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2 Centro de Estudio de Matemática Computacional, Universidad de las Ciencias Informáticas, 19370 La Habana,
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Abstract: The inherent hierarchical and decentralized nature of decision-making within banking systems presents
significant challenges in evaluating operational efficiency. This study introduces a novel bi-level programming
(BLP) framework, incorporating Stackelberg equilibrium dynamics, to assess the performance of bank branches.
By combining with data envelopment analysis (DEA), the proposed BLP-DEA model captures the leader-follower
relationship that characterizes banking operations, wherein the leader focuses on marketability and the follower
prioritizes profitability. A case study involving 15 Iranian bank branches was employed to demonstrate the model’s
capacity to evaluate performance comprehensively at both decision-making levels. The results underscore the
model’s effectiveness in identifying inefficiencies, analyzing cost structures, and providing actionable insights for
performance optimization. This approach offers a robust tool for addressing the complexities associated with
decentralized decision-making in hierarchical organizations. The findings have significant implications for both
theoretical development and practical application, especially in the context of improving the operational efficiency of
banking institutions.

Keywords: Bank branch performance; Stackelberg equilibrium; Bi-level programming; Hierarchical decision-making;
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1 Introduction

In the swiftly evolving and technologically advanced realm of computers and telecommunications, where
competition is fierce, banks, as one of the most intricate sectors globally, must possess the agility to respond
promptly to changes. In a highly competitive landscape, ongoing enhancement is essential for any prosperous
firm. Consequently, enhancing performance is universally acknowledged as crucial for achieving a competitive
edge. The banking chain possesses a multifaceted and intricate structure due to its operation in a competitive
business environment. The banking chain is pivotal in the economic cycle of each nation, and to achieve or keep a
competitive advantage, performance evaluation has become a crucial responsibility for the management of every
financial institution. Consequently, in evaluating bank branch performance, the primary emphasis of this study has
grown increasingly complex due to variations in size, the provision of diverse services to distinct clientele, and a
multi-faceted structure. Two methodologies were employed in this study to assess the operational effectiveness of
bank branches: parametric and non-parametric. The disadvantage of parametric approaches lies in several intrinsic
restrictions that render them inadequate for accurately representing the increasingly intricate nature of banking
networks.

Regression analysis, a premier parametric methodology, serves as a method of central tendency and is exclusively
applicable for modeling single input-multiple outputs or multiple inputs-single output systems. DEA, a non-parametric
methodology, serves as a superior tool for efficiency analysis by establishing an efficient production frontier to evaluate
the Decision-Making Units (DMUs) in relation to the optimal ones operating under identical conditions [1]. The
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capability to manage many inputs and outputs is a compelling advantage that distinguishes DEA from other analytical
instruments. The standard DEA assesses the relative efficiency of DMUs considering numerous inputs and outputs
without adequate details for managerial decision-making [2]. In practical situations, corporations (DMUs) consist of
multiple divisions or levels, characterized by significant inter-level interactions that are interconnected and adhere to
multi-tiered Stackelberg linkages. The intricate hierarchical framework of banking institutions presents obstacles for
their managers. Managers face significant issues related to fluctuating costs and demand within multi-level Stackelberg
relationships, necessitating the coordination of these interactions to deliver high-quality services to clients. Bank
managers can enhance cost efficiency by sustaining or elevating service quality to establish a competitive edge.

The cost efficiency of banking chains assesses their capacity to generate current outputs at minimal costs,
offering insights into the managerial oversight of overall operational expenses. The evaluation of banking branch
performance inherently presents a hierarchical multi-level decision modeling challenge. In multi-level decentralized
decision-making organizations, each level often governs its own set of decision variables, which frequently have
conflicting objectives. Consequently, the assessment of banking chain performance is conducted from several
perspectives. Performance assessment within this specific multi-tiered decentralized decision framework can be
represented by a BLP-DEA methodology [3]. This methodology operates as a black box. It represents the internal
framework and internal dynamics of a system with a hierarchical organization. BLP-DEA can offer useful insights and
comprehensive information to managers when assessing the operation of a system characterized by Stackelberg-game
dynamics [4]. This study aims to demonstrate a rarely employed non-parametric analytical method known as
BLP-DEA, which tackles the issue of cost efficiency assessment within Stackelberg leader-follower dynamics in the
banking sector [5, 6].

The subsequent sections of this study are structured as follows: Section 2 presents a review of the literature.
Section 3 presents the concepts of BLP and DEA cost efficiency. Section 4 presents the BLP-DEA model introduced
by Wu [4]. Section 5 illustrates the practical use of the BLP-DEA model through a case study involving an Iranian
bank. Conclusions are delineated in Section 6.

2 Research Background

Compared to methods for evaluating organizational performance, DEA introduced by Charnes et al. [7] offers a
superior approach for data organization and analysis, as it accommodates variations in efficiency over time and does
not necessitate prior assumptions regarding the specification of the efficient frontier. Consequently, DEA serves as a
superior method for performance evaluation inside the banking sector. In numerous practical situations, DMUs exhibit
a two-stage network process [1, 8, 9]. Consequently, DEA has been expanded to assess the efficiency of two-step
processes, wherein all outputs from the initial stage serve as intermediate measures, constituting the inputs for the
subsequent stage. Wang [10] delineated a two-step process within the banking sector, wherein banks utilize inputs
such as fixed assets, manpower, and information technology (IT) investments in the initial stage to create deposits.
The banks utilize the deposits as an intermediary measure to produce loans and profits as outputs. Bhattacharya et
al. [11] employed a two-stage DEA methodology to analyze the influence of liberalization on the efficiency of the
Indian banking sector. A technical efficiency score was computed in the initial step.

Conversely, in the subsequent step, a stochastic frontier analysis was employed to ascribe variations in efficiency
scores to the following sources: ownership, temporal, and noise components. Seiford and Zhu [12] analyzed the
performance of the leading 55 US banks employing a two-stage DEA methodology. Findings revealed that larger banks
demonstrate superior profitability, whereas smaller banks excel in marketability. Sexton and Lewis [13] presented
a bifurcated methodology for assessing Major League Baseball performance. Kao and Hwang [14] proposed an
alternative method in which the complete two-stage process can be expressed as the product of the efficiencies of the
two subprocesses.

Consequently, the overall efficiency and the efficiency of each stage can be determined. Tone and Tsutsui [15]
expanded the Slacks-Based Measure (SBM) model into a network architecture to address intermediate products
formally. Avkiran [16], as the inaugural empirical investigation of Network Slacks-Based Measure (NSBM), utilized
actual aggregate data from domestic commercial banks in the United Arab Emirates and employed the non-oriented
NSBM to assess profit efficiency. Fukuyama and Weber [17] expanded the slacks-based inefficiency metric to
assess a two-stage system with undesirable outputs at a Japanese bank. Paradi et al. [18] devised a two-stage
DEA methodology for concurrently evaluating the performance of operational units. Li et al. [19] introduced a
non-cooperative, centralized model to assess the efficiency of a two-stage process, aiming to deconstruct the overall
efficiency of intricate network topologies.

Bi-level decision-making, or BLP techniques, initially described by Von Stackelberg et al. [20], have been
primarily developed to address decentralized decision processes involving decision-makers inside a hierarchical
organization. The individual responsible for decision-making in the upper echelon is referred to as the leader, whereas
at the lower tier, the followers possess their own potentially conflicting aims. BLP has been utilized in numerous
domains. Ryu et al. [21] introduced a BLP paradigm to address the competing interests of several constituents in
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supply chain planning issues. Sun et al. [22] introduced a BLP model to address the location problem, considering
the interests of both customers and logistics planners. Sakawa et al. [23] addressed a transportation issue in a
housing material manufacturing firm and obtained an acceptable resolution to the problem. Roghanian et al. [24]
examined a probabilistic bi-level linear multi-objective programming issue and its application in comprehensive
supply chain planning within enterprises. Arora and Gupta [25] introduced an interactive fuzzy goal programming
methodology for BLP issues exhibiting dynamic programming traits. Lan et al. [26] developed two inventory control
models for degrading items, utilizing time- and quantity-based integrated delivery strategies for suppliers within the
Vendor-Managed Inventory (VMI) paradigm, grounded in BLP.

Wu [4] devised a novel quantitative methodology to assess the efficacy of multi-level decision network structures
by incorporating cost DEA into a BLP framework and formulating a BLP-DEA model. To illustrate the model’s
applicability, Wu [4] presented its use in two real cases: a banking chain and a manufacturing supply chain.

3 Fundamentals of BLP and DEA Cost Efficiency
3.1 Cost Efficiency Model

Diverse DEA models with varying objectives have been established [27]. The primary objective of most DEA
models is to analyze the technical and physical dimensions of production in contexts where unit pricing and unit cost
data are either unknown or constrained due to fluctuations in the relevant prices and costs. The cost efficiency model
demonstrates the capacity of DMUs to generate current outputs at minimal costs and illustrates how DEA can detect
potential inefficiencies when precise cost information is available [28, 29].

Let there benDMUs under assessment, denoted as j = 1, . . . , n; the input vector is denoted asX =(x1, . . . , xm)
T

which generates the output vector Y = (y1, . . . , ys)
T within the production possibility set. Accordingly, the cost

efficiency model for the 0th DMU (0 ∈ {1, . . . , n}) can be articulated as follows:

cx∗ = min

m∑
i=1

cixi

s.to
n∑

j=1

xijλj ≤ xi, i = 1, . . . ,m; (1)

n∑
j=1

yrjλj ≥ yr0, r = 1, . . . , s;

λj ≥ 0, xi ≥ 0.

where, xi and λj represent decision variables; and ci is the unit cost of input i, which may differ among several DMUs.
This model permits substitutions in inputs. The model’s goal function is to reduce the total cost of the 0th DMU.

Based on an optimal solution (x∗, λ∗) of the above linear programming, the cost efficiency of DMU0 is defined as:

Ec =
CX∗

CX0
(2)

where, X0 is the input vector of DMU0.

3.2 BLP

BLP, inspired by Stackelberg’s game theory [20], pertains to scenarios involving two decision-makers inside an
organization who are linked in a hierarchical framework [30]. In these circumstances, the individual who initially
renders a decision is referred to as the leader, while the one who, aware of the opponent’s decision, then makes
a decision is designated as the follower. These two decision-makers possess independent, potentially conflicting,
objectives. Within the framework of BLP, the leader initially delineates a decision. The follower, fully aware of the
leader’s decision, chooses to optimize their objective function.

Consequently, the leader also makes decisions to optimize their objective function. The solution derived from
the approach mentioned above is a Stackelberg equilibrium solution [31]. A bi-level linear programming (BLLP)
problem is formulated to derive the Stackelberg solution as follows:

minimize
x

z1(x, y) = c1x+ d1y

where, y solves
minimize z2(x, y) = c2x+ d2y (3)
subject to Ax+By ≤ b;x ≥ 0, y ≥ 0.
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where, ci(i = 1, 2) denote the n1-dimensional row coefficient vector, while di(i = 1, 2) represent the n2-dimensional
vector. Furthermore, coefficient matrices A and B are m×n1 and m×n2, and b is an m-dimensional column constant
vector. In addition, z1(x, y) and z2(x, y) represent the leader’s and follower’s objective functions, respectively; x and
y represent a collection of decision variables governed by the leader and the follower [31].

Definition 1. S represents the BLLP problem’s feasible region [31]:

S = {(x, y) | Ax+By ≤ b, x ≥ 0, y ≥ 0}

Definition 2. S(x) is the follower decision space after x is specified by the leader [31]:

S(x) = {y ≥ 0 | By ≤ b−Ax, x ≥ 0}

Definition 3. SX is the leader decision space [31]:

SX = {x ≥ 0 | there is a y such that Ax+By ≤ b, y ≥ 0}

Definition 4. R(x) denotes the set of follower rational responses for x designated by the leader [31]:

R(x) =

{
y ≥ 0 | y ∈ arg min

y∈S(x)
z2(x, y)

}
Definition 5. Inducible region [31]:

IR = {(x, y) | (x, y) ∈ S, y ∈ R(x)}

Definition 6. Stackelberg solution [31]:{
(x, y) | (x, y) ∈ arg min

(x,y)∈IR
z1(x, y)

}
In BLP, the follower optimization issue is regarded as a constraint within a bi-level optimization framework. By

employing the Kuhn-Tucker methodology, a prevalent technique for addressing BLP, the follower’s problem can be
substituted with the Kuhn-Tucker conditions pertinent to the follower’s issue. The leader’s issue with limitations
related to the optimality criteria of the follower’s problem is subsequently resolved [31]. Utilizing Kuhn-Tucker
conditions, the BLLP problem (3) can be reformulated as an equivalent single-level nonlinear programming (SLNLP)
problem:

minimize z1(x, y) = c1x+ d1y

subject to uB − v = −d2;

u(Ax+By − b)− vy = 0; (4)
Ax+By ≤ b;

x ≥ 0, y ≥ 0, uT ≥ 0, vT ≥ 0

where, u denotes an m-dimensional row vector, and v represents an n2-dimensional row vector. In addition, u and v
stand for the dual variables related to constraints Ax+By ≤ b and y ≥ 0.

By employing zero-one vectors w1 = (w11, . . . , w1m) and w2 = (w21, . . . , w2n2), the NLP model can be
converted into a linear mixed zero-one programming issue, which may be addressed using a zero-one mixed integer
solution:

minimize z1(x, y) = c1x+ d1y

subject to 0 ≤ uT ≤ MwT
1 ;

0 ≤ b−Ax−By ≤ M
(
e− wT

1

)
; (5)

0 ≤ (uB + d2)
T ≤ MwT

2 ;

0 ≤ y ≤ M
(
e− wT

2

)
;

x ≥ 0

where, e represents an m-dimensional vector of ones, and M denotes a large positive constant. For more information,
please refer to the study by Nishizaki and Sakawa [31].
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4 The Proposed BLP-DEA Model

The evaluation of banking branch performance presents inherent challenges in two-level hierarchical decision
modeling. In the banking hierarchy, the primary level gathers funds from consumers as deposits, while the secondary
level utilizes these deposits to generate profit. The performance evaluation of banking branches can be treated as a
leader-follower Stackelberg problem, as the money received at the first level influences the investment decisions at the
second level [4]. Figure 1 illustrates the notional BLP-DEA model using shared resources.

Figure 1. BLP-DEA model [4]

Consider n banking branches (j = 1, . . . , n) comprising L1 and L2 levels, the L1 − L2 chain was analyzed
utilizing a BLP framework, with the initial level designated as the leader and the subsequent level as the follower. The
performance evaluation issues of these two bank branch chains for a specific DMU0 can be mathematically represented
using the BLP-DEA model, which accounts for the hierarchical structure of the bank branches, incorporating the
decision maker at each level who independently manages a set of decision variables, as follows:

Min
X̄1,X̄D1,λ

(
C1T X̄1 + C2T X̄D1

)
+

(
C1T X̄2 +D1T X̄D2 +D2T Ȳ I1

)
s.to
n∑

j=1

X1
j λj ≤ X̄1;

n∑
j=1

XD1
j λj ≤ X̄D1;

n∑
j=1

Y 1
j λj ≥ Y 1

0 ;

n∑
j=1

Y I1
j λj ≥ Y I1

0 ;

X̄1 + X̄2 ≤ E (const.);

Min
X̄2,X̄D2,Ȳ I1,π

(
C1T X̄2 +D1T X̄D2 +D2T Ȳ I1

)
(6)

s.to
n∑

j=1

X2
j πj ≤ X̄2;

n∑
j=1

XD2
j πj ≤ X̄D2;

n∑
j=1

Y I1
j πj ≤ Ȳ I1;

n∑
j=1

Y 2
j πj ≥ Y 2

0 ;

X̄1, X̄2, X̄D1, X̄D2, Ȳ I1, λ, π ≥ 0
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where, m1-dimensional X1 denotes row vectors of the leader’s shared input; m1-dimensional X2 denotes row
vectors of the follower’s shared input; m2-dimensional XD1 represents the row vector of the leader’s direct input;
m3-dimensional XD2 denotes the row vector of the follower’s direct input; m4-dimensional Y I1 represents a row
vector, serving as the intermediate output to the leader and the intermediate input to the follower; m5-dimensional Y 1

denotes the row vector of the leader’s direct output; m6-dimensional Y 2 stands for the row vector of the follower’s
direct output; C1T , C2T , D1T , and D2T denote the input unit cost vectors associated with the shared input, the direct
input to the leader, the direct input to the follower, and the intermediate input to the follower, respectively; and λ and
π represent the nonnegative multiplier used to aggregate existing leader and follower activities [4].

The BLP-DEA model was converted into the mixed integer single-level linear programming DEA (SLLP-DEA)
model as outlined below:

min
(
C1T X̄1 + C2T X̄D1

)
+

(
C1T X̄2 +D1T X̄D2 +D2TY

I
)

s.to
n∑

j=1
n

X1
j λj ≤ X̄1;

n∑
j=1
n

XD1
j λj ≤ X̄D1;

n∑
j=1
n

Y 1
j λj ≥ Y 1

0 ;

n∑
j=1

Y I1
j λj ≥ Y I1

0 ;

0 ≤ X̄2 −

 n∑
j=1

X2
j πj

 ≤ MwT
1 ;

0 ≤ U1 ≤ M
(
e− wT

1

)
;

0 ≤ X̄D2 −

 n∑
j=1

XD2
j πj

 ≤ MwT
2 ;

0 ≤ U2 ≤ M
(
e− wT

2

)
;

0 ≤ Ȳ I1 −

 n∑
j=1

Y I1
j πj

 ≤ MwT
3 ;

0 ≤ U3 ≤ M
(
e− wT

3

)
; (7)

0 ≤
n∑

j=1

Y 2
j πj − Y 2

0 ≤ MwT
4 ;

0 ≤ U4 ≤ M
(
e− wT

4

)
;

0 ≤ E − X̄1 − X̄2 ≤ MwT
5 ;

0 ≤ U5 ≤ M
(
e− wT

5

)
;

U1 − U5 + V 1 = C1;
U2 + V 2 = D1;
U3 + V 3 = D2;
−X2

jU
1 −XD2

j U2 − Y I1
j U3 + Y 2

j U
4 + V 4 = 0;

0 ≤ X̄2 ≤ MwT
6 ;

0 ≤ V 1 ≤ M
(
e− wT

6

)
;

0 ≤ X̄D2 ≤ MwT
7 ;

0 ≤ V 2 ≤ M
(
e− wT

7

)
;

0 ≤ Ȳ I1 ≤ MwT
8 ;

0 ≤ V 3 ≤ M
(
e− wT

8

)
;

0 ≤ πj ≤ MwT
9 ;

0 ≤ V 4 ≤ M
(
e− wT

9

)
;

X̄1, X̄D1, λ ≥ 0

where, U1 and V 1 denote the m1-dimensional dual vectors corresponding to the follower’s shared input constraints
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and variables; U2 and V 2 represent the m3-dimensional dual vectors concerning the follower’s direct input constraints
and variables; U3 and V 3 denote the m4-dimensional dual vectors corresponding to the follower’s intermediate input
constraints and variables; U4 and V 4 represent the n-dimensional dual vectors; U5 is an m1-dimensional dual vector
corresponding to the constrained resource constraint; WT

i (i = 1, . . . , 9) denotes the zero-one vectors; and e and M
represent the vector of ones and the large positive constant.

By solving the BLP-DEA model, the optimal solutions of X̄1∗, X̄2∗, X̄D1∗, X̄D2∗, Ȳ I1∗, λj
∗, and πj

∗ were
obtained. Based on the optimal solutions, the cost efficiency of the leader of DMU0 is defined as:

CEL
0 =

c1
T

X̄1∗ + C2T X̄D1∗

C1TX0
1 + C2TXD1

0

(8)

Furthermore, for DMU0, the follower’s cost efficiency is calculated as follows:

CEF
0 =

C1T X̄2∗ +D1T X̄D2∗ +D2T Ȳ I1∗

C1TX2
0 +D1TXD2

0 +D2T Y I1
0

(9)

In addition, the total cost efficiency can be computed as follows:

CES
0 =

(
C1T X̄1∗ + C2T X̄D1∗

)
+

(
C1T X̄2∗ +D1T X̄D2∗ +D2T Ȳ I1∗

)
(
C1TX0

1 + C2TX0
D1

)
+

(
C1TX2

0 +D1TXD2
0 +D2TY I1

0

) (10)

5 Empirical Study

Banks can be regarded as organizations where two decision-makers within a hierarchical framework alternate
in making decisions to enhance their performance. The proposed BLP-DEA model was employed to assess some
Iranian banks’ performance in 2011. Each branch consists of marketability and profitability, with marketability as
the primary factor and profitability as the secondary factor. The marketability level reflects the branch’s capacity to
attract deposits from clients by utilizing bank resources for marketing purposes. The profitability level reflects the
branch’s capacity to generate profit by allocating deposit values to other operations. The performance evaluation
index system for the bank branch is presented in Table 1.

Table 1. The performance index system

Indicators Name Unit Indicators Name Unit
Leader Follower

Shared input Employees Person Shared input Employees person

Direct input Fixed assets 1,000,000,000
Riyal Direct input IT cost 100,000,000

Riyal
Space m2

Intermediate
output Deposit 10,000,000,000

Riyal
Intermediate

output Deposit 10,000,000,000
Riyal

Output Non-invest deposit 100,000,000
Riyal Output Profit 10,000,000,000

Riyal

Input costs Employees 1,000,000
Riyal Input cost Employees 1,000,000

Riyal

Space 1,000,000
Riyal

Each branch’s performance is represented by several variables: fixed assets
(
XD11

)
, space

(
XD12

)
, noninvest

deposit
(
Y 1

)
at the leader level, IT costs

(
XD2

)
and profit

(
Y 2

)
at the follower level. Deposit from leader to follower

level
(
Y I1

)
serves as an intermediate variable. Marketability

(
X1

)
and profitability

(
X2

)
are resource-shared

variables. The data for these factors is shown in Table 2, presenting the costs associated with shared staff and space.
Due to the fixed nature of assets, deposits, and IT expenses, these costs are assumed to be unit-based.

Utilizing the mixed integer SLLP-DEA model, cost efficiency scores of branches and followers and leaders were
derived. Table 3 presents the cost efficiency scores and the reference units for both the leader and the follower.

Table 3 indicates that no banks are cost-efficient, as they do not operate effectively at both decision levels. The
10th and 11th banks exhibit cost efficiency at the leader tier, while the 1st and 3rd banks demonstrate cost efficiency at
the follower tier. Due to the inefficiency of the other players in these banks, these banks are consistently classified
as inefficient. Table 3 demonstrates that the 2nd bank exhibits greater efficiency than the 3rd , 10th , and 11th banks,
which operate at a singular level of efficiency, highlighting the potential advantage of coordination among participants.
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Table 2. Problem data

DMUs Leader
Employee

Fixed
Asset Space Non-Invest

Deposit Deposit Follower
Employee

IT
Cost Profit Employees

Cost
Space
Cost

1 23 4.93 110 10.57 15.78 14 4.93 3.15 5.97 5.97
2 34 3.64 167.50 14.82 43.90 28 3.64 3.31 6.25 4.41
3 14 2.87 150 7.60 7.74 25 2.87 3.53 7.86 6.02
4 28 1.78 366.6 14.80 45.95 31 1.78 1.98 5.70 10.64
5 33 3.61 555 13.39 38.70 35 3.61 2.69 9.65 11.78
6 34 2.24 690 14.15 36.81 28 2.24 1.93 7.59 8.25
7 25 1.41 750.92 13.08 61.11 28 1.41 2.12 8.53 16.02
8 35 2.64 368.3 20.31 26.33 18 2.64 2.55 12.37 9.92
9 27 2.97 205 16.16 11.74 40 2.97 1.62 6.87 12.96

10 35 2.65 195 16.21 70.42 11 2.65 2.00 7.90 7.21
11 33 3.76 210 38.24 34.25 15 3.76 2.90 11.24 12.97
12 28 2.47 481 17.94 37.03 26 2.47 2.25 5.61 7.33
13 20 2.29 200 13.73 11.66 24 2.29 2.45 8.51 12.05
14 28 3.55 506 14.17 10.31 36 3.55 4.19 100.03 11.75
15 35 1.97 814 14.41 31.98 30 1.97 1.96 7.53 10.45

Table 3. Cost efficiency scores

DMUs Bank Cost
Efficiency

Leader Cost
Efficiency

Follower Cost
Efficiency

Reference Set
for the Leader

Reference Set
for the Follower

1 0.66 0.61 1.00 10, 11 1
2 0.50 0.90 0.70 10, 11 3
3 0.48 0.37 1.00 10, 11 3
4 0.14 0.41 0.28 10, 11 1
5 0.08 0.24 0.35 10, 11 1
6 0.10 0.20 0.31 10, 11 1
7 0.05 0.24 0.31 10 1
8 0.14 0.41 0.92 10, 11 3
9 0.19 0.54 0.29 11 3
10 0.32 1.00 0.52 10 1
11 0.18 1.00 0.79 11 1
12 0.15 0.33 0.52 10, 11 3
13 0.21 0.44 0.71 11 3
14 0.09 0.20 0.83 11 3
15 0.07 0.15 0.30 10, 11 1

6 Conclusions

In reality, banks operate with a decentralized framework where numerous decision-makers inside a hierarchical
system make decisions sequentially or concurrently to optimize their goal function. In this swiftly evolving world,
effective response to changes necessitates management’s capacity to pinpoint inefficiencies. As a result, efficiency
analysis can become a key tool for gaining a competitive edge. DEA is a superior method for assessing efficiency as
it does not necessitate any preconceptions regarding the configuration of the efficient frontier. This study employs
a BLP-DEA model, including two interconnected decision-makers inside a decentralized framework, to assess the
performance of 15 Iranian bank branches, with one level representing a leader and the other a follower. The BLP-DEA
model offers valuable insights and comprehensive information to bank management for assessing the efficiency of
a bank inside Stackelberg-game dynamics. The outcomes derived from the BLP-DEA model exhibit significant
discriminative capability by incorporating internal operations within the banking chain.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

232



References

[1] M. Maghbouli and A. Pourhabib Yekta, “Managerial and natural disposability in two-stage network structure: A
DEA-based approach,” Big Data Comput. Vis., vol. 1, no. 2, pp. 101–110, 2021. https://doi.org/10.22105/bdcv.
2021.142087

[2] S. M. Muniz, W. B. Andriola, R. de Fátima Muniz, and S. A. Edalatpanah, “Impactos da Covid-19 na
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