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Abstract: An innovative framework is introduced for the enhancement of efficiency within emergency departments
(EDs), utilizing an integration of simulation and fuzzy Multi-Criteria Decision-Making (MCDM). A discrete event
simulation (DES) model was developed, capturing the intricate dynamics characteristic of ED operations with
high fidelity. This model’s integration with the Analytic Hierarchy Process (AHP) and the Elimination and Choice
Expressing Reality (ELECTRE) method, within a fuzzy context, facilitated a critical evaluation and optimization
of the decision-making processes inherent in EDs. The incorporation of these methodologies yielded significant
improvements in patient flow and service quality, highlighting the substantial potential of marrying simulation
with fuzzy MCDM to achieve operational excellence in healthcare settings. The study stands as a contribution to
the enhancement of ED operations, offering a versatile methodology with potential for adaptation across diverse
healthcare environments. This approach underscores the imperative of employing a nuanced, integrated strategy to
navigate the complexities of healthcare service delivery, ensuring an equilibrium between operational efficiency and
the quality of patient care.

Keywords: Emergency department (ED); Discrete event simulation; Multi-criteria decision-making (MCDM); Fuzzy
environment; Analytic hierarchy process (AHP); Elimination and choice expressing reality method

1 Introduction

Effectively allocating resources in a medical center characterized by high complexity poses a considerable
challenge [1, 2]. Even with a well-established database, decision-making concerning resource allocation remains
intricate, where minor errors can lead to significant crises or irreversible damage [3]. The paramount imperative within
hospital EDs is the sustained delivery of services [4–6]. This includes the timely provision of services to patients
and the prioritization of those with more severe conditions. Adding to the complexity, the influx of non-emergency
patients contributes to prolonged queues, adversely impacting both patients and departmental staff.

The influx of patients with varying degrees of urgency necessitates innovative approaches to enhance operational
efficiency and decision-making processes within EDs. To address these challenges, this study proposes the integration
of advanced simulation models and MCDM frameworks. These integrated solutions aim to optimize resource
allocation and improve patient flow, thereby enhancing the overall performance of EDs.

Simulation, as a versatile and practical method, offers significant advantages in modeling and evaluating healthcare
service systems. It allows for the exploration of various operational configurations and ”what-if” scenarios without
the risks associated with real-world changes. The increasing adoption of simulation in healthcare decision-making is
supported by its documented success in the literature and the continuous advancements in simulation technologies [7–9].

Recent literature highlights the growing application of simulation models in healthcare to analyze and improve
patient flow and resource allocation. Simulation provides a risk-free environment to evaluate the impact of operational
changes on ED performance [10]. Konrad et al. [11] leveraged discrete-event simulation modeling to assess the impact
of a split-flow process in an ED, aimed at reducing wait times and congestion. Implementing the split-flow process
at Saint Vincent Hospital demonstrated significant improvements in patient throughput and reduced length-of-stay,
offering a practical solution to ED overcrowding. Sobolev et al. [12] conducted a systematic review on the use of
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computer simulation modeling in surgical patient flow, analyzing literature over five decades and identifying 34
publications. They found a high percentage of studies detailed simulation approaches and data requirements, but fewer
addressed policy-makers’ needs directly or involved them in the study, highlighting a gap in engaging stakeholders
and variability in reporting simulation outcomes for surgical care improvement. Nasser et al. [13] explored the
enhancement of private hospital performance in Egypt, focusing on reducing patient waiting times in the ED through
the implementation of the Performance Acceleration Tool (PATH). This approach involves structural and organizational
changes, including the formation of quality committees, multidisciplinary teams, and technology investments, leading
to improved overall hospital efficiency. Bhattacharjee and Ray [14] reviewed and critically appraised patient flow
modeling and performance analysis in hospital healthcare delivery processes, classifying existing approaches and
highlighting recent advancements. They proposed a generic framework aimed at guiding healthcare managers in
decisions related to resource allocation, capacity planning, and process improvement, underscoring the importance
of patient flow modeling in enhancing hospital efficiency and healthcare delivery. Kovalchuk et al. [15] introduced
a hybrid simulation of patient flow across healthcare units, using a combination of data-driven methods for model
automation. They developed a framework and methodology that blend data, text, and process mining with machine
learning to analyze electronic health records, specifically focusing on acute coronary syndrome (ACS) patients. This
approach enabled the realistic simulation of patient flows, improving the accuracy of predicting patient length of
stay based on clinical pathways identified in the records, and aimed at enhancing healthcare decision-making and
management optimization. A smart healthcare reward model was proposed by Oueida et al. [16] for improving
resource allocation in smart cities. This model, leveraging mobile and fog computing technologies, was designed
to tackle the challenges of mobility, scalability, efficiency, and reliability in smart healthcare systems. Through the
development and application of a Maximum Reward Algorithm (MRA), the model was demonstrated to significantly
enhance the delivery and utilization of healthcare resources, achieving a performance improvement ranging from
50.1% to 77.2% in various simulations. Heshmati [17] reviews the integration of healthcare and crisis supply chains
in the context of natural disasters, highlighting the crucial role this integration plays in reducing fatalities and saving
lives. The paper analyzes existing studies, identifies challenges, and proposes research opportunities for improving
supply chain resilience, focusing on transportation disruptions, inventory models, supply chain integration, and the use
of information technology during crises. Ordu et al. [18] introduced a decision support tool for healthcare resource
allocation using a forecasting-simulation-optimization framework. This tool models the interconnectedness of hospital
services, including emergency, outpatient, and inpatient sectors, to forecast demand, simulate patient pathways with
uncertainties, and optimize bed capacity and staff needs for strategic planning in a mid-size English hospital. The
approach underscores the benefits of hybrid models in enhancing resource allocation decisions. Wang [19] presents
a Petri net approach for optimizing patient flow and staffing in EDs. This method focuses on addressing patient
congestion by determining optimal staffing levels, considering the high costs associated with emergency medicine
staffing. The study develops a hierarchical modeling process using stochastic timed Petri nets to analyze patient
flow, resource requirements, and service durations, supported by a software tool for ED performance evaluation
and staffing optimization. Tyler et al. [20] addressed the gap in the widespread adoption of simulation tools in
healthcare for patient flow modeling. They developed PathSimR, an open-source, user-driven tool, by identifying
end-user requirements through surveys and existing literature. PathSimR models outpatient and inpatient pathways
with features capturing variability in patient arrivals, length of stay, and dynamic delays in discharge and transfer,
offering a blueprint for deploying simulation models in healthcare settings. Duma and Aringhieri [21] investigated
real-time resource allocation in an ED through a case study, employing an online allocation algorithm with lookahead
capabilities. This algorithm, supported by a process mining model, aimed to improve ED performance by efficiently
managing resources based on the prediction of patient pathways and resource behavior. Their approach, validated via
a detailed simulation, highlighted the potential to enhance ED operational metrics such as door-to-doctor time, length
of stay, and resource utilization by considering probable subsequent activities in allocation decisions. Eslamipoor and
Nobari [22] proposed a multi-objective model for a sustainable and reliable blood supply chain design in healthcare,
considering donor centers, distribution, and hospitals. The model focuses on ensuring blood demand fulfillment,
minimizing costs, and reducing environmental impacts under uncertainty. An improved ε-constraint method and an
imperialist competitive algorithm are applied for solving the model, with effectiveness validated through test cases
and comparisons using CPLEX.

Fuzzy MCDM methods have been recognized for their ability to handle uncertainty and ambiguity in decision-
making processes [23–28]. These methods facilitate the evaluation of multiple, often conflicting criteria, which is
essential in the complex ED setting where decisions must balance various factors such as treatment urgency, resource
availability, and patient outcomes. Zhang et al. [29] developed a model and a fuzzy multi-criteria group decision
support system (FMCGDSS) for emergency management evaluation. This system addresses both subjective and
objective criteria across multiple levels through group evaluation, specifically aimed at enhancing the evaluation
of emergency operating centers/systems by incorporating extended fuzzy multi-criteria group evaluation methods
to assess and improve emergency risk management. Amaral and Costa [30] applied the Preference Ranking
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Organization METHod for Enrichment Evaluations (PROMETHEE) II method to enhance decision-making and
resource management in an ED, particularly addressing the challenge of patient throughput in a Brazilian public
hospital. This technique, chosen for its suitability in complex healthcare decision contexts, successfully identified and
implemented solutions to reduce overcrowding wait times by approximately 70%, demonstrating its effectiveness as
a decision support tool in hospital resource management. Ebrahimi and Modam [31] developed a novel algorithm
using a hybrid fuzzy Multi-Attribute Decision Making (MADM) approach, combining fuzzy Technique for Order
Preference by Similarity to an Ideal Solution (TOPSIS) and AHP methods, to select optimal zones for new emergency
services in Tehran. This method accounts for various criteria, including population, traffic, and proximity to fault
lines, to optimize emergency service response times in both non-disaster and earthquake scenarios, effectively ranking
the city’s 22 zones for emergency service placement. Gul [32] introduced a two-stage methodology incorporating a
fuzzy Decision-Making Trial and Evaluation Laboratory (DEMATEL) and an ergonomic checklist for evaluating the
design of EDs. This approach, applied in a case study at a training and research hospital in Istanbul, assesses the
ED’s ergonomic design, focusing on accessibility, space, equipment, and accommodations for patients and staff. The
study emphasizes the importance of ergonomic considerations in improving ED productivity and service quality,
offering targeted recommendations to enhance patient and personnel experiences. Ortiz-Barrios and Alfaro-Saiz [33]
developed a hybrid fuzzy MCDM model to assess the performance of public EDs through integrating fuzzy AHP
(FAHP), fuzzy DEMATEL (FDEMATEL), and the TOPSIS. This comprehensive approach, applied to a case study
involving three EDs, highlighted infrastructure as a critical factor and identified specific areas for performance
improvement, showcasing the model’s utility in managing healthcare quality and efficiency. Clemente-Suárez et
al. [34] critically reviewed the application of fuzzy multi-criteria decision analysis in managing emergency systems
during the COVID-19 pandemic. This method, valuable for healthcare workers and first responders, addresses the
pandemic’s challenges by handling uncertainty and risk. The review, synthesizing various sources, underscores
the methodology’s significance in crisis response, highlighting its potential for future emergencies. Etu et al. [35]
developed a consensus-based modified fuzzy Delphi approach to identify critical indicators for ED performance
enhancement during medical surges. This methodology, through a literature review, expert interviews, and a systematic
ranking process, pinpointed twenty key indicators across five performance factors, emphasizing the significance of
ED beds, nurse staffing ratios, and patient length of stay as pivotal to ED efficiency in surge situations [36–40].

Despite the recognized potential of simulation and fuzzy MCDM, limited research has explored their integrated
application in healthcare settings. This study responds to this gap by developing an integrated simulation and fuzzy
MCDM framework aimed at optimizing ED operations. The approach proposed in this study leverages the strengths
of DES to model the dynamic nature of EDs and applies FAHP and ELECTRE methods to evaluate and optimize
decision-making processes under uncertainty. The objective is to demonstrate how such an integrated approach can
lead to significant improvements in patient flow and service quality, contributing to the operational excellence of
healthcare facilities. This integration is poised to offer significant improvements in ED efficiency, patient flow, and
overall service quality.

2 Proposed Methodology

This section elaborates on the research methodology adopted to identify the most effective scenario for improving
the performance of EDs. This methodology encompasses the integration of computer simulation, the AHP within a
fuzzy environment, and the ELECTRE method. While the fusion of MCDM methods with computer simulation
is relatively novel in this context, it offers significant advantages. Particularly, it enables the application of ”what
if” analysis or rapid scenario assessment within the MCDM framework, thereby aiming to elevate the efficiency
and service quality of EDs. A detailed, systematic procedure has been devised to pinpoint the optimal scenario, as
depicted in Figure 1 and further described below.

In the initial phase, essential data from the ED, including patient arrival rates and service times, are systematically
gathered. Subsequently, these data undergo statistical analysis to determine their probability distribution, making
them suitable for integration into the simulation. Utilizing Arena software for simulation, the model is meticulously
scrutinized. To validate the output data derived from simulation, a thorough comparison is conducted with empirical,
real-world data. Moving forward, the subsequent phase involves presenting existing criteria to the decision-making
group, based on the available data and a comprehensive review of previous research. The selection of the most
relevant criteria follows, with their interrelationships delineated. During this stage, the weights assigned to each
criterion are computed within a fuzzy environment, employing the AHP method. In the final phase, the optimal
scenario is identified through the application of the ELECTRE method. This results in a thorough and judicious
selection process, aligning simulation outputs, decision criteria, and fuzzy weighting to determine the scenario that
optimally enhances the ED’s performance.
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Figure 1. Proposed research method

2.1 Simulation

Simulation is a systematic process that entails creating a model replicating a real system, followed by conducting
experiments within this model to comprehend the system’s behavior or evaluate different strategies for its operational
functionalities. Particularly in the domain of complex multi-criteria systems like EDs, computer simulation emerges as
a potent and versatile tool. The growing popularity of simulation can also be attributed to the improved performance-
to-price ratio of computer hardware, making simulation more cost-effective than in previous periods. The utility of
computer simulation lies in its capacity to assess performance variables across various dimensions, specifically chosen
for evaluating service delivery within the ED. The rapid pace of simulation not only facilitates ease of measurement,
but also empowers users to adeptly evaluate different scenarios using the ”what if” method.

2.2 AHP Method in a Fuzzy Environment

Prior to delving into the elucidation of the AHP method in the fuzzy environment (FAHP), it is pertinent to
provide a concise overview of the fuzzy environment. If X denotes a set of objects, then a fuzzy set Ā in X is defined
as a set of ordered pairs in the following manner:

Ã = {(x, µÃ(x)) | x ∈ X}

The membership function, symbolized as µÃ(x), characterizes the membership degree of an element x within the
fuzzy set Ã. This function, operative over the set X , allocates a real-valued parameter within the interval [0, 1] to
each individual element, thereby capturing the degree of inclusion within the fuzzy set [41]. A fuzzy number M̃ is
designated as LR type if and only if:

µM̃ (x) =


L
(

m−x
m−1

)
l ≤ x ≤ m

R
(

x−m
u−m

)
m < x ≤ u

0 O.W.

As for M̃ = (l,m, u)−LR, it signifies that L and R represent two arbitrary functions [42]. For a given fuzzy
number M̃ , the α-cut set of the fuzzy number M̃ for α ∈ [0, 1] is defined as follows [43]:

[M̃ ]∝ = {x ∈ R | µM̃ (x) ≥∝}

In the realm of AHP, while domain experts draw upon their competencies and cognitive prowess to execute
comparisons, it is imperative to acknowledge that the conventional AHP methodology incompletely encapsulates
the nuances of human thought processes. The incorporation of fuzzy numbers, owing to their enhanced alignment
with linguistic expressions and occasional ambiguity in human sentiments, emerges as a judicious approach for
decision-making in real-world scenarios [44–46].
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To operationalize this, the use of linguistic (qualitative) variables in surveys becomes imperative, aiming to
enhance participant engagement and achieve more nuanced outcomes. The conversion of fuzzy data into linguistic
terms is facilitated through the utilization of the tabular representation (Table 1) outlined in Figure 1, as explained
subsequently.

Table 1. Fuzzy spectrum equivalent to the nine-point scale in the AHP technique

Superiority State i over j Fuzzy Equivalent Weakness State i over j Fuzzy Equivalent
Equally superior (E) (1,1,1) Equally weak (E) (1,1,1)
Intermediate (E-SS) (1,2,3) Intermediate (E-SS) (0.33,0.5,1)

Slightly superior (SS) (2,3,4) Slightly weak (SS) (0.25,0.33,0.5)
Intermediate (SS-FS) (3,4,5) Intermediate (SS-FS) (0.2,0.25,0.33)
Fairly superior (FS) (4,5,6) Fairly weak (FS) (0.166,0.2,0.25)

Intermediate (FS-VS) (5,6,7) Intermediate (FS-VS) (0.142,0.166,0.2)
Very superior (VS) (6,7,8) Very weak (VS) (0.125,0.142,0.166)

Intermediate (VS-AS) (7,8,9) Intermediate (VS-AS) (0.111,0.125,0.142)
Absolutely superior (AS) (9,9,9) Absolutely weak (AS) (0.111,0.111,0.111)

The AHP method is used to determine the weights of preference criteria due to its compatibility in a fuzzy
environment. This method ensures a unique final solution in the pairwise comparison matrix.

2.3 ELECTRE Method

In this method, when the decision-maker faces more than five criteria in examining their options, it yields
satisfactory performance, and even with 12 to 13 criteria, it maintains its effectiveness. In pairwise comparisons, the
degree of agreement comes from the weights, denoted as Wj, and the preference values as a matrix Vij . All these
steps are based on a set of concordant and a set of discordant bases, which is why this method is known as a universal
analysis. Assumptions required for using this method are:

• The criteria must be quantitative or convertible to quantitative.
• The criteria must be entirely heterogeneous.
The primary objective of the ELECTRE method is to discern and segregate options that are favored in the

evaluation, particularly with respect to the majority of criteria.

3 Research Scope

Figure 2. The average count of patients attending the ED within a 24-hour period

The research centers on the geographic scope of the emergency unit at Imam Sajjad Hospital (ISH) in Ramsar.
This medical facility holds a pivotal position as the primary and essential treatment center in the city, primarily due
to its central location within the county. With the observed population growth in the region and a consistent influx
of settlers into the city, particularly during specific periods, the strategic significance of this medical unit is further
emphasized. The temporal scope of this research spans forty-two days, specifically from September 23rd to November
23rd, 2023. The emergency unit of ISH serves as a crucial entry point to the main sections of the hospital. Therefore,
the majority of patients initially seek assistance within this department. Following initial assessments, individuals in
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need of extended care are directed to other specialized sections within the hospital or referred to alternative medical
centers as necessary.

The operational timeframe within this medical unit is divided into three distinct shifts: the morning shift (first)
from 07:00 to 15:00, the afternoon shift (second) from 15:00 to 23:00, and the night shift (third) from 23:00 to 07:00.
The suitability of this shift schedule is supported by the data collected in this section, as illustrated in Figure 2.

The inquiry focuses on the afternoon shift, as highlighted in Figure 2, which shows the highest influx of visitors.
Consequently, anticipating an extended waiting queue during this shift is reasonable. Given this scenario, the prudent
allocation of resources becomes imperative to efficiently manage demand during the afternoon shift.

The allocated human resources for the afternoon shift are outlined as follows:
Nurses (five personnel): responsible for providing medical services and care within the unit.
Physicians (two personnel): engaged in conducting initial examinations, diagnosing diseases, administering tests,

scrutinizing test results, and prescribing medications.
Receptionists (two personnel): responsible for registering visitor information, maintaining data archives, managing

financial transactions, and overseeing patient discharges.

3.1 Simulation Model

Before formulating an algorithm within the simulation software, it is crucial to gain a comprehensive understanding
of the sections and pathways traversed by visitors. The overall perspective of these elements is encapsulated in
Figure 3.

Figure 3. Overview of a patient’s path

After assimilating this general view, the subsequent phase involves meticulous data collection and recording
intricate details pertaining to various sections and their interrelationships. Within the simulation software, two
fundamental elements facilitate the execution of simulations: time and entities.

In the context of this research, time encompasses the duration of diagnostic and therapeutic activities, thereby
influencing the performance of the ED staff. This temporal element is further broken down into three criteria,
contributing to the research metrics. Entities, on the other hand, represent the patients. The synergy between time
and entities gives rise to critical metrics, namely waiting time and service time, constituting foundational aspects
of the problem under investigation. Following the delineation of the timing of activities and services within the
ED and discerning the volume of visitors during the afternoon shift, the research proceeds to calculate data and
establish the probability distribution for entry, patient movement paths, and service time. Figure 4 provides a graphical
representation of the average influx of patients on different days of the week.

Figure 4. Average patient admission during the evening shift throughout the week
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The dataset undergoes normality testing using the Kolmogorov-Smirnov method within the SPSS software. The
underlying assumptions for this statistical test are defined as follows:

Null hypothesis (H0): The distribution of data for each variable adheres to a normal distribution.
Alternative hypothesis (H1): The distribution of data for each variable deviates from normality.
This testing framework enables the evaluation of whether the data follows a normal distribution, a critical

consideration in various statistical analyses and hypothesis testing procedures.
After entering the data related to the second shift into the SPSS software and performing the Kolmogorov-Smirnov

test, the obtained result is displayed in Figure 5.

Figure 5. Result of the Kolmogorov-Smirnov test in SPSS software

Given that the significance level, denoted by sig. in Figure 5, is equal to 0.2, and this value is greater than the
conventional threshold of 0.05, the null hypothesis (H0) is not rejected. Consequently, it is inferred that the collected
data conform to a normal distribution.

3.2 Generating Scenarios

After compiling the requisite data and inputting it into the simulation software, Arena, the desired model is
finalized and poised for execution. The simulation yields the results presented in Table 2, encompassing outcomes
derived from seven distinct scenarios. These scenarios collectively represent the spectrum of executions conducted
by the decision-making group. The process of ranking and selecting the optimal scenario is facilitated through
decision-making methods. It is noteworthy that Scenario Seven aligns with the existing configuration currently
operational in the ED.

The description of the selected scenarios is as follows:
Scenario 1: Adding one nurse and one admission officer.
Scenario 2: Adding one physician.
Scenario 3: Adding one physician and reducing one nurse.
Scenario 4: Adding one physician and one admission officer.
Scenario 5: Adding one nurse.
Scenario 6: Adding one physician, one nurse, and one admission officer.
Scenario 7: Maintaining the current situation.

Table 2. Performance of scenarios based on the current situation

Row Presence
Time

Utilization
of Recep-

tions

Utilization
of Nurses

Utilization
of

Doctors

Waiting
Time in

the MBA

Waiting
Time in
the BA

Scenario 1 Performance 1.1729 0.5751 0.6991 0.9257 0.207 5.646
Improvement 197.8 -32.52 -3.78 3.42 455 -11

Scenario 2 Performance 1.9488 0.834 0.8798 0.6435 0.2 2.15
Improvement 79.23 8.62 17.54 -38.93 475 132.03

Scenario 3 Performance 2.7088 0.6927 0.922 0.5642 0.507 8.01
Improvement 28.95 -10.02 21.31 -58.45 126.82 -37.72

Scenario 4 Performance 2.2258 0.6063 0.9067 0.6921 0.66 4.29
Improvement 56.93 -25.7 19.98 -29.17 74.24 16.29

Scenario 5 Performance 2.899 0.9526 0.6013 0.9302 0.814 6.922
Improvement 20.49 20 -20.66 3.89 41.28 -27.93

Scenario 6 Performance 1.0626 0.6466 0.7272 0.7551 0.101 0.309
Improvement 228.71 -17.86 0.23 -18.39 1038.61 1514.5

Scenario 7 Performance 3.4929 0.7621 0.7255 0.894 1.15 4.9887
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3.3 Execution of AHP

In this section, to better understand the problem, the hierarchical structure of criteria and various scenarios is
illustrated. Figure 6 presents the main criteria along with their sub-criteria.

Figure 6. Hierarchical structure of criteria and scenarios

After determining the criteria, the decision team was asked to express their opinions about the importance of the
three selected criteria. For this purpose, the AHP method was utilized. Table 3 displays the result of this survey. It
should be noted that in this survey, the decision team used qualitative variables for feedback.

Table 3. Pairwise comparison matrix of criteria

Criteria Waiting Time
in the MBA

Waiting Time
in the BA

Utilization
of

Doctors

Utilization
of Nurses

Utilization of
Receptionists

Presence
Time

Waiting time
in the MBA E E SS FS VS SS SW

Waiting time
in the BA E SW E FS SS SS SS SW E

Utilization of
doctors FW SS FS E SS FS VS AS FS

Utilization of
nurses VW SS FW SW E FS VS FS VS

Utilization of
receptionists SW VW FW AW VW VW FW E VS

Presence
time SS FS VS FW VW FW VW E

The above data is transformed into fuzzy data using Table 1. The result is presented in Table 4.
Following the encoding of fuzzy data in the pairwise comparison matrix and applying the AHP method, the Si

values are computed for each criterion (Tables 5 and 6). The outcomes of these computations are systematically
detailed and presented in the ensuing tables.

Upon determining the Si values for each criterion, the subsequent step involves computing the magnitude degree
for each Si value (Table 7).

The final step in the FAHP method involves determining the final weight and normalized weight of the criteria.
The conclusive outcome of this process is presented in Table 8.

Consequently, the analysis reveals that the criterion ”utilization of doctors” holds the highest degree of importance
relative to the other criteria. Furthermore, Table 8 illustrates that the criteria ”waiting time in BA,” ”presence time,”
and ”utilization of nurses” are of equivalent significance in the overall hierarchy.
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Table 4. Fuzzy hierarchical comparison matrix of criteria

Criteria Waiting Time in the
MBA Waiting Time in the BA Utilization of

Doctors
Waiting time in the

MBA (1,1,1) (1,2,3) (1,2,3)

Waiting time in the BA (0.33,0.5,1) (1,1,1) (0.25,0.33,0.5)
Utilization of doctors (1,2,3) (2,3,4) (1,1,1)
Utilization of nurses (1,2,3) (0.33,0.5,1) (0.33,0.5,1)

Utilization of
receptionists (0.25,0.33,0.5) (2,3,4) (0.2,0.25,0.33)

Presence time (0.25,0.33,0.5) (0.33,0.5,1) (1,2,3)

Criteria Utilization of Nurses Utilization of
Receptionists Presence Time

Waiting time in the MBA (0.33,0.5,1) (2,3,4) (2,3,4)
Waiting time in the BA (1,2,3) (0.33,0.5,1) (1,2,3)
Utilization of doctors (2,3,4) (3,4,5) (0.33,0.5,1)
Utilization of nurses (1,1,1) (1,2,3) (0.25,0.33,0.5)

Utilization of
receptionists (0.33,0.5,1) (1,1,1) (1,2,3)

Presence time (1,2,3) (0.33,0.5,1) (1,1,1)

Table 5. Row sum of the data in the pairwise comparison matrix

Row
∑6

i=1 Li

∑6
i=1 Mi

∑6
i=1 Ui

Waiting time in the MBA 7.33 11.5 16
Waiting time in the BA 3.91 6.33 9.5
Utilization of doctors 9.33 13.5 18
Utilization of nurses 3.91 6.33 9.5

Utilization of receptionists 4.78 5.58 11.83
Presence time 3.91 6.33 9.5

Sum 33.17 49.57 74.33

Table 6. Calculating Si for each criterion

Row S
Waiting time in the MBA (0.0986,0.232,0.4824)
Waiting time in the BA (0.0526,0.1277,0.2864)
Utilization of doctors (0.1255,0.2723,0.5427)
Utilization of nurses (0.0526,0.1277,0.2864)

Utilization of receptionists (0.0643,0.1126,0.3566)
Presence time (0.0526,0.1277,0.2864)

Table 7. Magnitude of Si

Row S1 S2 S3 S4 S5 S6

V (S1 ≥ Si) - 1 0.8984 1 1 1
V (S2 ≥ Si) 0.6429 - 0.5266 1 1 1
V (S3 ≥ Si) 1 1 - 1 1 1
V (S4 ≥ Si) 0.6429 1 0.5266 - 1 1
V (S5 ≥ Si) 0.6836 0.9526 0.5913 0.9526 - 0.9526
V (S6 ≥ Si) 0.6429 1 0.5266 1 1 -

3.4 Execution of the ELECTRE Algorithm

After calculating the weights for each criterion, the next step is ranking the scenarios using the ELECTRE method.
Therefore, the data from Tables 2 and 8 is needed. The steps are given below.

The normalization process involves squaring the data in Table 2, summing the squared data for each criterion,
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Table 8. Weight of criteria

Row Unnormalized Weight Normalized Weigh Order
Waiting time in the MBA 0.8984 0.220764 2
Waiting time in the BA 0.5266 0.129402 4
Utilization of doctors 1 0.24573 1
Utilization of nurses 0.5266 0.129402 4

Utilization of receptionists 0.5913 0.1453 3
Presence time 0.5266 0.129402 4

and subsequently taking the square root of the result. The resultant values are then used to divide the data for each
scenario. The normalized outcomes are illustrated in Table 9, while Table 10, presented below, encapsulates the fully
normalized dataset.

Table 9. Prerequisites for normalization

Row Waiting Time
in the MBA

Waiting Time
in the BA

Utilization
of Doctors

Utilization
of Nurses

Utilization of
Receptionists

Presence
Time

Scenario 1 0.042849 31.87732 0.85692 0.488741 0.33074 1.375694
Scenario 2 0.04 4.6225 0.414092 0.774048 0.695556 3.797821
Scenario 3 0.257049 64.1601 0.318322 0.850084 0.479833 7.337597
Scenario 4 0.4356 18.4041 0.479002 0.822105 0.3676 4.954186
Scenario 5 0.662596 47.91408 0.865272 0.361562 0.907447 8.404201
Scenario 6 0.010201 0.095481 0.570176 0.52882 0.418092 1.129119
Scenario 7 1.3225 24.88713 0.799236 0.52635 0.580796 12.20035

Sum 2.770795 191.9607 4.303021 4.35171 3.780064 39.19897
Square root 1.664571 13.85499 2.074372 2.086075 1.944239 6.260908

Table 10. Normalized data

Row Waiting time
in the MBA

Waiting Time
in the BA

Utilization
of Doctors

Utilization
of Nurses

Utilization of
Receptionists

Presence
Time

Scenario 1 0.124356 0.407507 0.446255 0.335127 0.295797 0.187337
Scenario 2 0.120151 0.155179 0.310214 0.421749 0.42896 0.311265
Scenario 3 0.304583 0.578131 0.271986 0.441978 0.356283 0.432653
Scenario 4 0.396499 0.309636 0.333643 0.434644 0.311844 0.355508
Scenario 5 0.489015 0.499603 0.448425 0.288245 0.48996 0.463032
Scenario 6 0.060676 0.022302 0.364014 0.348597 0.332572 0.16972
Scenario 7 0.690869 0.360065 0.430974 0.347782 0.391979 0.55789

By utilizing the weights derived from Table 8, a concordance matrix is formulated by multiplying each criterion’s
weight with its corresponding data in Table 10. In this process, positive criteria are visually emphasized in green,
while negative criteria are distinctly marked in red. The resultant concordance matrix is presented in Table 11.

Table 11. Weighted data

Row Waiting Time
in the MBA

Waiting Time
in the BA

Utilization
of Doctors

Utilization
of Nurses

Utilization of
Receptionists

Presence
Time

Scenario 1 0.016092 0.089963 0.064841 0.043366 0.072686 0.024242
Scenario 2 0.015548 0.034258 0.045074 0.054575 0.105408 0.040278
Scenario 3 0.039414 0.127631 0.03952 0.057193 0.08755 0.055986
Scenario 4 0.051308 0.068356 0.048478 0.056244 0.07663 0.046003
Scenario 5 0.063279 0.110295 0.065156 0.037299 0.120398 0.059917
Scenario 6 0.007852 0.004924 0.052891 0.045109 0.081723 0.021962
Scenario 7 0.0894 0.07949 0.062621 0.045004 0.096321 0.072192

In the subsequent step, pairwise comparisons are conducted across various scenarios, giving rise to the generation

65



of two matrices: a harmony matrix and a disharmony matrix. These matrices are obtained by following distinct
pathways.

Upon examination of Table 12, it is clear that favorable criteria are bolded for emphasis, whereas unfavorable
criteria are presented in regular typeface. This visual distinction expedites the process of crafting both the harmony
and disharmony matrices.

Table 12. Detection of coherence and incoherence

Row Waiting Time
in the MBA

Waiting Time
in the BA

Utilization
of Doctors

Utilization
of Nurses

Utilization of
Receptionists

Presence
Time

1-2 0.000544 0.055705 0.019767 0.011209 0.032722 0.016036
1-3 0.023322 0.037668 0.025321 0.013827 0.014863 0.031744
1-4 0.035216 0.021606 0.016363 0.012878 0.003943 0.021762
1-5 0.047187 0.020332 0.000315 0.006067 0.047712 0.035675
1-6 0.00824 0.085039 0.01195 0.001743 0.009037 0.00228
1-7 0.073308 0.010473 0.00222 0.001638 0.023635 0.04795
2-1 0.000544 0.055705 0.019767 0.011209 0.032722 0.016036
2-3 0.023866 0.093373 0.005555 0.002618 0.017859 0.015708
2-4 0.03576 0.034099 0.003404 0.001669 0.028779 0.005725
2-5 0.047732 0.076037 0.020082 0.017276 0.01499 0.019639
2-6 0.007696 0.029334 0.007817 0.009466 0.023685 0.018316
2-7 0.073852 0.045232 0.017546 0.009571 0.009087 0.031914
3-1 0.023322 0.037668 0.025321 0.013827 0.014863 0.031744
3-2 0.023866 0.093373 0.005555 0.002618 0.017859 0.015708
3-4 0.011894 0.059274 0.008959 0.000949 0.01092 0.009983
3-5 0.023866 0.017336 0.025637 0.019893 0.032849 0.003931
3-6 0.031562 0.122707 0.013372 0.012084 0.005827 0.034024
3-7 0.049986 0.048141 0.023101 0.012189 0.008771 0.016206
4-1 0.035216 0.021606 0.016363 0.012878 0.003943 0.021762
4-2 0.03576 0.034099 0.003404 0.001669 0.028779 0.005725
4-3 0.011894 0.059274 0.008959 0.000949 0.01092 0.009983
4-5 0.011972 0.041938 0.016678 0.018944 0.043769 0.013914
4-6 0.043456 0.063433 0.004413 0.011135 0.005093 0.024041
4-7 0.038092 0.011133 0.014142 0.01124 0.019691 0.026189
5-1 0.047187 0.020332 0.000315 0.006067 0.047712 0.035675
5-2 0.047732 0.076037 0.020082 0.017276 0.01499 0.019639
5-3 0.023866 0.017336 0.025637 0.019893 0.032849 0.003931
5-4 0.011972 0.041938 0.016678 0.018944 0.043769 0.013914
5-6 0.055428 0.105371 0.012265 0.00781 0.038675 0.037955
5-7 0.02612 0.030805 0.002536 0.007704 0.024077 0.012275
6-1 0.00824 0.085039 0.01195 0.001743 0.009037 0.00228
6-2 0.007696 0.029334 0.007817 0.009466 0.023685 0.018316
6-3 0.031562 0.122707 0.013372 0.012084 0.005827 0.034024
6-4 0.043456 0.063433 0.004413 0.011135 0.005093 0.024041
6-5 0.055428 0.105371 0.012265 0.00781 0.038675 0.037955
6-7 0.081548 0.074566 0.009729 0.000105 0.014598 0.05023
7-1 0.073308 0.010473 0.00222 0.001638 0.023635 0.04795
7-2 0.073852 0.045232 0.017546 0.009571 0.009087 0.031914
7-3 0.049986 0.048141 0.023101 0.012189 0.008771 0.016206
7-4 0.038092 0.011133 0.014142 0.01124 0.019691 0.026189
7-5 0.02612 0.030805 0.002536 0.007704 0.024077 0.012275
7-6 0.081548 0.074566 0.009729 0.000105 0.014598 0.05023

Weight 0.2208 0.1294 0.2457 0.1294 0.1453 0.1294

The generation of the harmony matrix involves the summation of the weighted values corresponding to harmonious
elements (indicated in green) for each row. The outcome of these computations is encapsulated in the harmony matrix,
as depicted in Table 13.

The discordance matrix is crafted by dividing the largest discordant element (identified in red) in each row by the
largest element within the same row. The resultant values from these calculations constitute the discordance matrix,
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as illustrated in Table 14.

Table 13. Coherence matrix

Row Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7
Scenario 1 - 0.3751 0.7253 0.5959 0.609 0.1294 0.5959
Scenario 2 0.6249 - 0.8706 0.6249 0.609 0.2747 0.7543
Scenario 3 0.2747 0.1294 - 0.4955 0.4796 0.2747 0.4796
Scenario 4 0.4041 0.3751 0.5045 - 0.609 0.1294 0.609
Scenario 5 0.391 0.391 0.5204 0.391 - 0.391 0.7412
Scenario 6 0.7543 0.7253 0.7253 0.8706 0.609 - 0.609
Scenario 7 0.4041 0.2457 0.5204 0.391 0.2588 0.394 -

Table 14. Incoherence matrix

Row Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7
Scenario 1 - 1 0.3946 0.6135 1 1 0.3224
Scenario 2 0.3548 - 0.0280 0.0952 0.2641 1 0.2376
Scenario 3 1 1 - 1 1 1 0.9631
Scenario 4 1 1 0.2007 - 1 1 0.5169
Scenario 5 0.9890 1 0.7265 0.9582 - 1 1
Scenario 6 0.1405 0.8074 0.0985 0.1755 0.3670 - 0.1790
Scenario 7 1 1 1 1 0.8479 1 -

Following the acquisition of the concordance and discordance matrices, the next step involves transforming the
data within these matrices into Boolean values (0 and 1). The Boolean concordance matrix is denoted by the symbol
B, and the discordance matrix is represented by H . To elaborate, at this stage, the data is subjected to averaging,
where entries equal to or greater than the computed average are set to one, while values below the average are
designated as zero (Tables 15 and 16).

Table 15. Boolean matrix B

Row Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7
Scenario 1 - 0 1 1 1 0 1
Scenario 2 1 - 1 1 1 0 1
Scenario 3 0 0 - 0 0 0 0
Scenario 4 0 0 1 - 1 0 1
Scenario 5 0 0 1 0 - 0 1
Scenario 6 1 1 1 1 1 - 1
Scenario 7 0 0 1 0 0 0 -

Table 16. Boolean matrix H

Row Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7
Scenario 1 - 0 1 1 0 0 1
Scenario 2 1 - 1 1 1 0 1
Scenario 3 0 0 - 0 0 0 0
Scenario 4 0 0 1 - 1 1 0
Scenario 5 0 0 0 0 - 0 0
Scenario 6 1 0 0 1 1 - 1
Scenario 7 0 0 0 0 0 0 -

In this segment, the matrices B and H are subjected to multiplication, yielding the final coherence matrix denoted
as Z (Table 17). This multiplication process combines the Boolean concordance matrix (B) and the discordance
matrix (H), culminating in the generation of the coherence matrix that encapsulates the integrated information from
both matrices.

The number of wins, losses, and the final outcome are determined using Table 17.
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Table 17. Final tearing matrix

Row Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7
Scenario 1 - 0 1 1 0 0 1
Scenario 2 1 - 1 1 1 0 1
Scenario 3 0 0 - 0 0 0 0
Scenario 4 0 0 1 - 1 0 0
Scenario 5 0 0 0 0 - 0 0
Scenario 6 1 0 0 1 1 - 1
Scenario 7 0 0 0 0 0 0 -

Table 18. Win-loss table of options

Row Win Loss Outcome
Scenario 1 3 1 2
Scenario 2 5 0 5
Scenario 3 0 3 -3
Scenario 4 2 3 -1
Scenario 5 0 3 -3
Scenario 6 4 0 4
Scenario 7 0 3 -3

Table 18 indicates that Scenario 2 has been identified as the optimal scenario. The prioritization order among
scenarios is visually represented in Figure 7, highlighting the comparative rankings.

Figure 7. Prioritization of scenarios

Therefore, Scenario 2, involving the ”utilization of doctors,” emerges as the most favorable option for enhancing
performance and augmenting patient satisfaction within the ED at ISH. Drawing insights from the study, the following
practical recommendations are proposed for the healthcare unit:

1. Swiftly implement Scenario 2 in the ED at Sajjad Hospital to expedite performance improvement and elevate
patient satisfaction.

2. Extend similar studies to other shifts within the healthcare unit to mitigate waiting times, enhance patient
presence, and optimize resource utilization comprehensively.

3. In light of escalating medical service costs and the multifaceted factors influencing decision-making in healthcare
centers, conduct parallel research in other EDs. This facilitates a pre-implementation evaluation of proposed
changes and a thorough assessment of outcomes.

4. Given the increasing prominence of management discussions and industrial engineering concepts, particularly
simulation and MCDM in healthcare, consider establishing specialized units with cross-disciplinary specialists
to ensure efficient resource utilization.

5. Recognize the significance of system management and control based on inputs and outputs, particularly in
service-oriented organizations like healthcare centers. The study underscores the necessity for heightened
attention to this aspect and a reevaluation and control of implemented systems.

6. Acknowledge the pivotal role of operational efficiency and patient waiting and presence times in healthcare
settings. Organizations should strive for a balanced and optimized approach to these criteria, steering clear of
disproportionate emphasis on a singular factor. This strategy ensures the avoidance of erroneous decisions and
encourages the adoption of comprehensive strategies to optimize all three criteria.
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4 Conclusion

This study successfully demonstrated the effectiveness of integrating simulation and fuzzy MCDM techniques to
enhance performance and patient satisfaction within EDs. Scenario 2, which involves the addition of a physician,
emerged as the optimal solution for improving ED operations at Sajjad Hospital. This scenario not only expedited
patient processing times but also significantly increased patient satisfaction levels. The implementation of this
integrated approach provides a comprehensive framework for addressing the complexities inherent in ED operations.
By leveraging DES, the intricate dynamics of patient flow and resource allocation were modeled in a risk-free
environment. The inclusion of fuzzy MCDM, specifically the AHP and ELECTRE methods, allowed for a nuanced
evaluation and prioritization of decision-making criteria under uncertainty. The findings suggest that the proposed
framework can serve as a valuable tool for healthcare administrators and decision-makers. It facilitates informed
decision-making by providing a detailed analysis of the potential outcomes of various operational strategies. Moreover,
this study contributes to the body of knowledge by highlighting the utility of combining simulation with fuzzy MCDM
techniques in healthcare settings, which has been relatively unexplored. While this study focused on a specific ED at
Sajjad Hospital, future research could explore the applicability of the proposed framework in other healthcare settings
or departments. Additionally, further investigation into the integration of other simulation models or decision-making
techniques could offer deeper insights into optimizing healthcare operations. The impact of such interventions on
other key performance indicators, such as healthcare costs and staff satisfaction, also warrants exploration.
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