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Abstract: In the realm of cybersecurity, the formulation of comprehensive strategies is imperative for multinational
corporations to protect against pervasive cyber threats. Recent developments in the field of intuitionistic multi-fuzzy
sets (IMFSs) have heralded q-rung orthopair multi-fuzzy sets (MFSs) as a pivotal tool for encapsulating ambiguity
and uncertainty within complex scenarios. The essence of this study lies in the introduction of two innovative distance
measures tailored for q-rung orthopair MFSs (q-ROMkFSs) of dimension k, enhancing the capacity to delineate
distinctions between such sets effectively. Employing score functions pertinent to q-ROMkFSs, this research extends
its application to the sphere of Multi-Attribute Decision Making (MADM), presenting a methodological advancement
in decision-making processes. The efficacy of the proposed measures is elucidated through a comparative analysis
with existing methodologies in MADM, thereby underscoring the superiority of the introduced approach. This
investigation not only contributes to the enrichment of the theoretical underpinnings of q-ROMFSs but also propels
their practical application in cybersecurity strategy formulation for multinational entities. The study employs the
Euclidean and Hamming distance measures as benchmarks, supplemented by the development of a score and accuracy
function, to furnish a comprehensive tool for addressing cybersecurity challenges.

Keywords: Multi-attribute decision making; q-rung orthopaor multi-fuzzy set; Euclidean distance measure, Hamming
distance measure; Score and accuracy function

1 Introduction

The cybersecurity strategy offers benefits by establishing a framework that is inherently conducive to early
detection. A set of established rules and procedures, coupled with ongoing monitoring, aids in identifying anything
unusual promptly. The theory of intuitionistic fuzzy sets (IFSs) [1], developed by Atanassov in 1986, adheres to the
restriction that the sum of the membership function (MemF) and the non-membership function (NMemF) cannot
exceed one and is defined by its MemF and NMemF. Yager [2] also developed the idea of Pythagorean fuzzy sets
(PFSs), which is an extension of IFS and is defined by MemF and NMemF, with the restriction that the square sum of
MemF and NMemF cannot exceed one.

In 2017, Yager [3] presented a broad class of sets called q-rung orthopair fuzzy sets (q-ROFSs). The q-th power
of the support against and for, added together, is restricted under this framework to equal one. As q increases, users
have more freedom to express their opinions about membership grades since a wider variety of acceptable orthopairs
are available. Over the years, with the increasing complexity of human life and thought processes, it has become
evident that the traditional fuzzy set structure may not adequately address the growing intricacies and uncertainties.

In response to this limitation, Sebastian and Ramakrishnan [4] introduced the concept of multi-fuzzy sets (MFSs)
and and subsequently expanded upon this concept [5]. Subsequently, in an effort to enhance the adaptability and
versatility of MFSs, Das and Kar [6] introduced the concept of IMFSs. Szmidt and Kacprzyk [7] conducted the initial
exploration by extending established distance measures like the Hamming distance and Euclidean distance to the
interval valued type-2 fuzzy sets (IT-2FSs) domain and comparing them with methods employed for traditional fuzzy
sets. Nevertheless, Wang and Xin [8] proposed that the distance measure introduced by Szmidt and Kacprzyk [7]
proved ineffective in specific scenarios. As a result, several novel distance measures for pattern recognition were
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formulated and put into practice. Later on, Das et al. [9] also extended Hamming, Euclidean, and their normalized
versions to the IMFSs framework.

In practical scenarios, distance measures play a crucial role in quantifying the degrees of disparity between entities.
Numerous distance measures have been explored in the literature concerning various extensions of fuzzy set theory,
soft sets, IFS, PFS, and q-ROFS [10–13]. However, there is a scarcity of distance measures tailored specifically for
MFSs. This paper addresses this gap by introducing several extended distance measures for MFSs. The major goal of
this research is to offer some innovative distance measures using q-rung orthopair multi-fuzzy information, drawing
inspiration from the fact that q-ROFSs have a great deal of capacity to simulate imprecise and ambiguous information
in real-world applications. In order to demonstrate the effectiveness of these unique distance measures, they have
finally been tested on the multi-attribute decision-making (MADM) issue.

Inspired by these considerations, Pethaperumal et al. [14] formulated the algebraic concepts of q-ROMFSs.
Similarly, akin to a q-rung extension of multi-fuzzy set theory, Jeevitha et al. [15] introduced the notion of LDMFSs.
In recent times, this extension has found application in q-rung orthopair multi-fuzzy soft sets (q-ROMFStS) [16] and
linear Diophantine multi-fuzzy soft sets (LDMFStS) [17]. As a result, q-ROMkFSs are better than IFMSs at handling
the ambiguity and ambiguous information that arise in real-world problem-solving circumstances. In future, we have
the potential to expand the concept of q-ROMkFSs to include lattice ordering [18].

The flexibility of q-ROMkFSs offers a way to deal with problems where there are different membership values for
every element, particularly when there is a lot of ambiguity. The application of q-rung orthopair multi-fuzzy-based
information may improve the accuracy of alternative evaluations in the MADM process. Therefore, the focus of this
work is on the distance measures and score function of q-ROMFSs. The distance measure is important for a number
of real-world applications, including texture analysis, image segmentation, disease diagnosis, and more. However,
only a limited number of researchers have delved into the development of multi-fuzzy distance measures and their
significance. As a result, this work presents new distance measures and score functions tailored for q-ROMkFSs.

2 Preliminaries

Definition 2.1 Let Ô be the initial universal set. A fuzzy set Ẑ is defined as

Ẑ = {⟨oi, rẐ(oi)⟩|oi ∈ Ô}

where, the function rẐ(oi) : Ô −→ [0, 1] characterizes the MemF for every oi ∈ Ô with the condition that 0 ≤
rẐ(oi) ≤ 1 [19].

Definition 2.2 Let k be a positive integer. A Mk F-set (MkF-set) F̂ of dimension k over Ô is defined as

F̂ =
{
⟨oi, rmF̂ (oi)⟩|oi ∈ Ô

}
where, rmF̂ (oi) =

(
r1F̂ (oi), r

2
F̂ (oi), · · · , r

k
F̂ (oi)

)
is the multi-MemF of F̂ , and the set of all MFS of dimension k is

denoted as MkFS(Ô) [4].

Definition 2.3 In 2017, Yager [3] defined the mathematical structure of q-ROFSs as P̂ , given as

P̂ =

{〈
oi,
(
rP̂(oi), sP̂(oi)

)〉
|oi ∈ Ô

}

where, Ô represents the initial universal set, and rP̂ : Ô −→ [0, 1] and sP̂ : Ô −→ [0, 1] characterize the MemF
and NMemF of an element oi ∈ P̂ to the set P̂ , respectively, under a restriction 0 ≤

(
rP̂(oi)

)q
+
(
sP̂(oi)

)q
≤ 1,

with q ≥ 1. oi ∈ Ô, the degree of indeterminacy is given by ΠP̂(oi) = q

√
1−

(
rP̂(oi)

)q
−
(
sP̂(oi)

)q
and (rP̂ , sP̂)

represents a q-rung orthopair fuzzy number (q-ROFN).

Definition 2.4 In 2013, Das and Kar [6] defined the mathematical structure of as an IMFS Ĥ of dimension k over Ô
given as

Ĥ =

{〈
oi,
(
(r1Ĥ(oi), s

1
Ĥ(oi)), (r

2
Ĥ(oi), s

2
Ĥ(oi)), · · · , (rkĤ(oi), s

k
Ĥ(oi))

)〉
|oi ∈ Ô

}
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where, Ô represents the initial universal set, and rmĤ : Ô −→ [0, 1] and smĤ : Ô −→ [0, 1] characterize the multi-MemF
and multi-NMemF of an element oi ∈ Ĥ to the set Ĥ respectively, under a restriction 0 ≤ rmĤ(oi) + smĤ(oi) ≤ 1, m =
1,2,· · · ,k. For each oi ∈ Ô, the degree of indeterminacy is given by Πm

Ĥ(oi) = 1− rmĤ(oi)− smĤ(oi).
Further, the intuitionistic multi-fuzzy number (IMkFN) is given by Ĥ = (rmĤ , smĤ) in which rmĤ , smĤ ∈ [0,1] and 0

≤ rmĤ + smĤ ≤ 1, m = 1, 2, · · · , k.

Definition 2.5 In 2023, Vimala et al. [16] defined the mathematical structure of a q-ROMkFS T̂ of dimension k over
Ô given as

T̂ =

{〈
oi,
(
(r1T̂ (oi), s

1
T̂ (oi)), (r

2
T̂ (oi), s

2
T̂ (oi)), · · · , (r

k
T̂ (oi), s

k
T̂ (oi))

)〉
|oi ∈ Ô

}

where, Ô represents the initial universal set, and rmT̂ : Ô −→ [0, 1] and smT̂ : Ô −→ [0, 1] characterize the multi-MemF

and multi-NMemF of an element oi ∈ T̂ to the set T̂ respectively, under a restriction 0 ≤
(
rmT̂ (oi)

)q
+
(
smT̂ (oi)

)q
≤ 1, with q ≥ 1 and m = 1, 2, · · · , k. For each oi ∈ Ô, the degree of indeterminacy is given by Πm

T̂ (oi) =

q

√
1−

(
rm
T̂
(oi)

)q
−
(
sm
T̂
(oi)

)q
.

Further, the q-rung orthopair multi-fuzzy number (q-ROMkFN) is given by T̂ = (rmT̂ , smT̂ ) in which rmT̂ , smT̂ ∈
[0,1] and 0 ≤ (rmT̂ )q + (smT̂ )q ≤ 1, q ≥ 1 and m = 1, 2, · · · , k.

Example 2.6 Suppose Ô = {o1, o2, o3, o4} represents a set of four universities. Mr. Y wants to choose a university
by considering factors, such as tuition cost, location, program quality, campus facilities, student-faculty ratio, and
career opportunities. Mr. Y wants to evaluate these universities based on 6-dimensional q-rung orthopair multi-fuzzy
information.

T̂ =

{
⟨o1, (0.9, 0.6), (0.4, 0.7), (0.3, 0.5), (0.4, 0.5), (0.3, 0.6), (0.2, 0.6)⟩,

⟨o2, (0.4, 0.6), (0.7, 0.9), (0.8, 0.4), (0.6, 0.3), (0.5, 0.9), (0.2, 0.4)⟩,
⟨o3, (0.4, 0.6), (0.3, 0.5), (0.6, 0.2), (0.8, 0.5), (0.9, 0.2), (0.3, 0.5)⟩,

⟨o4, (0.3, 0.4), (0.4, 0.5), (0.6, 0.4), (0.9, 0.6), (0.4, 0.8), (0.2, 0.6)⟩
}
.

3 Novel Score Functions and Distance Measures of q-ROMFSs

Motivated by the novel score function proposed by Peng et al. [20] for q-ROFN, this section presents an enhanced
score function designed to address q-rung orthopair multi-fuzzy information. This improved function takes into
account the degrees of multi-memF, non-memF, and hesitation. Consider a q-ROMkFN of dimension m is denoted as
T = ⟨rm, sm⟩, where rm and sm represent the multi-memFs and non-memFs, respectively.

Definition 3.1 The score function S(T ) of the q-ROMkFN T̂ = (rmT̂ , smT̂ ) of dimension m is defined as

S(T ) =

k∑
m=1

{
(rmT̂ )q − (smT̂ )q +

(
e(r

m
T̂ )q−(smT̂ )q

e(r
m
T̂
)q−(sm

T̂
)q + 1

− 1

2

)
(Πm

T )q
}

(1)

Example 3.2 An example can be employed to demonstrate the application of the score function. T̂1 = ⟨(0.8, 0.2), (0.3, 0.5)⟩
and T̂2 = ⟨(0.6, 0.4), (0.7, 0.3)⟩ are two q-ROMkFSs of dimension 2. The degree of indeterminacy T̂1 and T̂2 are
π1
T̂1

= 4
√
1− (0.8)4 − (0.2)4 = 0.876. Similarly, π2

T̂1
= 4
√

1− (0.3)4 − (0.5)4 = 0.9294, π2
T̂2

= 4
√
1− (0.6)4 − (0.2)4

= 0.9654 and π2
T̂2

= 4
√
1− (0.7)4 − (0.3)4 = 0.9312, respectively, and the score functions of T̂1 and T̂2 are S(T̂1)=

0.4027 and S(T̂2) = 0.4021, respectively.

Definition 3.3 For any two q-ROMFSs T1=(rmT̂1
, smT̂1

) and T2=(rmT̂2
, smT̂2

) of dimension m, then
(1) If S(T1) > S(T2), then T1 > T2;
(2) If S(T1) < S(T2), then T1 < T2;
(3) If S(T1) = S(T2), then

(a) If Πm
1 > Πm

2 , then T1 < T2;
(b) If Πm

1 = Πm
2 , then T1 = T2.
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Definition 3.4 Let T̂1 = (rmT̂1
, smT̂1

) and T̂2 = (rmT̂2
, smT̂2

) be two q-ROMkFSs. Then the Hamming distance between T̂1
and T̂2 in Ô = {o1, o2, · · · , on} of dimension k is defined as

Dq
H =

1

2k

(
n∑

i=1

k∑
m=1

(∣∣(rmT̂1
(oi)

)q − (rmT̂2
(oi)

)q∣∣+ ∣∣(smT̂1
(oi)

)q − (smT̂2
(oi)

)q∣∣+ ∣∣(πm
T̂1
(oi)

)q − (πm
T̂2
(oi)

)q∣∣), (2)

o ∈ Ô

The normalized Hamming distance between T̂1 and T̂2 in Ô = {o1, o2, · · · , on} of dimension k is defined as

Nq
H =

1

2nk

(
n∑

i=1

k∑
m=1

(∣∣(rmT̂1
(oi)

)q − (rmT̂2
(oi)

)q∣∣+ ∣∣(smT̂1
(oi)

)q − (smT̂2
(oi)

)q∣∣+ ∣∣(πm
T̂1
(oi)

)q − (πm
T̂2
(oi)

)q∣∣), (3)

o ∈ Ô

Definition 3.5 Let T̂1 = (rmT̂1
, smT̂1

) and T̂2 = (rmT̂2
, smT̂2

) be two q-ROMkFSs. Then the Euclidean distance between T̂1
and T̂2 in Ô = {o1, o2, · · · , on} of dimension k is defined as

Dq
E =√√√√ 1

2k

( n∑
i=1

k∑
m=1

(((
rm
T̂1
(oi)

)q − (
rm
T̂2
(oi)

)q)2 + ((
sm
T̂1
(oi)

)q − (
sm
T̂2
(oi)

)q)2 + ((
πm
T̂1
(oi)

)q − (
πm
T̂2
(oi)

)q)2)),
o ∈ Ô (4)

The normalized Euclidean distance between T̂1 and T̂2 in Ô = {o1, o2, · · · , on} of dimension k is defined as

Nq
E =√√√√ 1

2nk

( n∑
i=1

k∑
m=1

(((
rm
T̂1
(oi)

)q − (
rm
T̂2
(oi)

)q)2 + ((
sm
T̂1
(oi)

)q − (
sm
T̂2
(oi)

)q)2 + ((
πm
T̂1
(oi)

)q − (
πm
T̂2
(oi)

)q)2),
o ∈ Ô (5)

The application of the Hamming and Euclidean distance measures can be exemplified using an example below.
If T̂1 = ⟨(0.8, 0.2), (0.3, 0.5)⟩ and T̂2 = ⟨(0.6, 0.4), (0.7, 0.3)⟩ are two q-ROMkFSs of dimension 2. The degrees of

indeterminacy T̂1 and T̂2 are π1
T̂1

= 4
√

1− (0.8)4 − (0.2)4 = 0.876. Similarly, π2
T̂1

= 4
√

1− (0.3)4 − (0.5)4 = 0.9294,
π2
T̂2

= 4
√
1− (0.6)4 − (0.2)4 = 0.9654 and π2

T̂2
= 4
√
1− (0.7)4 − (0.3)4 = 0.9312, respectively, and the Hamming and

Euclidean distance measures between T̂1 and T̂2 are Dq
H(T̂1, T̂2) = 0.2186 and Dq

E(T̂1, T̂2) = 0.1634, respectively.

4 Case Study: Development of a Cybersecurity Strategy for a Multi-National Corporation

In today’s digitally interconnected world, cybersecurity is a top priority for organizations, particularly multinational
corporations that handle vast amounts of sensitive data. This case study delves into the process of developing an
effective cybersecurity strategy for a multinational corporation using MADM techniques. The MADM approach
is chosen because it offers a systematic way to evaluate multiple criteria and alternatives, making it well-suited for
complex decision-making scenarios like cybersecurity strategy development. MADM helps decision-makers consider
various aspects simultaneously and prioritize them effectively.

Example: MADM problem focuses on selecting an optimal cybersecurity strategy for safeguarding sensitive
healthcare data. Four distinct strategies, Strategy A (SA), Strategy B (SB), Strategy C (SC), and an alternative
approach, Strategy M (SM ), are evaluated based on five critical attributes to ensure effective data protection and
compliance with regulatory standards. The universal set Z = {z1, z2, z3, z4} functions as a complete collection of
various cybersecurity situations in this cybersecurity scenario. These scenarios include a wide range of situations that
cover the intricacies and challenges encountered in the field of cybersecurity, and they encapsulate the techniques
that are currently being considered. Every component of the set symbolises a unique cybersecurity scenario or
environment, adding to the vast array of possible outcomes that decision-makers need to consider and take into
account. The evaluation of the strategies based on their attributes is depicted using the q-rung orthopair multi-fuzzy
(q-ROM2F) information of dimension 2, illustrated in Tables 1, 2, 3 and 4. Four attributes, detailed in Table 5, guide
the evaluation process, addressing crucial aspects of cybersecurity, such as security effectiveness, cost, adaptability
and scalability, user experience and productivity.
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Table 1. q −ROM2FS decision matrix for strategy decision-making SA (assuming q=4)

z1 z2 z3 z4
A1 [(0.5,0.9),(0.8,0.1)] [(0.3,0.8),(0.3,0.4)] [(0.2,0.7),(0.8,0.8)] [(0.2,0.3),(0.4,0.7)]
A2 [(0.3,0.2),(0.4,0.7)] [(0.5,0.2),(0.4,0.7)] [(0.2,0.3),(0.3,0.7)] [(0.9,0.3),(0.4,0.6)]
A3 [(0.5,0.7),(0.5,0.1)] [(0.2,0.6),(0.8,0.7)] [(0.8,0.6),(0.4,0.6)] [(0.4,0.5),(0.5,0.1)]
A4 [(0.4,0.3),(0.7,0.6)] [(0.6,0.7),(0.2,0.5)] [(0.6,0.2),(0.7,0.2)] [(0.1,0.2),(0.8,0.5)]

Table 2. q −ROM2FS decision matrix for strategy decision-making SB (assuming q=4)

z1 z2 z3 z4
A1 [(0.3,0.8),(0.7,0.4)] [(0.4,0.8),(0.5,0.7)] [(0.2,0.3),(0.3,0.8)] [(0.4,0.7),(0.3,0.8)]
A2 [(0.8,0.7),(0.4,0.3)] [(0.6,0.5),(0.7,0.3)] [(0.9,0.8),(0.5,0.3)] [(0.7,0.5),(0.8,0.4)]
A3 [(0.6,0.4),(0.4,0.5)] [(0.6,0.1),(0.5,0.6)] [(0.8,0.4),(0.6,0.1)] [(0.7,0.5),(0.4,0.7)]
A4 [(0.8,0.5),(0.6,0.5)] [(0.7,0.6),(0.8,0.6)] [(0.8,0.4),(0.9,0.4)] [(0.6,0.5),(0.7,0.3)]

Table 3. q −ROM2FS decision matrix for strategy decision-making SC (assuming q=4)

z1 z2 z3 z4
A1 [(0.2,0.9),(0.6,0.4)] [(0.4,0.7),(0.5,0.8)] [(0.3,0.9),(0.3,0.9)] [(0.1,0.7),(0.2,0.9)]
A2 [(0.3,0.7),(0.4,0.6)] [(0.3,0.8),(0.2,0.8)] [(0.2,0.9),,(0.4,0.2)] [(0.8,0.4),(0.3,0.7)]
A3 [(0.6,0.2),(0.7,0.1)] [(0.5,0.7),(0.8,0.4)] [(0.5,0.7),(0.5,0.6)] [(0.3,0.7),(0.5,0.1)]
A4 [(0.6,0.4),(0.3,0.5)] [(0.5,0.8),(0.2,0.5)] [(0.2,0.8),,(0.7,0.2)] [(0.7,0.4),(0.3,0.7)]

Table 4. q −ROM2FS decision matrix for strategy decision-making SM (assuming q=4)

z1 z2 z3 z4
A1 [(0.3,0.9),(0.2,0.9)] [(0.2,0.9),(0.3,0.4)] [(0.4,0.9),(0.6,0.8)] [(0.1,0.9),(0.2,0.9)]
A2 [(0.7,0.5),(0.1,0.3)] [(0.8,0.5),(0.9,0.2)] [(0.7,0.6),(0.8,0.5)] [(0.8,0.4),(0.3,0.2)]
A3 [(0.4,0.8),(0.3,0.5)] [(0.5,0.7),(0.6,0.5)] [(0.6,0.3),(0.8,0.4)] [(0.3,0.4),(0.7,0.7)]
A4 [(0.4,0.8),(0.4,0.8)] [(0.6,0.8),(0.5,0.8)] [(0.6,0.3),(0.2,0.5)] [(0.6,0.7),(0.8,0.7)]

Table 5. Security evaluation criteria

Symbol Criteria 2-Dimensional
Evaluation Description

o1
Security

Effectiveness

Threat Type
Evaluate the approach against diverse risks, including

internal (insider threats), external (hackers), and emergent
(zero-day vulnerabilities) threats.

Attack Surface
Evaluate the plan’s effectiveness in securing diverse attack

surfaces, including network, endpoint, and application
security.

o2 Cost

Cost Category
Aggregate expenses into several groups, such as those

associated with initial implementation, ongoing operations,
and incident response.

Cost Efficiency
Analyse the cost allocation among the strategy’s many

components, such as technology investments, personnel
development costs, and compliance-related outlays.

o3
Adaptability

and scalability

Technological
Adaptability

Examine the strategy’s ability to adapt to technological
advancements like the adoption of cloud services and the

incorporation of cutting-edge security solutions.

Growth Scalability Analyse whether the plan can scale as the business grows,
taking activities into new markets or geographic areas.

o4

User
Experience and

Productivity

Usability Examine the impact of security measures on user experience
and how user-friendly they are.

Productivity Metrics
To determine the impact of security measures on employee
effectiveness, compare productivity indicators before and

after deployment.
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The results are shown in Table 6 (assuming q=4). When the data in Table 6 are compared to other distance
measures, it is clear that the distance measure between SC and SM is the minimum. According to the idea of distance
measure within q-ROMnFSs, option SC is closer to the optimal choice than SM . As a result (Figure 1), SC emerges
as the most advantageous option. Among numerous considerations, SC emerges as the best cybersecurity method for
protecting sensitive healthcare data.

Table 6. q-ROM2FS Distance measure for strategy decision-making (assuming q=4)

Distance Measure (SA, SM ) (SB , SM ) (SC , SM )
Normalized Hamming Distance Measure Nq

H 0.711 0.672 0.671
Normalized Euclidean Distance Measure Nq

E 0.91 0.80 0.68

Figure 1. Ranking of strategies

5 Conclusions

This study introduces enhanced score functions for q-ROMFSs, building upon the existing score function of
IMFSs and the improved score function of q-ROFSs. Additionally, two novel distance measures are introduced for
q-ROMFSs, namely the Hamming and Euclidean distance measures. Subsequently, a MADM method is devised to
assess the optimal selection of cybersecurity strategies using q-rung orthopair multi-fuzzy information. Finally, an
illustrative example is presented to demonstrate the applicability and rationality of the proposed approach. The future
study aims to broaden the developed method to include more MFSs and apply them to various fields, such as medical
diagnosis and image processing.
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