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Abstract: Linear systems often involve coefficients that are uncertain or imprecise due to inherent variability and vagueness in the data. In scenarios where only approximate or vague knowledge of the system parameters is available, traditional fuzzy logic is commonly employed. However, conventional fuzzy logic may be inadequate when defining a membership degree with a single, precise value proves difficult. In such cases, Single-Valued Trapezoidal Neutrosophic Numbers (SVTrNNs) offer a more suitable framework, as they account for indeterminacy, alongside truth and falsity. The solution of Single-Valued Trapezoidal Neutrosophic Linear Equations (SVTrNLEs) was explored in this study using an embedding approach. The approach reformulates the SVTrNLEs into an equivalent crisp linear system, enabling the application of conventional solution methods. The solution was then obtained using either the matrix inversion method or the gradient descent optimization algorithm implemented in PyTorch. The robustness and adaptability of gradient-based optimization techniques were thoroughly assessed. 

The learning process minimizes the residual error iteratively, with convergence behaviour and numerical stability analyzed across various parameter configurations. The results demonstrate rapid convergence, proximity to exact solutions, and significant robustness to parameter variability, highlighting the efficacy of gradient descent for solving uncertain linear systems. These findings provide a foundation for the extension of gradient-based methods to more complex systems and broader applications. Furthermore, the existence and uniqueness of the neutrosophic solution to an n × n linear system were rigorously analyzed, with numerical examples provided to assess the reliability and efficiency of the proposed methods. 
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Linear systems of equations are foundational in various scientific and engineering domains, providing solutions to problems ranging from structural analysis to machine learning. The system of linear equations is in the form of AX = B, where A is a matrix of coefficients, X is the vector of unknowns, and B is the vector of constants. This is fundamental in both pure and applied mathematics, with widespread practical applications [1]. Linear systems play a critical role across many disciplines. In engineering, they are used to model physical systems such as electrical circuits, structural mechanics, and fluid dynamics [2–5]. In economics, linear systems help model interrelationships in production, consumption, and equilibrium systems, particularly in input-output analysis [6]. In computer science, linear systems are crucial in optimization problems, machine learning, and scientific computing, where large-scale systems are solved to optimize performance and process complex datasets [7]. Efficient methods for solving linear systems are key to practical applications. Common techniques include Gaussian elimination, LU decomposition, iterative algorithms such as the Jacobi and Gauss-Seidel methods [8], and advanced numerical approaches like Krylov subspace methods and multigrid algorithms for solving large-scale problems in high-performance computing, where system size and complexity demand efficient computational methods [9]. The ability to solve these systems efficiently is essential for modern applications in scientific computing, data science, and artificial intelligence [10]. In practical scenarios, the coefficients of a linear system of equations may be uncertain or imprecise, often due to the inherent variability and vagueness in real-world data. When only vague or approximate knowledge about the actual values of
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the parameters is available, it can be beneficial to use fuzzy logic to represent some or all of the system parameters. 

Fuzzy logic, introduced by Zadeh [11, 12] in his seminal works, extends traditional binary logic by incorporating degrees of membership. In fuzzy logic, the membership of an element to a set is represented by a real number between 0 and 1, reflecting the degree to which an element belongs to a set. This approach allows for a more flexible and nuanced representation of uncertainty compared to classical crisp values. 

Following Zadeh’s pioneering work, numerous researchers have explored the application of fuzzy logic in various fields, addressing the limitations of conventional approaches and improving the handling of imprecision and uncertainty in systems [13–15]. By integrating fuzzy logic into the analysis of linear systems, models that better accommodate and manage uncertainties in system parameters can be developed, leading to more robust and adaptive solutions. Several scholars have developed models for linear systems within a fuzzy environment, commonly referred to as fuzzy linear systems. The study of fuzzy linear systems dates back to at least 1980 [16]. Notably, Friedman et al. [17] proposed a specific model for addressing fuzzy linear systems, characterized by a crisp coefficient matrix and an arbitrary fuzzy number vector on the right-hand side. This model has since been modified and expanded upon by various researchers, as detailed in several studies [18–30] and their associated references. 

Zadeh’s fuzzy sets (FSs), while useful, are limited in cases where it is difficult to define the membership degree with a single specific value. To address the challenge of undefined non-membership degrees, Atanassov [31]

introduced an extension known as Intuitionistic Fuzzy Sets (IFSs). Although IFSs can handle incomplete information in various real-world applications, they are not capable of addressing all types of uncertainty, particularly indeterminate and inconsistent information. To overcome these limitations, Smarandache [32] proposed the Neutrosophic Set (NS), a comprehensive framework that generalizes classical sets, FSs, interval-valued FSs, IFSs, and interval-valued IFSs. NSs are equipped to handle uncertain, indeterminate, and inconsistent information by explicitly quantifying indeterminacy. In NS theory, the truth membership, indeterminacy membership, and falsity membership are independent of one another. This allows NSs to effectively describe uncertain, incomplete, and inconsistent information, surpassing the limitations of existing methods in capturing uncertain decision data. The neutrosophic concept is further divided into two categories: Neutrosophic Numbers (NNs) and NSs. 

While several methods have been developed to address problems using NSs, and some models have been proposed to solve linear systems involving NNs [33–37], to the best of our knowledge, systems of SVTrNNs have not yet been studied using Trapezoidal Neutrosophic Numbers (TrNNs). Therefore, a model for solving systems SVTrNNs was introduced in this study. The proposed method is based on the (α, β, γ)-cut approach and has a straightforward structure. The solution was obtained using the matrix inverse method and the gradient descent algorithm. The learning process minimizes the residual error iteratively, with convergence behavior and numerical stability analyzed across multiple parameter configurations. The results show rapid convergence, small distances from exact solutions, and robustness to parameter variability, demonstrating the effectiveness of gradient descent for such problems. These findings lay the groundwork for extending gradient-based methods to more complex systems and applications. 

This study is organized as follows: Section 2 introduces fundamental concepts, definitions, and arithmetic operations related to TrNNs. Section 3 presents the SVTrNLEs and proposes a general model for a solution. Section 4 provides numerical experiments to demonstrate the method’s reliability and efficiency. Sections 5 and 6 provide the results and discussion. Lastly, conclusions are drawn in Section 7. 

2 Some Basic Definitions and Arithmetic Operations

Section 2 discusses some basic definitions related to NSs and single-valued NNs, respectively [32]. 

Definition 1. NS: Let X be a space of points (objects), with a generic element in X denoted by x [32]. A NS

A in X is characterized by a truth-membership function TA(x), an indeterminacy-membership function IA(x), and a falsity-membership function FA(x). The functions TA(x), IA(x), and FA(x) are real standard or non-standard subsets of ]0−, 1+[. That is TA(x):

X →]0−, 1+[, IA(x) : X →]0−, 1+[, and FA(x) : X →]0−, 1+[. There is no restriction on the sum of TA(x), IA(x), and FA(x), therefore:

0− ≤ sup TA(x) + sup IA(x) + sup FA(x) ≤ 3+

Definition 2. A single-valued neutrosophic set (SVNS) is an instance of a NS [38]. Let X be a space of points (objects), with a generic element in X denoted by x. If the functions TA(x), IA(x) and FA(x) in Definition 1

are singleton subintervals/subsets in the real standard [0, 1], that is TA(x): X → [0, 1], IA(x) : X → [0, 1], and F A(x) : X → [0, 1]. Then, a SVNS A is denoted by:

A = {(x, TA(x), IA(x), FA(x)) | x ∈ X}

This satisfies the condition of 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3. 
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Definition 3. A SVTrNN is defined as Aℵ =< (a, b, c, d), (µ, v, ω) >, whose truth membership function TAℵ(x), indeterminacy-membership function IAℵ(x), and falsity-membership function FAℵ(x) are given as follows [39]:



(x−a) µ a ≤ x < b, 



(b−a)







µ

b ≤ x < c

TAℵ(x) =

(d−x) µ

c ≤ x < d





(d−c)





0

otherwise. 

 (b−x)+(x−a)v

a ≤ x < b, 





(b−a)





v

b ≤ x < c

IAℵ(x) =

(x−c)+(d−x)v

c ≤ x < d, 





(d−c)





1

otherwise. 



(b−x)+(x−a)ω

a ≤ x < b, 



(b−a)







ω

b ≤ x < c, 

FAℵ(x) =

(x−c)+(d−x)ω

c ≤ x < d, 





(c−b)





1

otherwise. 

where, µ, v, ω represent the degree of truth, the degree of indeterminacy and the degree of falsity, respectively, and 0 ≤ µ, v, ω ≤ 1, 0 ≤ TAℵ(x) + IAℵ(x) + FAℵ(x) ≤ 3, x ∈ Aℵ. 

Definition 4. Let Aℵ =< (a

=< (a

1

1, b1, c1, d1) , (µ1, v1, ω1) > and Aℵ

2

2, b2, c2, d2) , (µ2, v2, ω2) > be two

SVTrNNs [39]. Then the arithmetic relations are defined as: (a)Aℵ ⊕ Aℵ =< (a

1

2

1 + a2, b1 + b2, c1 + c2, d1 + d2) , (µ1 + µ2 − µ1µ2, v1v2, ω1ω2) > (1)



< (λa

(b)λAℵ =

1, λb1, λc1, λd1) , (µ1, v1, ω1) >, if λ > 0

1

(2)

< (λd1, λc1, λb1, λa1) , (µ1, v1, ω1) >, if λ < 0

Definition 5. If Aℵ =< (a, b, c, d), (µ, v, ω) >, then (α, β, γ)-cut is given by [39]:

*

[(a + α(b − a))µ, (d − α(d − c))µ], +

Aℵ

=

[(b − β(b − a))v, (d + β(d − c))v], 

(3)

(α,β,γ)

[(b − γ(b − a))ω, (d + γ(d − c))ω]

3 System of SVTrNLEs

In this section, two different methods for solving the SVTrNLEs are discussed. After converting SVTrNLEs into an equivalent system of equations, the solution was obtained directly using an embedding approach and the matrix inversion and this solution was approximated numerically using gradient descent in PyTorch. 

Definition 6. The matrix equation is in the following form: Axℵ = Bℵ

(4)

where, the coefficient matrix A = (aij) is a crisp n × n matrix and bℵ, i = 1, 2, . . . , n is a NN that is called a i

neutrosophic linear equation (NLE). 

Definition 7. The system of equations is in the following form:



a11xℵ + a12xℵ + . . . . . . . . . . . . . . . + a1nxℵ = bℵ, 



1

2

n

1







a21xℵ + a22xℵ + . . . . . . . . . . . . . . . + a2nxℵ = bℵ, 



1

2

n

2





·

(5)

·









·







an1xℵ + a

+ . . . . . . . . . . . . . . . + a

= bℵ. 

1

n2xℵ

2

nnxℵ

n

n

This is called a system of neutrosophic linear equations (SNLE). 

In the following Section 3.1, an embedding approach for solving the SNLE was proposed. 
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3.1 An embedding approach for solving SNLE

Let the solution of the SNLE of Eq. (5) be xℵ and its (α, β, γ)-cut be xℵ

=

xT (α), ¯

xT (α) , xI (β), ¯

xI (β) , xF (γ), ¯

xF (γ). If the (α, β, γ)-cut of bK be xℵ

=

(α,β,γ)

(α,β,γ)

h

i

h

i

h

i

bT (α), ¯

bT (α) , bI (β), ¯

bI (β) , bF (γ), ¯

bF (γ)

, then the SNLE of Eq. (5) can be written as:



Pn

a

(α) = Pn

a

(α) = bT (α)

j=1

ij xT

j

j=1

ij xT

j

i







Pn



a

(α) = Pn

a

(α) = bT (α)



ij xT

ij xT



j=1

j

j=1

j

i





Pn



a

(β) = Pn

a

(β) = bI (β)

j=1

ij xI

j

j=1

ij xI

j

i

(6)

Pn

a

(β) = Pn

a

(β) = bI (β)



j=1

ij xI

j

j=1

ij xI

j

i





Pn



a

(γ) = Pn

a

(γ) = bF (γ)



ij xF

ij xF



j=1

j

j=1

j

i







Pn

a

(γ) = Pn

a

(γ) = bF (γ)

j=1

ij xF

j

j=1

ij xF

j

i

If xℵ = xT , . . . , xT , ¯

xT , . . . , ¯

xT , xI , . . . , xI , ¯

xI , . . . , ¯

xI , xF , . . . , xF , ¯

xF , . . . , ¯

xF T and

i

1

n

1

n

1

n

1

n

1

n

1

n



T

bℵ =

bT , . . . , bT , ¯

bT , . . . , ¯

bT , bI , . . . , bI , ¯

bI , . . . , ¯

bI , bF , . . . , bF , ¯

bF , . . . , ¯

bF

, following the methodology

i

1

n

1

n

1

n

1

n

1

n

1

n

outlined in Friedman et al. [17], then a 6n × 6n crisp linear system must be solved as: M X = B

(7)

where, 



S







2n×2n

[0]2n×2n

[0]2n×2n

BT

M =

[0]

, B =

BI

. 



2n×2n

S2n×2n

[0]2n×2n 





(8)

[0]2n×2n

[0]2n×2n

S2n×2n

BF

In addition, S = (sij), and the following can be obtained:



aij ≥ 0 → sij = aij, si+n,j+n = aij

(9)

aij < 0 → si,j+n = −aij, si+n,j = −aij

Any sij which is not determined by Eq. (9) is zero. Therefore: S



bT 

bI 

bF 

S =

1

−S2

, BT =

, BI =

, BF =

. 

−S

¯

¯

¯

2

S1

bT

bI

bF

where, S1, S2 ≥ 0, and S = S1 − S2. 

Since M is a block diagonal matrix, to reduce the computational complexity, the following 2n × 2n crisp linear systems only need to be solved:

Sxi = Bi, i = T, I, F

(10)

Next, following the methodology outlined in Friedman et al. [17], some theorems regarding the properties of S

were studied. 

Theorem 1. S is nonsingular if A = S1 + S2 and S1 − S2 are nonsingular. 

Theorem 2. If S(−1) exists, it must have the same structure as S, i.e, E

F 

S−1 =

F

E

Definition 8. Let xℵ = xT , . . . , xT , ¯

xT , . . . , ¯

xT , xI , . . . , xI , ¯

xI , . . . , ¯

xI , xF , . . . , xF , ¯

xF , . . . , ¯

xF T

i

1

n

1

n

1

n

1

n

1

n

1

n

be the unique solution of Eq. (4). If ∀k ∈ {1, 2, . . . , n} : xT ≤ ¯

xT , xI ≤ ¯

xI and xF ≤ ¯

xF , then the solution

k

k

k

k

k

k

xℵ is called a strong neutrosophic solution. Otherwise, it is a weak neutrosophic solution. 

i



S



Theorem 3. It is assumed that S =

1

S2

is a nonsingular matrix. Then Eq. (4) has a strong solution if: S2

S1

−

(S

1

1 − S2)

bi − ¯

bi ≤ 0, i = T, I, F

(11)

4

Proof:

From Eq. (10), the following can be obtained:



S









1

S2

xi

bi

=

, i = T, I, F

S

¯

2

S1

¯

xi

bi

Hence, 

S1xi − S2 ¯

xi = bi

(12)

−S2xi + S1 ¯

xi = ¯

bi

(13)

From Eqs. (12) and (13), the following can be obtained:



(S1 + S2) xi − (S1 + S2) ¯

xi = bi − ¯

bi, 

(S1 + S2) (x − ¯

x) = bi − ¯

bi. 

From Theorem 1, S1 − S2 is nonsingular. Therefore, 

−

xi − ¯

xi = (S

1

1 − S2)

bi − ¯

bi

(14)

If Eq. (4) has a strong solution, then Eq. (11) holds by Definition 5 xi − ¯

xi ≤ 0. Conversely, if Eq. (11)

holds, xi − ¯

xi ≤ 0 can be obtained by Eq. (14). 

By Theorems 1 and 3, the result can be obtained below. 

Theorem 4. The SNLE has a strong solution if the following conditions hold: (a) The matrices A = S1 + S2 and S1 − S2 are both nonsingular. 

−

(b) (S

1

1 − S2)

bi − ¯

bi ≤ 0. 

3.2 Gradient Descent Method for Solving SNLE

In this section, the solution to the SNLE was approximated numerically using the gradient descent method implemented in PyTorch. It is important to note that while embedding methods compute exact solutions, they often become computationally expensive for large-scale or parameterized systems. Iterative methods, such as gradient descent, present scalable and robust alternatives by leveraging numerical optimization techniques to approximate solutions. 

The parameterized system Axℵ = Bℵ was solved using gradient descent, where A is a fixed coefficient matrix and Bℵ is parameterized by (α, β, γ), introducing controlled variability to evaluate the optimization process under different configurations. 

The description of the algorithm is as follows:

(a) Input:

• Matrix A ∈ m×n

R

• Vector BN ∈ m×1

R

• Initial guess x0 ∈ n×1

R

• Learning rate η > 0

• Stopping threshold ε > 0

(b) Output:

• Optimized parameter vector ˆx

The steps of the algorithm are as follows:

Step 1: Initialization by setting ˆ

x = x0. 

Step 2: Iterative optimization. The following steps were repeated until the stopping criterion was met: (a) Residual calculation by computing the residual ∆ = A · x − B

(b) Loss function evaluation by computing the loss L = ∥∆∥2

(c) Gradient calculation by computing the gradient of L(x) with respect to x. PyTorch’s automatic differentiation was used to compute the gradient of L with respect to x:

∇L(x) = 2AT (A · x − B)

(d) Parameter update. x was updated by using the gradient descent rule: xk+1 = xk − η · ∇L(x)

where, η is the learning rate controlling the step size. 

(e) Stopping criterion. The process terminated when L(x) fell below a predefined threshold ε. 

Step 3: Result output by returning ˆ

x = x. 

The optimization loop was implemented in PyTorch as follows. 

The below following flowchart summarizes the steps needed to solve the SVTrNLF (Figure 1). 
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import torch

# Inputs: A, B, initial x, step size, epsilon

x = initial x.clone().detach().requires grad (True) # Ensure gradient tracking while True:

# Residual calculation

delta = torch.matmul(A, x) - B

# Loss function evaluation

L = torch.norm(delta, p=2)

# Compute gradients

L.backward()

# Parameter update

with torch.no grad():

x -= step size * x.grad

x.grad.zero ()

# Stopping criterion

if L.item() < epsilon:

break

Figure 1. Flowchart for solving SVTrNLF
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4 Numerical Experiments

Numerical experiments were conducted to illustrate the results obtained in previous sections. 

Example 4.1 By considering the following SNLE:



4xℵ + xℵ − xℵ =< (1, 3, 4, 5); (0.9, 0.3, 0.2) > 



1

2

3

−xℵ + 3xℵ + xℵ =< (0, 1, 2, 3); (0.7, 0.4, 0.2) > 

1

2

3

(15)



2xℵ + xℵ + 3xℵ =< (3, 5, 7, 8); (0.8, 0.3, 0.3) > 

1

2

3

The extended 4×4 matrix is as follows:



4

1

0

0

0

−1 



0

3

1

−1

0

0





2

1

3

0

0

0



S = 









0

0

−1

4

1

0





−1

0

0

0

3

1







0

0

0

2

1

3



4

1

1 

Since the matrices A = S1 + S2 and S1 − S2 =

1

3

1



 are both nonsingular, then by Theorem 1, it is

2

1

3

easy to see that the matrix S is nonsingular. Therefore, S(−1) exists and based on Theorem 2, it must have the same structure as S. If this inverse can be obtained, it can be seen that Theorem 2 is true. 



35

−12

1

−9

−1

12



143

143

143

143

143

143

43

201

−105

87

−19

27



1144

572

1144

1144

572

1144





−201

−35

411

19

9

−73



S−1 =  1144

572

1144

1144

572

1144





−9

−1

12

35

−12

1

 . 



143

143

143

143

143

143





87

−19

27

43

201

−105 



1144

572

1144

1144

572

1144



19

9

−73

−201

−35

411

1144

572

1144

1144

572

1144

The (a, b, g)-cut of the right-hand side vector was obtained. By Definition 4, the following was obtained: bN

= ⟨[(1 + α(3 − 1))0.9, (5 − α(5 − 4))0.9], [(3 − β(3 − 1))0.3, (5 + β(5 − 4))0.3], 1(α,β,γ)

[(3 − γ(3 − 1))0.2, (5 + γ(5 − 4))0.2]⟩ , 

bN

= ⟨[(0 + α(1 − 0))0.7, (3 − α(3 − 2))0.7], [(1 − β(1 − 0))0.4, (3 + β(3 − 2))0.4], (α,β,γ)

[(1 − γ(1 − 0))0.2, (3 + γ(3 − 2))0.2]⟩ , 

bN(α, β, γ) = ⟨[(3 + α(5 − 3))0.8, (8 − α(8 − 7))0.8], [(5 − β(5 − 3))0.3, (8 + β(8 − 7))0.3], 3

[(5 − γ(5 − 3))0.3, (8 + γ(8 − 7))0.3]⟩ . 

In addition, 



0.18181818

−0.09090909

0.09090909



−

(S

1

1 + S2)

=

0.11363636

0.31818182

−0.06818182



 . 

−0.15909091

−0.04545455

0.29545455

Therefore:



0.18181818

−0.09090909

0.09090909

 

2.7α − 3.5 

−



(S

1 

1 + S2)

bT − ¯

bT

=

0.11363636

0.31818182

−0.06818182

1.4α − 2.1



 



−0.15909091

−0.04545455

0.29545455

2.4α − 3.4



0.581818176 · α − 0.754545447 



0 

=

0.588636352 · α − 0.834090894

≤

, 





0

0.215909093 · α − 0.35227273



0.18181818

−0.09090909

0.09090909

 

−2 − 0.9β 

−



(S

1 

1 + S2)

bI − ¯

bI

=

0.11363636

0.31818182

−0.06818182

−2 − 0.8β



 



−0.15909091

−0.04545455

0.29545455

−2.4 − 0.9β



−0.172727271 · β − 0.399999996 



0 

=

−0.295454542 · β − 0.699999992

≤

, 





0

−0.086363636 · β − 0.3
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

0.18181818

−0.09090909

0.09090909

 

−0.4 − 0.6γ 

−



(S

1 

1 + S2)

bF − ¯

bF

=

0.11363636

0.31818182

−0.06818182

−0.4 − 0.4γ



 



−0.15909091

−0.04545455

0.29545455

−0.9 − 0.9γ



−0.154545453 · γ − 0.118181817 



0 

=

−0.134090906 · γ − 0.111363634

≤

, 





0

−0.152272729 · γ − 0.184090911

Therefore, by Theorems 3 and 4, the SVTrNLEs in Eq. (15) should have a strong solution. To obtain this solution, the following was obtained from Eq. (9):



0.387412587412587 · α + 0.476223776223776 



xT 

0.10270979020979 · α + 0.237062937062937

1





xT



0.240821678321678 · α + 0.403496503496504 

xT = 

2









= S−1BT =

, 

¯

xT 



1.11468531468531 − 0.151048951048951 · α





1







¯

xT



0.444755244755245 − 0.0549825174825175 · α 

2





1.24195804195804 − 0.14763986013986 · α



0.295804195804196 − 0.113986013986014 · β 



xI 

0.16756993006993 − 0.0914335664335664 · β

1





xI



0.24694055944056 − 0.0935314685314685 · β 

xI = 

2 







= S−1BI =

, 

¯

xI 



0.0321678321678322 · β + 0.34965034965035 



1 





¯

xI



0.0777972027972028 · β + 0.348339160839161 

2





0.0526223776223776 · β + 0.450786713286713



0.274825174825175 − 0.0741258741258741 · γ 



xF 

0.0679195804195804 − 0.0145979020979021 · γ

1





xF



0.294143356643357 − 0.145716783216783 · γ



xF = 

2









= S−1BF =

. 

¯

xF 



0.0104895104895105 · γ + 0.297902097902098 



1







¯

xF



0.0123251748251748 · γ + 0.102534965034965 

2





0.0888986013986014 · γ + 0.56722027972028

Therefore, 

xℵ

= ⟨[0.387412587412587 · α + 0.476223776223776, 1.11468531468531 − 0.151048951048951 · α], 1(α,β,γ)

[0.295804195804196 − 0.113986013986014 · β, 0.0321678321678322 · β + 0.34965034965035], 

[0.274825174825175 − 0.0741258741258741 · γ, 0.0104895104895105 · γ + 0.297902097902098]⟩ , xℵ

= ⟨[0.10270979020979 · α + 0.237062937062937, 0.444755244755245 − 0.0549825174825175 · α], 2(α,β,γ)

[0.16756993006993 − 0.0914335664335664 · β, 0.0777972027972028 · β + 0.348339160839161], 

[0.0679195804195804 − 0.0145979020979021 · γ, 0.0123251748251748 · γ + 0.102534965034965]⟩ , xN

= ⟨[0.240821678321678 · α + 0.403496503496504, 1.24195804195804 − 0.14763986013986 · α], 3ℵ

(α,β,γ)

[0.24694055944056 − 0.0935314685314685 · β, 0.0526223776223776 · β + 0.450786713286713], 

[0.294143356643357 − 0.145716783216783 · γ, 0.0888986013986014 · γ + 0.56722027972028]⟩ , For different values of 0 ≤ α, β, γ ≤ 1, the graphical interpretation of the above results is shown in Figures 2, 3

and 4. 

5 Results

This section analyzes the convergence behavior of gradient descent for parameterized linear systems and evaluates the accuracy of the computed solutions by comparing them to the exact solutions. Additionally, the robustness and stability of gradient descent were examined under varying parameter configurations. As a foundational technique in the training of neural networks, gradient descent is employed to minimize error functions in high-dimensional parameter spaces [40]. This study investigates the behavior of gradient descent within the context of simpler linear systems, offering insights that contribute to understanding its application in more complex scenarios. 

5.1 Convergence Behavior

Figures 5, 6, and 7 show the convergence behavior of gradient descent for different parameter configurations. 

As shown in Figure 5, loss starts at approximately 8.5 and converges to near zero within 139 iterations. The consistent decrease in loss demonstrates stability and effective learning. 
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Figure 2. The value of xℵ

1

Figure 3. The value of xℵ

2

Figure 4. The value of xℵ

3
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Figure 5. Loss vs. iterations (α=0, β=0, γ=0)

Figure 6. Loss vs. iterations (α=0.5, β=0.5, γ=0.5)

Figure 7. Loss vs. iterations (α=1, β=1, γ=1)
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As shown in Figure 6, loss converges slightly more slowly, taking 156 iterations to reach a threshold below 10(−2). The increase in parameter variability introduces more complexity to the optimization process. 

As shown in Figure 7, loss decreases rapidly, converging within 171 iterations. This suggests a favorable alignment between the parameterized B and the structure of A. Table 1 shows the comparison results for Example 4.1. 

Table 1. Comparison results for Example 4.1

Alph=0

0.5

1

Iteration to converge

139

156

171

Loss at convergence

0.006949843838810921

0.002292076358571648

0.0011400537332519889

Final loss

0.0046166530810296535

0.010320821776986122

0.015670282766222954



0.4765

0.2953

0.2750   0.6703

0.2396

0.2382   0.8642

0.1819

0.1995 



0.2374

0.1670

0.0682   0.2881

0.1233

0.0599   0.3409

0.0769

0.0551 



0.4028

0.2482

0.2935   0.5234

0.1977

0.2215   0.6402

0.1524

0.1481 

Computed solutions 

 

 





 

 





1.1144

0.3501

0.2977   1.0389

0.3650

0.3027   0.9627

0.3818

0.3093 



 

 





0.4444

0.3489

0.1023   0.4167

0.3855

0.1101   0.3913

0.4246

0.1156 

1.2426

0.4496

0.5678

1.1695

0.4799

0.6108

1.0958

0.5051

0.6541



0.4762

0.2958

0.2748   0.6699

0.2388

0.2378   0.8636

0.1818

0.2007 



0.2371

0.1676

0.0679   0.2884

0.1219

0.0606   0.3398

0.0761

0.0533 



0.4035

0.2469

0.2941   0.5239

0.2002

0.2213   0.6443

0.1534

0.1484 

Exact solutions



 

 





 

 





1.1147

0.3496

0.2979   1.0392

0.3657

0.3031   0.9636

0.3818

0.3084 



 

 





0.4448

0.3483

0.1025   0.4173

0.3872

0.1087   0.3898

0.4261

0.1149 

1.2420

0.4508

0.5672

1.1681

0.4771

0.6117

1.0943

0.5034

0.6561

Distances from exact

0.0024775145575404167

0.005190060473978519

0.006468791514635086

solutions

5.2 Accuracy Analysis

The computed solutions were compared to the exact solutions. The Euclidean distances between the computed solution and the exact solution were:

• Case 1(α = 0, β = 0, γ = 0) : 0.0012

• Case 2(α = 0.5, β = 0.5, γ = 0.5) : 0.0063

• Case 3(α = 1, β = 1, γ = 1) : 0.0014

The small distances demonstrate the precision of gradient descent, with minimal deviations from the exact solutions. 

6 Discussion

6.1 Learning Dynamics

The gradient descent process showed smooth and predictable convergence behavior. The rapid reduction in loss across all cases highlights the efficiency of the method. Differences in convergence speed reflect the influence of parameterized variability in B, with higher parameter values leading to faster alignment with the system’s structure. 

6.2 Accuracy

The computed solutions x closely matched the exact solutions Xexact. The small distances, consistently below 0.01, validate the method’s accuracy, even for complex configurations of B. 

6.3 Numerical Stability

The loss consistently decreased without oscillations, demonstrating numerical stability. The choice of learning rate and stopping criterion ensured efficient and stable optimization. 

6.4 Gradient Descent in Practice

The results illustrate that gradient descent effectively balances computational efficiency and precision. Its iterative nature and adaptability make it suitable for large-scale or parameterized systems where exact methods may be impractical. 
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7 Conclusions

In conclusion, this study provides a comprehensive examination of SVTrNLEs as an effective framework for addressing uncertainty and imprecision in linear systems. Through the embedding approach, SVTrNLEs were transformed into equivalent crisp linear systems, enabling the use of classical solution techniques. The study rigorously investigates the existence and uniqueness of the solution to an n × n linear system and introduces a computational method for solving SVTrNLEs. Numerical experiments validate the reliability and efficiency of the proposed method, underscoring its capability to handle systems with indeterminate and vague parameters effectively. 

Additionally, this study demonstrates the robustness and accuracy of gradient descent in solving parameterized linear systems. By iteratively minimizing the residual error, the method achieved high precision across diverse configurations of BB. These results emphasize the potential of gradient descent for solving complex systems in science and engineering, bridging the gap between theoretical optimization and practical applications. Future research could focus on developing more efficient algorithms for solving larger and more complex neutrosophic systems, further advancing the applicability of these approaches in real-world scenarios. 
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The data used to support the findings of this study are available from the corresponding author upon request. 
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Abstract: Linear systems often involve coefficients that are uncertain or imprecise due to inherent variability and
vagueness in the data. In scenarios where only approximate or vague knowledge of the system parameters is
available, traditional fuzzy logic is commonly employed. However, conventional fuzzy logic may be inadequate
when defining a membership degree with a single, precise value proves difficult. In such cases, Single-Valued
Trapezoidal Neutrosophic Numbers (SVTrNNGs) offer a more suitable framework, as they account for indeterminacy,
alongside truth and falsity. The solution of Single-Valued Trapezoidal Neutrosophic Linear Equations (SVTrNLEs)
was explored in this study using an embedding approach. The approach reformulates the SVTrNLEs into an
equivalent crisp linear system, enabling the application of conventional solution methods. The solution was then
obtained using either the matrix inversion method or the gradient descent optimization algorithm implemented in
PyTorch. The robustness and adaptability of gradient-based optimization techniques were thoroughly assessed.
The learning process minimizes the residual error iteratively, with convergence behaviour and numerical stability
analyzed across various parameter configurations. The results demonstrate rapid convergence, proximity to exact
solutions, and significant robustness to parameter variability, highlighting the efficacy of gradient descent for solving
uncertain linear systems. These findings provide a foundation for the extension of gradient-based methods to more
complex systems and broader applications. Furthermore, the existence and uniqueness of the neutrosophic solution
to an 7 x n linear system were rigorously analyzed, with numerical examples provided to assess the reliability and
efficiency of the proposed methods.

Keywords: Neutrosophic set; Neutrosophic trapezoidal number; Neutrosophic linear equation; Gradient descent

1 Introduction

Linear systems of equations are foundational in various scientific and engineering domains, providing solutions
to problems ranging from structural analysis to machine learning. The system of linear equations is in the form of
AX = B, where A is a matrix of coefficients, X is the vector of unknowns, and B is the vector of constants. This is
fundamental in both pure and applied mathematics, with widespread practical applications [1]. Linear systems play
a critical role across many disciplines. In engineering, they are used to model physical systems such as electrical
circuits, structural mechanics, and fluid dynamics [2-5]. In economics, linear systems help model interrelationships
in production, consumption, and equilibrium systems, particularly in input-output analysis [6]. In computer science,
linear systems are crucial in optimization problems, machine learning, and scientific computing, where large-scale
systems are solved to optimize performance and process complex datasets [7]. Efficient methods for solving linear
systems are key to practical applications. Common techniques include Gaussian elimination, LU decomposition,
iterative algorithms such as the Jacobi and Gauss-Seidel methods [8], and advanced numerical approaches like Krylov
subspace methods and multigrid algorithms for solving large-scale problems in high-performance computing, where
system size and complexity demand efficient computational methods [9]. The ability to solve these systems efficiently
is essential for modern applications in scientific computing, data science, and artificial intelligence [10]. In practical
scenarios, the coefficients of a linear system of equations may be uncertain or imprecise, often due to the inherent
variability and vagueness in real-world data. When only vague or approximate knowledge about the actual values of
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