote areas and disaster relief efforts. This could help shape a more sustainable and
optimistic future for future generations.

4.1 Case Study Experimentation

In this case study, the decision-maker assesses various solar panel kinds while taking the MADM problem’s
discussed algorithm into account. An efficient and workable aggregation model that is an expanded form of PFRVs is
the SFRVs environment. Examine the following five alternative of solar panels, now we choose the best alternative of
solar panel.

ϕ1 Wind turbines: Produce electricity by utilizing wind energy.
ϕ2 Hydroelectric power: Generate sustainable energy by using the flow of water.
ϕ3 Biomass energy: Produce useful energy sources from organic materials.
ϕ4 Geothermal energy: Use the heat from the Earth to create power.
ϕ5 Tidal power: Use the tides’ natural movement to produce electricity.
The various solar panel types mentioned above are assessed based on a few characteristics, which are described as

follows:
ϱ1 Renewable: Relies on inexhaustible sunlight for energy generation.
ϱ2 Sustainable: Minimizes environmental impact and lessens dependency on fossil fuels.
ϱ3 Low maintenance: After installed, requires little maintenance.
ϱ4 Versatile: Adaptable to a range of configurations and sizes, from rooftop solar panels for homes to massive

solar farms.
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The decision-maker assesses solar panel information while taking the aforementioned characteristics into account.
The decision-maker theoretically assigns the criteria (0.37, 0.32, 0.31)T a specific amount of weight. The decision-
maker applies the suggested methodologies to assess a suitable building material according to the suggested MADM
process algorithm. The following section includes the weights for the characteristics used to allocate SFRVs
(0.24, 0.18, 0.21, 0.19, 0.18)T .

The decision-making process’s evaluation process: We used the derived methodologies of the SFRAAWG and
SFRAAOWG operators, based on the above algorithm of the MADM problem, to evaluate a suitable optimal option
taking certain reliable characteristics into consideration.

Step 1: The decision matrices in Table 1, are first normalized. Normalization is not required in this example because
there is no cost type characteristics.

Table 1. Values assigned decision maker

ϱ1 ϱ2

ξℵb ξ∂b Ϋℵb Ϋ∂b bℵb b∂b ξℵb ξ∂b Ϋ∂b Ϋ∂b bℵb b∂b

ϕ1 0.32 0.32 0.45 0.45 0.21 0.22 0.35 0.54 0.54 0.45 0.23 0.18
ϕ2 0.22 0.22 0.23 0.34 0.21 0.44 0.32 0.39 0.54 0.55 0.12 0.32
ϕ3 0.44 0.11 0.16 0.22 0.11 0.39 0.22 0.22 0.54 0.34 0.18 0.19
ϕ4 0.23 0.15 0.22 0.16 0.44 0.36 0.45 0.19 0.54 0.47 0.26 0.45
ϕ5 0.44 0.18 0.14 0.15 1 0.43 0.35 0.33 0.54 0.38 0.31 0.38

ϱ3 ϱ4

ξℵb ξ∂b Ϋℵb Ϋ∂b bℵb b∂b ξℵb ξ∂b Ϋ∂b Ϋ∂b bℵb b∂b

ϕ1 0.32 0.29 0.17 0.35 0.21 0.35 0.23 0.22 0.13 0.34 0.44 0.35
ϕ2 0.42 0.45 0.18 0.45 0.22 0.55 0.32 0.19 0.86 0.43 0.32 0.21
ϕ3 0.44 0.22 0.19 0.45 0.27 0.25 0.33 0.22 0.53 0.53 0.22 0.25
ϕ4 0.22 0.45 0.11 0.39 0.21 0.53 0.44 0.26 0.21 0.45 0.27 0.22
ϕ5 0.43 0.19 0.32 0.52 0.15 0.45 0.43 0.39 0.22 0.54 0.31 0.44

Step 2: We aggregate the SFRVs to determine the characteristics that were independently collected from the
all-decision using the SFRAAWG and SFRAAOWG operator and the expert weight. The outcomes are displayed as
follows in Table 2.

Table 2. Aggregated values acquired by the SFRAAWG operator

ϱ1 ϱ2

ξℵb ξ∂b Ϋℵb Ϋ∂b bℵb b∂b ξℵb ξ∂b Ϋ∂b Ϋ∂b bℵb b∂b

ϕ1 0.500 0.243 0.344 0.615 0.766 0.165 0.528 0.421 0.418 0.615 0.751 0.135
ϕ2 0.398 0.166 0.173 0.519 0.766 0.336 0.500 0.299 0.418 0.695 0.836 0.242
ϕ3 0.607 0.083 0.120 0.398 0.844 0.296 0.398 0.166 0.418 0.519 0.788 0.142
ϕ4 0.409 0.113 0.165 0.328 0.610 0.273 0.615 0.143 0.418 0.632 0.730 0.344
ϕ5 0.607 0.136 0.105 0.315 0.853 0.328 0.528 0.251 0.418 0.555 0.696 0.288

ϱ3 ϱ4

ξℵb ξ∂b Ϋℵb Ϋ∂b bℵb b∂b ξℵb ξ∂b Ϋ∂b Ϋ∂b bℵb b∂b

ϕ1 0.500 0.220 0.127 0.528 0.766 0.265 0.409 0.166 0.097 0.519 0.610 0.265
ϕ2 0.590 0.347 0.135 0.615 0.759 0.426 0.500 0.143 0.726 0.598 0.689 0.157
ϕ3 0.607 0.166 0.142 0.615 0.723 0.188 0.509 0.166 0.410 0.680 0.759 0.188
ϕ4 0.398 0.347 0.082 0.564 0.766 0.410 0.607 0.197 0.157 0.615 0.723 0.165
ϕ5 0.598 0.143 0.242 0.672 0.811 0.344 0.598 0.299 0.165 0.687 0.696 0.336

Now we aggregate the SFRVs to determine the characteristics that were independently collected from the
all-decision using the SFRAAOWG operator and the expert weight. The outcomes are displayed as follows in Table 3.

Step 3: Once the aggregating characteristics have been aggregated in Table 4, they can be individually aggregated
using the SFRAAWG and SFRAAOWG operator, which is provided below.

Now the aggregating characteristics have been aggregated in Table 5, they can be individually aggregated using
the SFRAAOWG operator, which is provided below.
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Table 3. Aggregated values acquired by the SFRAAOWG operator

ϱ1 ϱ2

ξℵb ξ∂b Ϋℵb Ϋ∂b bℵb b∂b ξℵb ξ∂b Ϋ∂b Ϋ∂b bℵb b∂b

ϕ1 0.707 0.941 0.882 0.620 0.414 0.973 0.687 0.823 0.825 0.620 0.435 0.982
ϕ2 0.776 0.972 0.970 0.694 0.414 0.887 0.707 0.911 0.825 0.552 0.301 0.942
ϕ3 0.627 0.993 0.986 0.776 0.287 0.912 0.776 0.972 0.825 0.694 0.379 0.980
ϕ4 0.769 0.987 0.973 0.820 0.629 0.926 0.620 0.979 0.825 0.607 0.467 0.882
ϕ5 0.627 0.982 0.989 0.827 0.272 0.892 0.687 0.937 0.825 0.667 0.516 0.917

ϱ3 ϱ4

ξℵb ξ∂b Ϋℵb Ϋ∂b bℵb b∂b ξℵb ξ∂b Ϋ∂b Ϋ∂b bℵb b∂b

ϕ1 0.707 0.952 0.984 0.687 0.414 0.930 0.769 0.972 0.991 0.694 0.629 0.930
ϕ2 0.640 0.880 0.982 0.620 0.425 0.818 0.707 0.979 0.473 0.634 0.525 0.975
ϕ3 0.627 0.972 0.980 0.620 0.477 0.965 0.700 0.972 0.832 0.566 0.425 0.965
ϕ4 0.776 0.880 0.993 0.660 0.414 0.832 0.627 0.961 0.975 0.620 0.477 0.973
ϕ5 0.634 0.979 0.942 0.573 0.342 0.882 0.634 0.911 0.973 0.559 0.516 0.887

Table 4. SFRAAWG operator-obtained aggregated individual values

ϱ1 ϱ2

ξℵb ξ∂b Ϋℵb Ϋ∂b bℵb b∂b ξℵb ξ∂b Ϋ∂b Ϋ∂b bℵb b∂b

0.397 0.204 0.279 0.322 0.572 0.330 0.417 0.357 0.470 0.517 0.556 0.298
ϱ3 ϱ4

ξℵb ξ∂b Ϋℵb Ϋ∂b bℵb b∂b ξℵb ξ∂b Ϋ∂b Ϋ∂b bℵb b∂b

0.436 0.320 0.195 0.511 0.545 0.401 0.421 0.245 0.595 0.529 0.698 0.286

Table 5. SFRAAOWG operator-obtained aggregated individual values

ϱ1 ϱ2

ξℵb ξ∂b Ϋℵb Ϋ∂b bℵb b∂b ξℵb ξ∂b Ϋ∂b Ϋ∂b bℵb b∂b

0.625 0.993 0.990 0.662 0.850 0.963 0.622 0.973 0.880 0.546 0.830 0.980
ϱ3 ϱ4

ξℵb ξ∂b Ϋℵb Ϋ∂b bℵb b∂b ξℵb ξ∂b Ϋ∂b Ϋ∂b bℵb b∂b

0.600 0.976 0.994 0.556 0.829 0.948 0.616 0.984 0.985 0.535 0.784 0.979

Step 4: To determine the ranking of the alternatives, we now obtain the score values for each, which are given as
follows in Table 6.

Table 6. Score values obtained by SFRAAWG and SFRAAOWG operators

Operator Score Values
SFRAAW Ϋ(ϱ1) = −0.0735, Ϋ(ϱ2) = −0.0764, Ϋ(ϱ3) = −0.0364, Ϋ(ϱ4) = −0.1314

SFRAAOWG Ϋ(ϱ1) = −0.6967, Ϋ(ϱ2) = −0.6715, Ϋ(ϱ3) = −0.7140, Ϋ(ϱ4) = −0.7118

Step 5: Given that Table 7 provides the highest score value among all other alternatives, ϱ1 is the best option.

Table 7. Score values obtained

Operator Score Values
SFRAAWG ϱ1 ≻ ϱ4 ≻ ϱ3 ≻ ϱ2

SFRAAOWG ϱ1 ≻ ϱ2 ≻ ϱ4 ≻ ϱ3

Form Figure 1 the results of the SFRAAWG and SFRAAOWG operator same when increase the value of ϱ now
we easily find that ϱ1 have the best alternative because the ϱ1 given the same result in all parameters.

4.2 Sensitivity Analysis

In the sections that follow, we look at how the ranking results change based on the value of the parameter Θ.
Tables 8 and 9 display the sensitivity of the SFRAAWG and SFRAAOWG operator, respectively.
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Figure 1. Present the score value of SRAAWG and SRFAAOWG operator

Table 8. Sensitivity analysis SFRAAWG operators

Θ SFRAAWG
2 ϱ1 > ϱ4 > ϱ3 > ϱ2
3 ϱ1 > ϱ4 > ϱ3 > ϱ2
4 ϱ1 > ϱ4 > ϱ3 > ϱ2
5 ϱ1 > ϱ4 > ϱ3 > ϱ2

10 ϱ1 > ϱ4 > ϱ3 > ϱ2
15 ϱ1 > ϱ4 > ϱ3 > ϱ2
30 ϱ1 > ϱ4 > ϱ3 > ϱ2
40 ϱ1 > ϱ4 > ϱ3 > ϱ2
50 ϱ1 > ϱ4 > ϱ3 > ϱ2

The alternatives to the SFRAAWG operator are ranked in Table 8 for parameter values between Θ = 2 to Θ = 50;
The result is the same for all parameter values, with ϱ3 being the best. To improve understanding, take a look at
Figure 2’s depiction of the sensitivity of the SFRAAWG and SFRAAOWG operators.

Table 9. Sensitivity analysis SFRAAOWG operators

Θ SFRAAOWG
2 ϱ1 > ϱ2 > ϱ4 > ϱ3
3 ϱ1 > ϱ2 > ϱ4 > ϱ3
4 ϱ1 > ϱ2 > ϱ4 > ϱ3
5 ϱ1 > ϱ2 > ϱ4 > ϱ3

10 ϱ1 > ϱ2 > ϱ4 > ϱ3
15 ϱ1 > ϱ2 > ϱ4 > ϱ3
30 ϱ1 > ϱ2 > ϱ4 > ϱ3
40 ϱ1 > ϱ2 > ϱ4 > ϱ3
50 ϱ1 > ϱ2 > ϱ4 > ϱ3

Depending on the Θ value, the score has different values. However, the alternatives maintain their ranks, and the
SFRAAWG operator’s ranking indicates that ϱ3 is the most efficient manager overall Figure 3’s.

4.3 Comparative Analysis

Hussain et al. [26] introduced the AA aggregation operator within the framework of the PyFRS and applied it
to MADM problems. Akram and Ashraf [19] presented the concept of SFRS in the context of MADM. Ali [15]
developed the theory of analysis on AA AOs in SF and provided applications for MADM. Hussain et al. [16] applied
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the MADM to the evaluation of solar panels. In the following, we compared the proposed AOs with these AOs in
Table 10 as follows.

Figure 2. Sensitivity analysis of SRAAWG operator

Figure 3. Sensitivity analysis of SRAAWG operator

Table 10. Comparative study SFRAAWG and SFRAAOWG operators

Operator Score Values
Huassain et al. [26] ϱ3 > ϱ2 > ϱ4 > ϱ1
Huassain et al. [26] ϱ3 > ϱ4 > ϱ2 > ϱ1
Akram et al. [19] ϱ3 > ϱ4 > ϱ2 > ϱ1
Akram et al. [19] ϱ3 > ϱ4 > ϱ2 > ϱ1

Ali et al. [15] ϱ3 > ϱ4 > ϱ2 > ϱ1
Ali et al. [15] ϱ3 > ϱ4 > ϱ2 > ϱ1

Hussain et al. [16] Not applicable
Hussain et al. [16] Not applicable
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The comparison of various AOs with the suggested AOs in this article is shown in Table 10. Observingly, the
most efficient ϱ3 obtained by SFRAAWG, but SFRAAOWG given the best option is ϱ1. When we compare the result
in different parameter then show that ϱ3 has the best option. After that we compare the result some old operator then
we see that ϱ3 has the best option.

5 Conclusions

Some basic SFRV operations are developed in this paper, based on the AATN and AATCN. An analysis of the
basic properties of the AOs for the information aggregation in the form of PyFRS is carried out after they are developed
using the methods described. The developed technique is applied to assess the sector managers’ performance in
response to an actual MADM scenario. The outcomes are compared to specific existing AOs. The results for the
AATN and AATCN at different parameter values are investigated. The extremely flexible and practical AATNM
and AATCNM serve as the foundation for the developed techniques, SFRAAWG, OFRAAOWG, and SFRAAHWG
operators. The most suitable manager obtained from SFRAAWG operators is ϱ3. However, because of the way it
aggregates, the SFRAAWG operator is more dependable than the SFRAAWA operator. However, because they are
based on SFRS, which can cover the most information in the form of SFRVs from real-life scenarios, the SFRAAWA
and SFRAAWG operators are more reliable AOs than the current AOs. The first reduction of the characteristics is
also aided by SFRS. Since SFRS relies on further fuzzy approximations rather than precise ones, it is a more reliable
framework than SFS. We wish to use the recently developed approach with the frameworks mentioned conducted by
[45].
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