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Abstract: This work builds on hypergraphs—graphs whose edges can link any number of vertices—and superhyper-
graphs, which add a recursive, hierarchical powerset structure to hyperedges. It reviews four practical hypergraph
variants: Knowledge Hypergraphs (for multi-relational knowledge representation), Multimodal Hypergraphs (for
combining different data modalities), Lattice Hypergraphs (for spatial and topological modeling), and Hyperbolic
Hypergraphs (for embedding vertices in hyperbolic space to capture hierarchies). The paper then shows how to
elevate each of these into the superhypergraph framework—resulting in Knowledge SuperHypergraphs, Multimodal
SuperHypergraphs, Lattice SuperHypergraphs, and Hyperbolic SuperHypergraphs—and outlines their core properties.
Overall, it offers a unified, more expressive modeling approach that paves the way for future advances in both
hypergraph and superhypergraph research.

Keywords: Superhypergraph; Hypergraph; Graph class; Knowledge graphs; Multimodal graphs; Lattice graphs;
Hyperbolic graphs

1 Introduction
1.1 Graph Theory and Hypergraph Theory

Graph theory remains a vibrant area of research. Graphs can model relationships between objects, leading to
a wide range of practical applications. A hypergraph generalizes the notion of a graph by allowing edges—called
hyperedges—to connect any number of vertices rather than just two [1–5].

Numerous real-world applications of hypergraphs and well-suited graph classes have been extensively studied. A
Knowledge Hypergraph extends traditional knowledge graphs by encoding higher-order relationships among entities
using hyperedges, enabling expressive multi-relational knowledge representation in structured datasets [6, 7]. A
Multimodal Hypergraph integrates multiple hypergraphs—each representing a different modality—by assigning
weights to their hyperedges, facilitating comprehensive modeling of heterogeneous, multi-relational data [8, 9]. A
Lattice Hypergraph represents discrete spatial units and their topological relationships, combining local geometric
adjacency with higher-order connectivity via hyperedges for structured modeling [10–12]. A Hyperbolic Hypergraph
embeds vertices in hyperbolic space, leveraging its negative curvature to capture hierarchical and complex relational
patterns [13, 14].

A SuperHyperGraph is an advanced extension of the hypergraph concept, integrating recursive powerset
structures into the classical model [15–18]. Like hypergraphs, superhypergraphs have also attracted active research
attention [19–21].

1.2 Our Contributions

Research on hypergraphs and superhypergraphs is crucial both for modeling real-world hierarchical concepts
and for exploring the mathematical richness of their structures. However, studies on SuperHyperGraphs remain
limited. In particular, the superhypergraph analogues of Knowledge Hypergraphs, Multimodal Hypergraphs, Lattice
Hypergraphs, and Hyperbolic Hypergraphs have not yet been investigated.
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In this paper, we extend Knowledge Hypergraphs, Multimodal Hypergraphs, Lattice Hypergraphs, and Hyperbolic
Hypergraphs using the SuperHyperGraph framework, introducing Knowledge SuperHypergraphs, Multimodal
SuperHypergraphs, Lattice SuperHypergraphs, and Hyperbolic SuperHypergraphs. We provide a concise examination
of their properties and demonstrate how these new classes can serve as a foundation for future research on both
Hypergraphs and SuperHypergraphs.

2 Preliminaries

This section provides an introduction to the foundational concepts and definitions required for the discussions in
this paper. Throughout this paper, we deal only with finite structures. Unless otherwise specified, n is assumed to be
a non-negative integer. For fundamental operations, concepts, and principles of graphs, refer to Diestel [22].

2.1 Graphs and Hypergraphs

In classical graph theory, a hypergraph extends the idea of a conventional graph by permitting edges—called
hyperedges—to join more than two vertices. This broader framework enables the modeling of more intricate
relationships between elements, thereby enhancing its utility in various fields [1, 4]. In the following, we present
rigorous definitions for graphs, subgraphs, and hypergraphs. In this paper, we focus on finite, undirected, and simple
graphs.

Definition1 Graph [22]. A graph G is defined as an ordered pair

G = (V,E), (1)

where, V is a set of vertices and E is a set of edges. Each edge e ∈ E connects two distinct vertices from V .
Definition2 Subgraph [22]. Given a graph G = (V,E), a subgraph H = (VH , EH) of G satisfies:
• VH ⊆ V ; that is, the vertices of H form a subset of those of G.
• EH ⊆ E; the edges of H are taken from those of G.
• Every edge in EH has both endpoints contained in VH .
Furthermore, H is called induced if for any two vertices u, v ∈ VH , the edge (u, v) belongs to EH exactly when

it is an edge in G.
Definition3 Hypergraph [1, 23]. A hypergraph H = (V (H), E(H)) consists of:
• A nonempty set V (H) of vertices.
• A set E(H) of hyperedges, where each hyperedge is a nonempty subset of V (H), thereby allowing connections

among multiple vertices.
Unlike standard graphs, hypergraphs are well-suited to represent higher-order relationships. In this paper, we

restrict ourselves to the case where both V (H) and E(H) are finite.

2.2 Powerset and n-th Powerset

In what follows, we employ the concepts of the powerset and the n-th powerset as fundamental building blocks for
our later constructions.

Definition4 Set [24]. A set is a collection of distinct objects, called elements, which are unambiguously defined.
If A is a set and x is an element of A, we write x ∈ A. Sets are usually denoted by enclosing their elements in curly
braces.

Definition5 Subset [24]. For any two sets A and B, A is said to be a subset of B (written A ⊆ B) if every
element of A is also an element of B:

∀x ∈ A, x ∈ B. (2)

If additionally A ̸= B, then A is called a proper subset of B, denoted A ⊂ B.
Definition6 Empty Set [24]. The empty set, denoted ∅, is the unique set that contains no elements:

∀x, x /∈ ∅. (3)

It follows that ∅ is a subset of every set.
Definition7 Base Set. A base set S is the underlying set from which more elaborate structures, such as powersets

and hyperstructures, are constructed. It is defined by

S = {x | x belongs to a specified domain}. (4)

All elements appearing in constructions like P(S) or Pn(S) are drawn from S.
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Definition8 Powerset. The powerset of a set S, denoted P(S), is the collection of all subsets of S, including both
∅ and S itself:

P(S) = {A | A ⊆ S}. (5)

Definition9 n-th Powerset [25–28]. The n-th powerset of a set H , denoted Pn(H), is defined recursively by:

P1(H) = P(H), Pn+1(H) = P (Pn(H)) for n ≥ 1. (6)

Similarly, the n-th nonempty powerset, denoted P ∗
n(H), is given by:

P ∗
1 (H) = P∗(H), P ∗

n+1(H) = P∗ (P ∗
n(H)) , (7)

where, P∗(H) denotes the powerset of H with the empty set omitted.

2.3 Hyperstructure and Superhyperstructure

To develop a comprehensive framework for hyperstructures [29–31] and superhyperstructures [25, 32], we
now introduce several key definitions. In this context, a hypergraph may be viewed as a hyperstructure, while a
superhypergraph is naturally regarded as a superhyperstructure.

Definition10 Classical Structure [25, 33]. A classical structure is a mathematical system based on a nonempty
set H that is endowed with one or more classical operations satisfying a prescribed set of axioms. A classical
operation is a mapping:

#0 : Hm → H, (8)

where, m ≥ 1 and Hm denotes the m-fold Cartesian product of H . Typical examples include operations like addition
or multiplication in algebraic systems such as groups, rings, or fields.

Definition11 Hyperoperation [34].
A hyperoperation is a generalization of a binary operation in which the combination of two elements yields a set

of elements rather than a single element. Formally, for a set S, a hyperoperation ◦ is defined by:

◦ : S × S → P(S), (9)

where, P(S) represents the powerset of S.
Definition12 Hyperstructure [25, 35].
A hyperstructure is an extension of a classical structure where the operations are defined on the powerset of a base

set. It is formally given by:

H = (P(S), ◦), (10)

with S as the base set and ◦ acting on subsets of S.
Definition13 SuperHyperOperations [25]. Let H be a nonempty set and P (H) its powerset. Define the n-th

powerset Pn(H) recursively by:

P 0(H) = H, P k+1(H) = P
(
P k(H)

)
for k ≥ 0. (11)

A SuperHyperOperation of order (m,n) is an m-ary operation.

o(m,n) : Hm → Pn
∗ (H), (12)

where, Pn
∗ (H) denotes the n-th powerset of H (either excluding the empty set, which we refer to as a classical-

type operation, or including it, known as a Neutrosophic-type operation). These operations serve as higher-order
generalizations of hyperoperations by capturing multi-level complexity through iterative powerset constructions.

Definition14 n-Superhyperstructure [25, 33]. An n-superhyperstructure generalizes a hyperstructure by
incorporating the n-th powerset of a base set. It is defined as:

SHn = (Pn(S), ◦) , (13)

where, S is the base set, Pn(S) is its n-th powerset, and ◦ is an operation on elements of Pn(S).
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2.4 SuperHyperGraph

A SuperHyperGraph is an advanced extension of the hypergraph concept, integrating recursive powerset structures
into the classical model [36, 37]. This concept has been recently introduced and extensively studied in the
literature [36, 38–41].

Definition15 n-SuperHyperGraph [38].
Let V0 be a finite base set of vertices. For each integer k ≥ 0, define the iterative powerset by

P0 (V0) = V0, Pk+1 (V0) = P
(
Pk (V0)

)
, (14)

where, P(·) denotes the usual powerset operation. An n-SuperHyperGraph is then a pair.

SHT(n) = (V,E), (15)

with,

V ⊆ Pn (V0) and E ⊆ Pn (V0) . (16)

Each element of V is called an n-supervertex and each element of E an n-superedge.
Theorem1. Let V0 be a finite base set and let an n-SuperHyperGraph be defined as

SHT(n) = (V,E), (17)

with,

V,E ⊆ Pn (V0) , (18)

where, Pn(V0) denotes the nth powerset of V0. Then there exists a transformation (via a flattening function F ) that
maps SHT(n) into a classical hypergraph.

H = (V0, E
′) , (19)

where,

E′ = {F (e) | e ∈ E} and F : Pn (V0) → P (V0) (20)

is defined recursively by

F (x) = x for x ∈ V0, F (A) =
⋃
a∈A

F (a) for A ∈ Pk (V0) with k ≥ 1. (21)

Proof. We prove the theorem by constructing the flattening function F and verifying that it transforms each
n-superedge into a subset of the base set V0.

Step 1: Definition of the Flattening Function. For any element x ∈ V0 (i.e. a base element), define

F (x) = x. (22)

Now, for any A ∈ Pk(V0) with k ≥ 1 (i.e. an element of the kth powerset), define recursively

F (A) =
⋃
a∈A

F (a). (23)

In particular, for an n-supervertex or n-superedge e ∈ Pn(V0), the function F (e) returns a subset of V0.
Step 2: Transformation of the n-SuperHyperGraph. Given the n-SuperHyperGraph SHT(n) = (V,E) with

V, E ⊆ Pn(V0), define the new set of hyperedges by

E′ = {F (e) | e ∈ E} (24)

Since each e ∈ E is an element of Pn(V0), by applying F we obtain F (e) ⊆ V0. Therefore, E′ ⊆ P(V0).
Step 3: Forming the Classical Hypergraph. Define the classical hypergraph

H = (V0, E
′) , (25)

where, the vertex set is V0 (the original base set) and each hyperedge in E′ is a subset of V0. By the definition of a
hypergraph, H is a valid hypergraph.

The flattening function F thus transforms every n-superedge e ∈ E into an ordinary hyperedge F (e) on V0.
Hence, every n-SuperHyperGraph SHT(n) is transformed into a classical hypergraph H = (V0, E

′).
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2.5 Knowledge Hypergraph

A knowledge hypergraph extends knowledge graphs by encoding higher-order relationships among entities using
hyperedges, enabling expressive multi-relational knowledge representation in structured datasets [6, 7, 42]. A related
concept is the knowledge graph [43–45], which is well-known in the literature. The definition is given as follows.

Definition16 Knowledge Hypergraph. Let
• E be a finite set of entities,
• R be a finite set of relations.
For each relation r ∈ R, let |r| ∈ N denote its arity, i.e., the number of arguments (entities) that participate in the

relation.
Define the set of all possible tuples (facts) as

τ =
{
r
(
e1, e2, . . . , e|r|

)
| r ∈ R, ei ∈ E for i = 1, . . . , |r|

}
. (26)

A world is a complete assignment of truth values to every tuple in τ ; that is, for each x ∈ τ , the tuple x is either
true or false.

A knowledge hypergraph is then defined as the triple.

H = (E,R, τ0) . (27)

where, τ0 ⊆ τ is the set of tuples that are true in the world. In other words, each true fact r(e1, e2, . . . , e|r|) ∈ τ0
represents a relation among the entities e1, e2, . . . , e|r|. Note that when every relation has arity 2, i.e. |r| = 2 for all
r ∈ R, the knowledge hypergraph coincides with the standard knowledge graph.

Example1 Knowledge Hypergraph for Industrial Collaboration. Consider a simplified scenario in which a
technology industry analyst wants to capture complex relationships among people, companies, projects, and locations.
We model this using a knowledge hypergraph H = (E,R, τ0) as follows:

Entities.

E = {Alice, Bob, Carol, InnoTechInc, FutureAI Ltd, ProjectX, ProjectY, NewYork, SanFrancisco}. (28)

here,
• Alice,Bob,Carol are researchers or engineers.
• InnoTechInc,FutureAI Ltd are companies.
• ProjectX,ProjectY are collaborative research projects.
• NewYork,SanFrancisco are cities where companies are headquartered.
Relations.

R = {worksAt, headquarteredIn, collaborates0n, launchedBy}. (29)

Each relation r ∈ R has the following arity |r|:
• |worksAt| = 2: connects a person to a company.
• |headquarteredIn| = 2: connects a company to a city.
• |collaboratesOn| = 3: connects two people and a project.
• |launchedBy| = 3: connects a project, a company, and a year.
All Possible Tuples.

τ =
{
r
(
e1, e2, . . . , e|r|

)
| r ∈ R, ei ∈ E

}
. (30)

For instance:
worksAt(Alice, InnoTechInc),
headquarteredIn(FutureAI Ltd, SanFrancisco),
collaboratesOn(Alice, Bob, ProjectX),

launchedBy(ProjectY, InnoTechInc, 2023), etc.

True Facts. We define τ0 ⊆ τ to be the set of true tuples (hyperedges) in the current world. For example:

τ0 = { worksAt(Alice, InnoTechInc), worksAt(Bob, FutureAI Ltd), worksAt(Carol, FutureAI Ltd),
headquarteredIn(InnoTechInc, NewYork), headquarteredIn(FutureAI Ltd, SanFrancisco),
collaboratesOn(Alice, Bob, ProjectX), collaboratesOn(Bob, Carol, ProjectY),

launchedBy(ProjectX, InnoTechInc, 2022), launchedBy(ProjectY, FutureAI Ltd, 2023) }.
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Each hyperedge in τ0 encodes a higher-order relationship:
• worksAt(Alice, InnoTechInc) indicates that Alice is employed by InnoTechInc.
• headquarteredIn(FutureAI Ltd,SanFrancisco) encodes the location of FutureAI Ltd.
• collaboratesOn(Alice,Bob,ProjectX) means Alice and Bob collaborate on ProjectX together.
• launchedBy(ProjectY,FutureAI Ltd, 2023) represents that ProjectY was launched by FutureAI Ltd in 2023.
Interpretation. This knowledge hypergraph captures not only pairwise relations (e.g., worksAt, headquarteredIn)

but also ternary relations (collaboratesOn and launchedBy) that require three entities. For instance, the hyperedge

collaboratesOn(Bob, Carol, ProjectY)

encodes that Bob and Carol jointly collaborate on ProjectY. By allowing arity |r| > 2, the hypergraph naturally
represents complex, real-world facts without the need for intermediate nodes or reification.

Comparison to a Knowledge Graph. If every relation had arity exactly 2 (i.e., |r| = 2 for all r ∈ R), then H
reduces to a standard knowledge graph. In our example, the binary factsworksAt(p, c) andheadquarteredIn(c,City)
would correspond to ordinary edges. However, modeling collaboratesOn or launchedBy as binary edges in a
knowledge graph would require additional intermediary nodes or reified statements, complicating both storage and
querying. The hypergraph approach keeps each multi-entity relation as a single hyperedge, preserving expressiveness
and clarity.

2.6 Multimodal Hypergraph

A multimodal hypergraph integrates multiple hypergraphs, each representing a different modality, by assigning
weights to their hyperedges. This approach enables comprehensive multi-relational and heterogeneous data
modeling [8, 9]. Related concepts, such as multimodal graphs [46, 47], are well-known in the literature.

Definition17 Multimodal Hypergraph [48]. Let V be a finite set of vertices. For each modalitym = 1, 2, . . . ,M ,
let

Gm = (V,Em,Wm) . (31)

be a hypergraph defined on V , where:
• Em is a set of hyperedges, and each hyperedge e ∈ Em is a non-empty subset of V (typically, |e| ≥ 2);
• Wm : Em → R+ is a function assigning a positive weight to each hyperedge e ∈ Em.
Furthermore, let {αm}Mm=1 be a set of combination weights such that

αm ≥ 0 for all m = 1, . . . ,M, and
M∑

m=1

αm = 1. (32)

The multimodal hypergraph is then defined as the tuple

G =
(
V, {Em}Mm=1 , {Wm}Mm=1 , {αm}Mm=1

)
(33)

which integrates the individual modality-specific hypergraphs by weighting each Gm according to αm. In certain
applications, a unified representation is obtained via a combined Laplacian matrix given by

L =

M∑
m=1

αmLm, (34)

where, Lm is the Laplacian matrix corresponding to the hypergraph Gm.
Example2 Multimodal Hypergraph for Social Media Analysis. Consider a social media platform where we wish

to model interactions among users, posts, and topics through multiple modalities: user–post engagement, post–topic
tagging, and user–user friendships. We build a multimodal hypergraph G = (V, {Em}3m=1, {Wm}3m=1, {αm}3m=1)
as follows:

Vertices.

V = {u1, u2, u3, u4, p1, p2, p3, p4, t1, t2, t3} , (35)

where, each ui is a user, each pj is a post, and each tk is a topic.
Modality 1: User–Post Engagement (m = 1).
• Hyperedges E1 group users who have liked or commented on the same post:

E1 = {e1,1 = {u1, u2, p1} , e1,2 = {u2, u3, p2} , e1,3 = {u1, u3, u4, p3} , e1,4 = {u4, p4}} . (36)
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• Weights W1(e) reflect the total number of interactions on that post:

W1 (e1,1) = 5, W1 (e1,2) = 3, W1 (e1,3) = 7, W1 (e1,4) = 2. (37)

Modality 2: Post–Topic Tagging (m = 2).
• Hyperedges E2 group posts that share the same topic:

E2 = {e2,1 = {p1, p2, t1} , e2,2 = {p2, p3, t2} , e2,3 = {p3, p4, t3}} (38)

• Weights W2(e) reflect the relevance score of the topic to those posts (e.g., TF-IDF average):

W2 (e2,1) = 0.8, W2 (e2,2) = 0.6, W2 (e2,3) = 0.9. (39)

Modality 3: User–User Friendship (m = 3).
• Hyperedges E3 group small user communities (triads or pairs) of friends:

E3 = {e3,1 = {u1, u2, u3} , e3,2 = {u2, u4} , e3,3 = {u3, u4}} (40)

• Weights W3(e) denote the strength of friendship (e.g., frequency of direct messages):

W3 (e3,1) = 10, W3 (e3,2) = 4, W3 (e3,3) = 6. (41)

Combination Weights. Choose combination weights {αm}3m=1 to reflect the relative importance of each
modality. For instance:

α1 = 0.5, α2 = 0.3, α3 = 0.2,

3∑
m=1

αm = 1. (42)

Combined Laplacian (Optional). If one wishes to perform spectral clustering over this multimodal hypergraph,
the combined Laplacian matrix is

L = α1L1 + α2L2 + α3L3, (43)

where, each Lm is the Laplacian of the hypergraph Gm = (V,Em,Wm).
Interpretation.
• The first modality (m = 1) captures groups of users interacting on the same post pj . For example, e1,1 =

{u1, u2, p1} indicates that users u1 and u2 both engaged with post p1.
• The second modality (m = 2) captures topic clusters: e2,1 = {p1, p2, t1} means that posts p1 and p2 are both

tagged with topic t1.
• The third modality (m = 3) captures friendship relations: e3,1 = {u1, u2, u3} indicates a tight-knit triad of

friend connections among users u1, u2, u3.
• By weighting each modality with αm, one can control, for example, whether user–post engagement (α1 = 0.5)

or topic tagging (α2 = 0.3) should have more influence in downstream tasks such as recommendation or community
detection.

2.7 Lattice Hypergraph

A lattice is a discrete mathematical structure where points are arranged in a regular, repeating pattern, often
used in algebra, geometry, and physics [49, 50]. A Lattice Hypergraph represents discrete spatial units and their
topological relationships, integrating local geometric adjacency and higher-order connectivity via hyperedges for
structured modeling [10–12].

Definition18 Lattice Hypergraph. Let

Vc = {v1, v2, . . . , vNc
} (44)

be a finite set of lattice vertices, where each vertex vi represents a discrete spatial unit (or grid cell) in a geometric
layout. In applications such as VLSI design, each lattice vertex corresponds to a G-cell—an area with fixed spatial
coordinates in a regular grid arrangement.

Let

Vn = {u1, u2, . . . , uNn
} (45)
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be a finite set of hyperedge nodes, where each uj represents a grouping of lattice vertices that share a common
topological or connectivity property (for example, a G-net that covers multiple G-cells connected via a netlist).

Define the lattice adjacency matrix A ∈ {0, 1}Nc×Nc by

Aij =

{
1, if lattice vertices vi and vj are geometrically adjacent (e.g., share a common boundary),
0, otherwise.

(46)

This matrix captures the local, spatial connectivity between neighboring lattice vertices.
Define the incidence matrix H ∈ {0, 1}Nc×Nn by

Hij =

{
1, if lattice vertex vi is a member of the hyperedge associated with uj

0, otherwise
(47)

The incidence matrix H encodes the higher-order topological relationships by linking lattice vertices to hyperedge
nodes.

Then, the lattice hypergraph is defined as the heterogeneous graph

G = (Vc, Vn, A,H) , (48)

which jointly models:
• Local geometric interactions via the lattice adjacency matrix A, and
• Higher-order topological interactions via the incidence matrix H .
This formulation enables information (or message passing) to propagate both among spatially adjacent regions

and across groups of regions that are topologically connected by shared hyperedges.
Example3 Lattice Hypergraph for VLSI Routing.
Consider a simplified VLSI (Very Large Scale Integration) chip layout, where the chip surface is divided into a

regular grid of G-cells (grid cells). We wish to model both the local adjacency of those cells and the higher-order
connectivity imposed by routing nets. We construct a lattice hypergraph G = (Vc, Vn, A, H) as follows:

Lattice Vertices (Vc).
Partition the chip area into a 3× 3 grid of G-cells:

Vc = {v1, v2, v3, v4, v5, v6, v7, v8, v9} (49)

We index them row by row:

v1 = cell at (row 1, column 1), v2 = cell at (row 1, column 2), v3 = cell at (row 1, column 3),
v4 = cell at (row 2, column 1), v5 = cell at (row 2, column 2), v6 = cell at (row 2, column 3),
v7 = cell at (row 3, column 1), v8 = cell at (row 3, column 2), v9 = cell at (row 3, column 3).

Hyperedge Nodes (Vn).
Suppose there are two routing nets on this chip:

Vn = {u1, u2} , (50)

where,
• u1 (Net 1) connects G-cells {v2, v5, v8} in a vertical net,
• u2 (Net 2) connects G-cells {v4, v5, v6} in a horizontal net.
Lattice Adjacency Matrix A.
Each G-cell is adjacent (shares a boundary) with its immediate orthogonal neighbors. For our 3× 3 grid:

A =



0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0
1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 0 1 0
0 0 1 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 1 0 1
0 0 0 0 0 1 0 1 0


. (51)
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For example, A1,2 = 1 since v1 (row 1, col 1) is adjacent to v2 (row 1, col 2); A5,8 = 1 since v5 (row 2, col 2) is
adjacent to v8 (row 3, col 2), and so on.

Incidence Matrix H .
We encode membership of G-cells in each net:

H =



H1,1 H1,2

H2,1 H2,2

H3,1 H3,2

H4,1 H4,2

H5,1 H5,2

H6,1 H6,2

H7,1 H7,2

H8,1 H8,2

H9,1 H9,2


=



0 0
1 0
0 0
0 1
1 1
0 1
0 0
1 0
0 0


. (52)

Row i corresponds to vi, and column j to uj . For instance:

H2,1 = 1 since v2 ∈ u1; H5,2 = 1 since v5 ∈ u2; H5,1 = 1 since v5 ∈ u1. (53)

Interpretation.
• The adjacency matrix A models local geometric interactions among neighboring G-cells. For example, v5

(center cell) is adjacent to v2, v4, v6, v8.
• The incidence matrix H captures higher-order topological connectivity: {v2, v5, v8} form a hyperedge u1,

reflecting Net 1’s vertical connection; {v4, v5, v6} form a hyperedge u2, reflecting Net 2’s horizontal connection.
• By combining A and H , one can propagate signals or perform optimization that respects both local adjacency

(e.g. heat dissipation or local routing congestion) and net-level grouping (e.g. ensure all cells in a net are connected).
Thus, the lattice hypergraph G = (Vc, Vn, A, H) provides a unified representation of the VLSI layout, integrating

both spatial adjacency and netlist connectivity in a single heterogeneous framework.

2.8 Hyperbolic Hypergraph

A Hyperbolic Hypergraph is a hypergraph in which vertices are embedded in hyperbolic space, utilizing its
negative curvature to facilitate hierarchical and complex relational modeling [13, 14, 51]. Related concepts, such as
Hyperbolic Graphs [52–54], are well-known in the literature.

Definition19 Hyperbolic Hypergraph [13]. Let V be a finite set of vertices and let E be a collection of
hyperedges such that each hyperedge

e ∈ E is a subset of V with |e| ≥ 2. (54)

Let Hd denote a d-dimensional hyperbolic space; that is, a complete Riemannian manifold with constant negative
curvature −κ (with κ > 0). A hyperbolic hypergraph is defined as the triple

HH = (V,E, ϕ), (55)

where, ϕ : V → Hd is an injective mapping (or embedding) that assigns to each vertex v ∈ V a unique point ϕ(v) in
Hd. The hyperbolic distance between any two vertices u, v ∈ V is given by

dH(ϕ(u), ϕ(v)). (56)

Moreover, for each hyperedge e ∈ E, one may define an optional hyperedge representation µ(e) (for example,
the hyperbolic Fréchet mean of the set {ϕ(v) : v ∈ e}) to capture the collective geometry of the vertices in e. This
structure leverages the rich geometry of hyperbolic space to model complex, higher-order, and often hierarchical
relationships among vertices, which is especially useful in applications such as sequential recommendation.

Example4 Hyperbolic Hypergraph for Hierarchical Product Categories. Consider an online retailer’s
inventory organized into a hierarchical product taxonomy. We wish to model both the hierarchical relationships
among product categories and the co-occurrence of items within categories. We construct a hyperbolic hypergraph
HH = (V, E, ϕ) as follows:

Vertices. Let

V = {v1, v2, v3, v4, v5, v6, v7} , (57)

where, each vi represents a specific product. For instance:
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• v1 = SmartphoneA,
• v2 = SmartphoneB ,
• v3 = LaptopA,
• v4 = LaptopB ,
• v5 = HeadphonesA,
• v6 = HeadphonesB ,
• v7 = TabletA.
Hyperedges. Define hyperedges E that reflect category groupings:

E = {e1, e2, e3, e4} , (58)

where,
• e1 = {v1, v2} groups all “Smartphones,”
• e2 = {v3, v4} groups all “Laptops,”
• e3 = {v5, v6} groups all “Headphones,”
• e4 = {v1, v2, v3, v4, v5, v6, v7} represents the top-level “Electronics” category.
Embedding ϕ. Embed each vertex vi into the 2D Poincaré disk model of hyperbolic space H2. For concreteness,

choose coordinates that reflect the taxonomy’s hierarchy:

ϕ(v1) =
(
r = 0.9, θ = 0◦

)
, ϕ(v2) =

(
r = 0.9, θ = 20◦

)
, ϕ(v3) =

(
r = 0.9, θ = 160◦

)
,

ϕ(v4) =
(
r = 0.9, θ = 180◦

)
, ϕ(v5) =

(
r = 0.9, θ = 200◦

)
,

ϕ(v6) =
(
r = 0.9, θ = 340◦

)
, ϕ(v7) =

(
r = 0.5, θ = 0◦

)
.

Here (r, θ) denotes radial and angular coordinates in the Poincaré disk:

ϕ(v) = x+ iy, x =
r cos θ

1 +
√
1− r2

, y =
r sin θ

1 +
√
1− r2

(59)

Hyperbolic Distances.The hyperbolic distance between any two embedded vertices u, v ∈ V is given by

dH(ϕ(u), ϕ(v)) = arcosh

(
1 + 2

∥ϕ(u)− ϕ(v)∥2

(1− ∥ϕ(u)∥2) (1− ∥ϕ(v)∥2)

)
. (60)

For example, computing

ϕ(v) = x+ iy, x =
r cos θ

1 +
√
1− r2

, y =
r sin θ

1 +
√
1− r2

(61)

reveals that ∥ϕ(v1)−ϕ(v2)∥ is small in hyperbolic terms (both near the “Smartphone” boundary), whereas v7 (Tablet)
is more centrally placed and thus farther from v1.

Hyperedge Representations. For each hyperedge e ∈ E, define a representative point µ(e) ∈ H2 as the
hyperbolic Fréchet mean of its member vertices:

µ(e) = argmin
z∈H2

∑
v∈e

dH(z, ϕ(v))
2. (62)

Concretely:
• For e1 = {v1, v2}, the Fréchet mean µ(e1) lies slightly inward along the geodesic between ϕ(v1) and ϕ(v2).
• For e4 = {v1, . . . , v7}, the Fréchet mean µ(e4) is near the center of the disk (small r), reflecting the top-level

“Electronics” category.
Interpretation.
• Vertices v1 and v2 (two smartphone models) are embedded close to the boundary of H2 at similar angles,

capturing their fine-grained similarity within the “Smartphone” subcategory.
• Vertex v7 (TabletA) is placed more centrally (smaller radial coordinate), indicating it belongs to a higher-level

category (“Electronics”) but is not tightly nested under “Smartphone” or “Laptop”.
• Hyperedge e1 (all smartphones) corresponds to a small arc near the boundary; its Fréchet mean µ(e1) is slightly

interior but still relatively large r.
• Hyperedge e4 (top-level category “Electronics”) is very “broad” and its Fréchet mean µ(e4) is near the origin,

reflecting that “Electronics” spans all subcategories.
• The negative curvature of H2 naturally places more specific categories (smartphones, laptops, headphones) near

the boundary and more general categories nearer the center, capturing hierarchical multi-scale relationships.
Thus, the hyperbolic hypergraph HH = (V, E, ϕ) models both higher-order groupings (hyperedges) and a natural

hierarchy via hyperbolic embedding. This is especially useful for recommendation tasks, where distances in H2

correlate with product similarity at multiple granularities.
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3 Results

In this paper, we introduce several new graph classes by extending the hypergraphs defined in the previous section
to superhypergraphs. Throughout this paper, we consider only finite structures. Unless otherwise noted, n is assumed
to be a non-negative integer.

3.1 Knowledge n-SuperHyperGraph

The definition of the Knowledge n-SuperHyperGraph is given as follows.
Definition20 Knowledge n-SuperHyperGraph. Let E0 be a finite set of base entities and R0 be a finite set of

base relations, where each relation r ∈ R0 has an associated arity |r| ∈ N. Define the set of all facts (or tuples) in the
usual manner by

τ =
{
r
(
e1, e2, . . . , e|r|

)
| r ∈ R0, ei ∈ E0 for i = 1, . . . , |r|

}
(63)

For an integer n ≥ 0, define the n-th powerset of E0 recursively by

P0 (E0) = E0, Pn+1 (E0) = P (Pn (E0)) , (64)

and similarly for R0.
A knowledge n-SuperHyperGraph is the structure

KH(n) =
(
V,R, τ

(n)
0

)
, (65)

where,
• V ⊆ Pn(E0) is the set of n-supervertices (which represent entities at a higher-order level),
• R ⊆ Pn(R0) is the set of n-superrelations (with arity defined over elements of V ),
• τ (n)0 ⊆

{
r(v1, v2, . . . , v|r|)

∣∣∣ r ∈ R, vi ∈ V
}

is the set of true n-superfacts.
Example5 Knowledge 1-SuperHyperGraph. Let the base set of entities be

E0 = {a, b}, (66)

and let the base set of relations be

R0 = {r}, (67)

where, r is a binary relation. Then the first powerset of E0 is

P1 (E0) = P (E0) = {∅, {a}, {b}, {a, b}} (68)

Define the set of 1-supervertices by excluding the empty set:

V = {{a}, {b}, {a, b}}. (69)

For simplicity, let the set of 1-superrelations be

R = {{r}}. (70)

Finally, define the set of true 1-superfacts as

τ
(1)
0 = {r({a}, {b})}. (71)

Then the structure

KH(1) =
(
V,R, τ

(1)
0

)
(72)

is a concrete example of a Knowledge 1-SuperHyperGraph.
Example6 Knowledge 2-SuperHyperGraph for Department-Level Collaborations. We model an academic-

industry collaboration scenario in which individual researchers are grouped into research teams, and those teams are
further organized into departments. A knowledge 2-SuperHyperGraph captures “department-level” relations (e.g.,
collaboration) by nesting sets twice.

Base Entities E0. Let

E0 = {Alice, Bob, Carol, Dave, Eve} (73)
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be the set of individual researchers.
Base Relation R0. We have a single binary relation

R0 = { collaborates }, (74)

where, |collaborates| = 2. A fact collaborates(x, y) means “researcher x collaborates with researcher y.”
First Powerset P1(E0).

P1 (E0) = P (E0) (75)

includes, for example, {Alice,Bob}, {Carol}, {Dave,Eve}, etc. We interpret certain subsets as “research teams”.
Let:

T1 = { Alice , Bob }, T2 = { Carol }, T3 = { Dave , Eve } (76)

Second Powerset P2(E0).

P2 (E0) = P (P (E0)) (77)

whose elements are sets of subsets of E0. Two relevant elements of P2(E0) are:

D1 = {T1, T2} , D2 = {T2, T3} , (78)

where, T1, T2, T3 ∈ P1(E0). We interpret D1 and D2 as two “departments,” each grouping two teams.
Set of 2-Supervertices V . Choose

V = {D1, D2} , D1 = {{ Alice , Bob }, { Carol }, D2 = {{ Carol }, { Dave , Eve }} (79)

Each Di ⊆ P1(E0) lies in P2(E0). We call these the 2-supervertices (departments).
Set of 2-Superrelations R. Form the set of second-level relations by taking a singleton subset of R0 inside

P1(R0), then again inside P2(R0). Concretely:

R = {{{ collaborates }}} ⊆ P2 (R0) (80)

Denote s = {{collaborates}}. Its arity—as an n-superrelation—remains 2, now interpreted on pairs of
2-supervertices.

Flattening Function F . Recall F : P2(E0) → P(E0) is defined by

F (x) =
⋃
a∈x

F (a), F (a) = a for a ∈ P1 (E0) (81)

Thus:

F (D1) = F ({{Alice,Bob}, {Carol}}) = {Alice,Bob} ∪ {Carol} = {Alice, Bob, Carol},
F (D2) = {Carol} ∪ {Dave,Eve} = {Carol, Dave, Eve}.

(82)

Set of True 2-SuperFacts τ (2)0 . We choose one true superfact indicating that department D1 collaborates with
department D2. Since s = {{collaborates}}, we write:

τ
(2)
0 = {s (D1, D2)} (83)

The triple:

KH(2) =
(
V,R, τ

(2)
0

)
(84)

is a concrete knowledge 2-SuperHyperGraph.
Interpretation.
• D1 represents “Department 1,” which consists of Team 1 {Alice,Bob} and Team 2 {Carol}. After flattening,

F (D1) = {Alice,Bob,Carol}.
• D2 represents “Department 2,” which consists of Team 2 {Carol} and Team 3 {Dave,Eve}. After flattening,

F (D2) = {Carol,Dave,Eve}.
• s = {{collaborates}} is the unique 2-superrelation indicating “collaboration” at the department level.
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• The superfact s(D1, D2) in τ
(2)
0 means “Department 1 collaborates with Department 2.” Concretely, it

implies that every pair of researchers (x, y) with x ∈ F (D1), y ∈ F (D2), has an underlying base-level relation
collaborates(x, y).

Thus, KH(2) = (V, R, τ
(2)
0 ) provides a two-level nesting of individuals into teams and teams into departments,

with a department-level collaboration relation capturing higher-order group interactions in a single, unified structure.
Theorem2. Every knowledge HyperGraph H = (E,R, τ0) is a special case of a knowledge n-SuperHyperGraph.

In particular:
1. For n = 0, we have P0(E0) = E0 and P0(R0) = R0; hence,

KH(0) = (E,R, τ0) , (85)

which is exactly the classical knowledge HyperGraph.
2. For any n ≥ 1, there exists a canonical embedding

i : E0 → Pn (E0) (86)

defined by iteratively taking singletons (i.e., i(e) = { { · · · {e} · · · } } with n iterations). This embedding is injective
and allows us to identify each entity e ∈ E0 with an n-supervertex i(e) ∈ Pn(E0). By embedding relations and
facts in a similar fashion, the original knowledge HyperGraph H can be seen as isomorphic to a substructure of the
knowledge n-SuperHyperGraph.

KH(n) =
(
V,R′, τ

(n)
0

)
, (87)

where,

V = i (E0) ⊆ Pn (E0) and τ
(n)
0 =

{
r
(
i (e1) , . . . , i

(
e|r|

))
| r

(
e1, . . . , e|r|

)
∈ τ0

}
. (88)

Thus, the classical knowledge HyperGraph is naturally generalized by the knowledge n-SuperHyperGraph
construction.

Proof. Case 1: n = 0. By definition, P0(E0) = E0 and P0(R0) = R0. Therefore, the knowledge
0-SuperHyperGraph is

KH(0) = (E0, R0, τ0) (89)

which is exactly the original knowledge HyperGraph H.
Case 2: n ≥ 1. Define the canonical embedding

i : E0 → Pn(E0) (90)

by setting, for each e ∈ E0,
i(e) = {{· · · {e} · · · }}, (91)

where, the singleton is taken n times. Since the singleton mapping is injective at each step, the overall map i is
injective. Thus, we may identify each e ∈ E0 with its image i(e) in Pn(E0).

Now, let
V = i(E0) ⊆ Pn(E0) (92)

and define the set of n-superfacts by

τ
(n)
0 = { r(i(e1), . . . , i(e|r|)) | r(e1, . . . , e|r|) ∈ τ0}. (93)

Similarly, relations in R0 are embedded into Pn(R0). With these definitions, the structure

KH(n) = (V,R′, τ
(n)
0 ) (94)

contains an isomorphic copy of the original knowledge HyperGraph H = (E0, R0, τ0). Therefore, every knowledge
HyperGraph is a special case (or can be embedded as a substructure) of a knowledge n-SuperHyperGraph.

3.2 Multimodal n-SuperHyperGraph

The definition of the multimodal n-SuperHyperGraph is given as follows.
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Definition21 Multimodal n-SuperHyperGraph. Let V0 be a finite base set. For an integer n ≥ 0, denote by
Pn(V0) the nth powerset of V0, defined recursively as

P0 (V0) = V0, Pn+1 (V0) = P (Pn (V0)) . (95)

For each modality m = 1, 2, . . . ,M , let

G(n)
m =

(
V, Em, Wm

)
(96)

be an n-SuperHyperGraph defined on a common vertex set

V ⊆ Pn(V0), (97)

where,
• Em ⊆ Pn(V0) is a set of n-superedges (each being a nonempty subset of V ; typically, |e| ≥ 2 for all e ∈ Em);
• Wm : Em → R+ is a function assigning a positive weight to each n-superedge in Em.
Furthermore, let {αm}Mm=1 be a set of combination weights satisfying

αm ≥ 0 for all m = 1, . . . ,M, and
M∑

m=1

αm = 1. (98)

Then, the multimodal n-SuperHyperGraph is defined as the tuple

G(n) =
(
V, {Em}Mm=1, {Wm}Mm=1, {αm}Mm=1

)
. (99)

Notice that when n = 0 (so that P0(V0) = V0), the structure reduces to the standard definition of a multimodal
hypergraph.

Example7 Multimodal 1-SuperHyperGraph. Let the base set be

V0 = {a, b, c}. (100)

Then the first powerset is

P1(V0) = P(V0) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}. (101)

Define the common vertex set by taking the nonempty subsets:

V = {{a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}. (102)

Assume there are two modalities (M = 2). For modality m = 1, let

E1 =
{
{{a}, {b}}, {{b}, {c}}

}
, (103)

with weight function W1(e) = 1 for every e ∈ E1. For modality m = 2, let

E2 =
{
{{a}, {c}}, {{a, b}, {a, c}}

}
, (104)

with weight function W2(e) = 2 for every e ∈ E2. Finally, choose combination weights α1 = 0.4 and α2 = 0.6.
Then the multimodal 1-SuperHyperGraph is

G(1) =
(
V, {E1, E2}, {W1,W2}, {α1, α2}

)
. (105)

Example8 Multimodal 2-SuperHyperGraph for a Smart Campus. We consider a small smart campus equipped
with ambient sensors, where sensors are grouped into rooms, and rooms are further grouped into buildings. We
model building-level multimodal relationships (e.g., energy usage similarity and security alerts) by constructing a
multimodal 2-SuperHyperGraph G(2).

Base Set V0. Let
V0 = { s1, s2, s3, s4, s5, s6 } (106)

be six ambient sensors deployed throughout the campus.
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First Powerset P1(V0) (Rooms). The elements of P1(V0) = P(V0) include all subsets of sensors. We select
three subsets to represent three rooms:

R1 = { s1, s2}, R2 = { s3, s4}, R3 = { s5, s6}. (107)

Each Ri corresponds to a room with two sensors.
Second Powerset P2(V0) (Buildings). By definition,

P2(V0) = P
(
P(V0)

)
, (108)

whose elements are sets of subsets of V0. We define three elements of P2(V0) to represent three buildings:

B1 = {R1, R2},
B2 = {R2, R3},
B3 = {R1, R3}.

(109)

Thus:
B1 = {{s1, s2}, {s3, s4}},
B2 = {{s3, s4}, {s5, s6}},
B3 = {{s1, s2}, {s5, s6}}.

(110)

Each Bi ∈ P2(V0) is called a 2-supervertex (i.e., a building containing two rooms).
Common Vertex Set V . We set

V = {B1, B2, B3}. (111)
All three buildings use the same “rooms” R1, R2, R3 drawn from P1(V0).
Two Modalities (M = 2).
Modality 1: Energy-Usage Similarity. We observe that during peak hours, Buildings B1 and B2 have correlated

energy usage patterns (e.g., similar heating/AC loads), and likewise B2 and B3 share similarity (e.g., similar lighting
usage). We define the set of 2-superedges:

E1 =
{
e1,1 = {B1, B2}, e1,2 = {B2, B3}

}
, (112)

where, each hyperedge e1,i ⊆ V has cardinality |e1,i| = 2. Assign weights according to the measured correlation
scores:

W1(e1,1) = 0.85, W1(e1,2) = 0.78. (113)
Here W1 : E1 → R+ quantifies the degree of energy-usage similarity between the two buildings in each hyperedge.
Modality 2: Security-Alert Co-Occurrence. Over a monitoring period, security alerts (e.g., unauthorized door

access) occurred concurrently in B1 and B3, but not in B2. We define:

E2 =
{
e2,1 = {B1, B3}

}
, (114)

with weight function
W2(e2,1) = 1.0, (115)

reflecting a strong co-occurrence of security events in those two buildings.
Combination Weights. To integrate these two modalities, choose:

α1 = 0.6, α2 = 0.4, α1 + α2 = 1. (116)

These weights indicate that energy-usage similarity (α1 = 0.6) is considered somewhat more important than
security-alert co-occurrence (α2 = 0.4) in downstream tasks.

Multimodal 2-SuperHyperGraph. Putting everything together, the multimodal 2-SuperHyperGraph is

G(2) =
(
V, {E1, E2 }, {W1,W2 }, {α1, α2}

)
. (117)

Flattening Function F . Recall F : P2(V0) → P(V0) “flattens” each building to the union of its rooms (subsets
of sensors):

F (B1) = R1 ∪R2 = {s1, s2, s3, s4},
F (B2) = R2 ∪R3 = {s3, s4, s5, s6},
F (B3) = R1 ∪R3 = {s1, s2, s5, s6}.

(118)

This ensures that each 2-superedge e ⊆ V corresponds to overlapping or adjacent sensor sets at the ground level
when appropriate (e.g., B1 and B2 share R2).

Interpretation.
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• Modality 1 (Energy-Usage). e1,1 = {B1, B2} indicates that Buildings B1 and B2 exhibit similar energy-usage
patterns during peak hours. Flattened, they share room R2 with sensors {s3, s4}. e1,2 = {B2, B3} captures
similarity between B2 and B3, which both draw significant lighting power from rooms R2 or R3 in evening.

• Modality 2 (Security-Alert). e2,1 = {B1, B3} shows that security alerts co-occur in Buildings B1 and B3,
perhaps because both have entrances monitored by shared camera arrays (flattened sets {s1, s2, s5, s6}).

• By assigning α1 = 0.6 and α2 = 0.4, we prioritize energy-usage similarity over security co-occurrence when,
for example, performing community detection or anomaly detection on the campus.

Thus, G(2) = (V, {E1, E2}, {W1,W2}, {α1, α2}) provides a detailed, higher-order model of building-level
relationships based on two modalities in a finite smart-campus setting.

Theorem3. Every multimodal hypergraph is a special case of a multimodal n-SuperHyperGraph. In particular,
for n = 0,

G(0) =
(
V, {Em}Mm=1, {Wm}Mm=1, {αm}Mm=1

)
(119)

is exactly the classical multimodal hypergraph. Moreover, for any n ≥ 1, there exists a canonical flattening function

F : Pn (V0) → P (V0) (120)

defined recursively by

F (x) = x for x ∈ V0, F (A) =
⋃
a∈A

F (a) for A ∈ Pk (V0) with k ≥ 1, (121)

such that applying F to every n-superedge in each modality yields a multimodal hypergraph

G′ =
(
V0, {E′

m}Mm=1, {Wm}Mm=1, {αm}Mm=1

)
, (122)

where,
E′

m = {F (e) | e ∈ Em} ⊆ P(V0). (123)

Proof. There are two cases.
Case 1: n = 0. By definition, P0(V0) = V0. Hence, the vertex set V ⊆ P0(V0) is exactly a subset of V0, and

each hyperedge e ∈ Em is a nonempty subset of V0. Thus, the multimodal 0-SuperHyperGraph

G(0) =
(
V, {Em}Mm=1, {Wm}Mm=1, {αm}Mm=1

)
(124)

is identical to the classical multimodal HyperGraph definition.
Case 2: n ≥ 1. For any n ≥ 1, each vertex or hyperedge is an element of Pn(V0). Define the flattening function

F : Pn(V0) → P(V0) recursively by:

F (x) = x if x ∈ V0, F (A) =
⋃
a∈A

F (a) if A ∈ Pk(V0), k ≥ 1. (125)

For each modality m, transform its hyperedge set by setting

E′
m = {F (e) | e ∈ Em}. (126)

Since F (e) is a subset of V0 for every e ∈ Em, it follows that

E′
m ⊆ P(V0). (127)

Thus, by taking V0 as the new vertex set and E′
m as the hyperedge set for each modality m, we obtain a multimodal

hypergraph
G′ =

(
V0, {E′

m}Mm=1, {Wm}Mm=1, {αm}Mm=1

)
. (128)

This shows that any multimodaln-SuperHyperGraph can be transformed (or “flattened”) into a classical multimodal
hypergraph, hence generalizing the latter.
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3.3 Lattice n-SuperHyperGraph

The definition of the Lattice n-SuperHyperGraph is given as follows.
Definition22 Lattice n-SuperHyperGraph. Let V0 be a finite base set representing elementary lattice cells (e.g.,

grid cells in a geometric layout). For any integer n ≥ 0, define the nth powerset of V0 recursively by

P0(V0) = V0, Pn+1(V0) = P
(
Pn(V0)

)
. (129)

A Lattice n-SuperHyperGraph is a heterogeneous graph

G(n) =
(
V (n)
c , V (n)

n , A(n), H(n)
)
, (130)

where,
• V (n)

c ⊆ Pn(V0) is the set of n-super lattice vertices (each representing a higher-order lattice cell, generalizing a
standard grid cell),

• V (n)
n ⊆ Pn(V0) is the set of n-super hyperedge nodes (each representing a grouping of lattice vertices—for

example, a generalized G-net),
• The lattice adjacency matrix A(n) ∈ {0, 1}|V (n)

c |×|V (n)
c | is defined by

A
(n)
ij =

{
1, if the flattened images F (vi) and F (vj) are adjacent in the base lattice,
0, otherwise,

(131)

for vi, vj ∈ V
(n)
c ,

• The incidence matrix H(n) ∈ {0, 1}|V (n)
c |×|V (n)

n | is defined by

H
(n)
ij =

{
1, if F (vi) ⊆ F (uj),

0, otherwise,
(132)

for vi ∈ V
(n)
c and uj ∈ V

(n)
n .

Here, the flattening function
F : Pn(V0) → P(V0) (133)

is defined recursively by

F (x) = x for x ∈ V0, F (A) =
⋃
a∈A

F (a) for A ∈ Pk(V0), k ≥ 1. (134)

Example9 Lattice 1-SuperHyperGraph. Let the base set be

V0 = {v1, v2, v3}, (135)

which represent three adjacent grid cells in a layout.
Then the first powerset is

P1(V0) = P(V0) = {∅, {v1}, {v2}, {v3}, {v1, v2}, {v1, v3}, {v2, v3}, {v1, v2, v3}}. (136)

For the lattice vertices, choose the singletons:

V (1)
c = {{v1}, {v2}, {v3}}. (137)

For the hyperedge nodes, define groups (e.g., adjacent cells) by

V (1)
n = {{v1, v2}, {v2, v3}}. (138)

Using the flattening function F , note that

F ({v1}) = {v1}, F ({v1, v2}) = {v1, v2}. (139)

Assume in the base lattice that v1 is adjacent to v2, v2 is adjacent to v3, and v1 is not adjacent to v3. Then the
lattice adjacency matrix for V (1)

c is

A(1) =

0 1 0
1 0 1
0 1 0

 . (140)
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The incidence matrix H(1) is defined by membership:

H(1) =

1 0
1 1
0 1

 , (141)

since {v1} ⊆ {v1, v2}, {v2} is in both {v1, v2} and {v2, v3}, and {v3} ⊆ {v2, v3}.
Thus, the lattice 1-SuperHyperGraph is given by

G(1) =
(
V (1)
c , V (1)

n , A(1), H(1)
)
. (142)

Example10 Lattice 2-SuperHyperGraph for a 2 × 2 Chip Grid. We illustrate a lattice 2-SuperHyperGraph
G(2) =

(
V

(2)
c , V

(2)
n , A(2), H(2)

)
using a simple 2× 2 grid of G-cells on a chip.

Base Set V0. Let the base set of elementary lattice cells be

V0 = { c1, c2, c3, c4}, (143)

arranged in a 2× 2 layout as:
c1 c2

c3 c4
(144)

with the usual adjacency: c1 adjacent to c2 and c3, c2 adjacent to c1 and c4, c3 adjacent to c1 and c4, c4 adjacent to c2
and c3.

First Powerset P(V0). The powerset P1(V0) = P(V0) consists of all subsets of V0. For instance,

{ c1}, { c2}, { c1, c2}, { c3, c4}, { c1, c2, c3, c4}, . . . (145)

However, we will use only a few of these in the construction that follows.
Second Powerset P2(V0). By definition,

P2(V0) = P
(
P(V0)

)
, (146)

whose elements are sets of subsets of V0. Two relevant elements in P2(V0) are:

x1 =
{
{c1}, {c2}

}
, x2 =

{
{c3}, {c4}

}
. (147)

Each xi is itself a set whose members lie in P1(V0).
Set of 2-Super Lattice Vertices V (2)

c . We choose

V (2)
c = {x1, x2}, (148)

where,
x1 = {{c1}, {c2}}, x2 = {{c3}, {c4}}. (149)

These are our 2-super lattice vertices. Each xi ∈ P2(V0).
Set of 2-Super Hyperedge Nodes V (2)

n . We define one higher-order grouping:

u1 =
{
{c1, c2}, {c3, c4}

}
, (150)

so that
V (2)
n = {u1}, u1 ∈ P2(V0). (151)

Flattening Function F . Recall that F : P2(V0) → P(V0) is defined by

F (x) =
⋃
a∈x

F (a), F (a) = a for a ∈ P1(V0). (152)

hence,
F (x1) = F

(
{{c1}, {c2}}

)
= {c1} ∪ {c2} = { c1, c2},

F (x2) = {c3, c4},
F (u1) = F

(
{{c1, c2}, {c3, c4}}

)
= {c1, c2} ∪ {c3, c4} = { c1, c2, c3, c4}.

(153)
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Lattice Adjacency Matrix A(2). We declare two 2-super vertices xi, xj ∈ V
(2)
c to be adjacent if F (xi) and

F (xj) contain at least one pair of adjacent base cells in V0. In our case:

F (x1) = {c1, c2}, F (x2) = {c3, c4}. (154)

Since c2 is adjacent to c4 in the base 2× 2 grid, we set:

A
(2)
1,2 = 1, A

(2)
2,1 = 1, (155)

and, of course,
A

(2)
1,1 = 0, A

(2)
2,2 = 0. (156)

Hence, in matrix form (indexing x1 as row/column 1 and x2 as row/column 2):

A(2) =

(
0 1
1 0

)
. (157)

Incidence Matrix H(2). We link each 2-super vertex xi ∈ V
(2)
c to each 2-super hyperedge node uj ∈ V

(2)
n

whenever F (xi) ⊆ F (uj). Here:

F (x1) = {c1, c2} ⊆ {c1, c2, c3, c4} = F (u1), F (x2) = {c3, c4} ⊆ F (u1). (158)

Thus,
H

(2)
1,1 = 1, H

(2)
2,1 = 1. (159)

In matrix form (rows indexed by x1, x2; column indexed by u1):

H(2) =

(
1
1

)
. (160)

Interpretation.
• The set V (2)

c = {x1, x2} consists of two 2-super vertices: x1 flattens to {c1, c2} (the top row), and x2 flattens
to {c3, c4} (the bottom row).

• The adjacency A
(2)
1,2 = 1 arises because the flattened top row {c1, c2} shares a border with the flattened bottom

row {c3, c4} at c2 ∼ c4.
• The set V (2)

n = {u1} represents the entire 2× 2 grid as a single hyperedge, since u1 flattens to all four cells
{c1, c2, c3, c4}.

• The incidence matrix H(2) has both entries equal to 1, indicating that each 2-super vertex (x1 or x2) is contained
within the hyperedge u1.

Thus, G(2) =
(
V

(2)
c , V

(2)
n , A(2), H(2)

)
provides a higher-order model of the original 2× 2 grid. It captures both

the local adjacency of super-cells along the row boundary and the global grouping of all cells by the single 2-super
hyperedge u1. Such a structure can be useful in applications like hierarchical routing or multi-scale optimization on
chip layouts.

Theorem4. Let G =
(
Vc, Vn, A, H

)
be a classical lattice hypergraph defined on a base set V0, where

Vc ⊆ V0 and Vn ⊆ P(V0). (161)

Then, for any n ≥ 0, there exists a lattice n-SuperHyperGraph

G(n) =
(
V (n)
c , V (n)

n , A(n), H(n)
)

(162)

and a flattening function F : Pn(V0) → P(V0) such that

{F (v) : v ∈ V (n)
c } = Vc and {F (u) : u ∈ V (n)

n } = Vn, (163)

and the corresponding flattened adjacency and incidence matrices equal A and H , respectively. In other words, the
classical lattice hypergraph is a special case (obtained by flattening) of the lattice n-SuperHyperGraph.

Proof. We prove the claim by constructing a flattening function F and showing that the classical lattice hypergraph
is recovered.

Case n = 0: When n = 0, we have P0(V0) = V0. Thus, V (0)
c and V

(0)
n are subsets of V0 and P(V0), respectively.

In this case, the lattice 0-SuperHyperGraph

G(0) =
(
V (0)
c , V (0)

n , A(0), H(0)
)

(164)
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is exactly the classical lattice hypergraph.
Case n ≥ 1: Define the flattening function F : Pn(V0) → P(V0) recursively by

F (x) = x for x ∈ V0, F (A) =
⋃
a∈A

F (a) for A ∈ Pk(V0), k ≥ 1. (165)

Now, suppose that the lattice n-SuperHyperGraph

G(n) =
(
V (n)
c , V (n)

n , A(n), H(n)
)

(166)

has been constructed so that its vertex set V (n)
c and hyperedge node set V (n)

n satisfy

{F (v) : v ∈ V (n)
c } = Vc and {F (u) : u ∈ V (n)

n } = Vn. (167)

Moreover, by defining the n-level lattice adjacency matrix A(n) and incidence matrix H(n) using the flattened
representations (i.e., two n-supervertices vi, vj ∈ V

(n)
c are declared adjacent if and only if their flattenings F (vi) and

F (vj) are adjacent in the base lattice; similarly for H(n)), the flattened matrices satisfy

Aij = A
(n)
ij and Hij = H

(n)
ij . (168)

Thus, by applying F to all elements, we recover the classical lattice hypergraph

G′ =
(
Vc, Vn, A, H

)
. (169)

This demonstrates that every classical lattice hypergraph is obtained as the flattening of a latticen-SuperHyperGraph.

3.4 Hyperbolic n-SuperHyperGraph

The definition of the hyperbolic n-SuperHyperGraph is given as follows.
Definition23 Hyperbolic n-SuperHyperGraph. Let V0 be a finite base set. For a nonnegative integer n, define

the nth powerset of V0 recursively by

P0(V0) = V0, Pn+1(V0) = P
(
Pn(V0)

)
. (170)

Let Hd denote a d-dimensional hyperbolic space (i.e. a complete Riemannian manifold with constant negative
curvature −κ for some κ > 0). A hyperbolic n-SuperHyperGraph is defined as the triple

H(n)
H = (V, E, ϕ), (171)

where,
• V ⊆ Pn(V0) is a set of n-supervertices,
• E ⊆ { e ⊆ V | |e| ≥ 2 } is a collection of n-superedges,
• ϕ : V → Hd is an injective mapping (embedding) that assigns to each n-supervertex a unique point in Hd.
Optionally, for each hyperedge e ∈ E, one may define an aggregated representation µ(e) (e.g., the hyperbolic

Fréchet mean of {ϕ(v) : v ∈ e}) to capture the collective geometry of the vertices in e.
Example11 Hyperbolic 1-SuperHyperGraph. Let the base set be

V0 = {a, b, c}. (172)

Then the first powerset is

P1(V0) = P(V0) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}. (173)

Define the set of 1-supervertices by taking the nonempty subsets:

V = {{a}, {b}, {c}, {a, b}}. (174)

Consider the collection of 1-superedges:

E =
{
{{a}, {b}}, {{b}, {a, b}}

}
. (175)

Let H2 denote the hyperbolic plane (e.g., in the Poincaré disk model). Define an embedding ϕ : V → H2 by
assigning four distinct points in H2 to the vertices {a}, {b}, {c}, and {a, b}. Then the triple

H(1)
H = (V, E, ϕ) (176)
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forms a concrete example of a hyperbolic 1-SuperHyperGraph.
Example12 Hyperbolic 2-SuperHyperGraph for Company Organization. We model a company’s organiza-

tional hierarchy and inter-departmental projects as a hyperbolic 2-SuperHyperGraph H(2)
H = (V, E, ϕ). At the base

level, individual employees are grouped into teams, teams into departments, and departments collaborate on projects.
Hyperbolic geometry naturally encodes the hierarchical structure, with more specific units near the boundary and
broader units near the center of H2.

Base Set V0. Let
V0 = {Alice, Bob, Carol, Dave, Eve, Frank } (177)

be six employees.
First Powerset P1(V0) (Teams). We form three teams as subsets of V0:

T1 = {Alice, Bob},
T2 = {Carol, Dave},
T3 = {Eve, Frank}.

(178)

Each Ti ∈ P1(V0) represents a “team” of two employees.
Second Powerset P2(V0) (Departments). P2(V0) = P(P(V0)) consists of sets of teams. We select:

D1 = {T1, T2}, (Department 1: Teams 1 and 2),
D2 = {T2, T3}, (Department 2: Teams 2 and 3),
O = {T1, T2, T3}, (Company: all three teams).

(179)

Thus D1, D2, O ∈ P2(V0). We interpret D1, D2 as two departments, and O as the entire organization.
Set of 2-SuperVertices V .

V = {D1, D2, O}, (180)
where, each element is an n-supervertex with n = 2.

Hyperedges E. We model two types of inter-departmental collaborations:
• Project Alpha involves Departments D1 and D2:

e1 = {D1, D2}. (181)

• All-Hands Summit involves Department D1 and the entire organization O:

e2 = {D1, O}, e3 = {D2, O}. (182)

Thus,
E = { e1, e2, e3}, e1 = {D1, D2}, e2 = {D1, O}, e3 = {D2, O}. (183)

Each e ⊆ V has |e| ≥ 2.
Hyperbolic Embedding ϕ. Choose the Poincaré disk model of the hyperbolic plane H2. We embed:

ϕ(D1) = (r = 0.8, θ = 0◦),

ϕ(D2) = (r = 0.8, θ = 180◦),

ϕ(O) = (r = 0.2, θ = 0◦).

(184)

That is, D1 and D2 lie near the boundary at opposite angles, reflecting that they are distinct, specialized
departments. The company node O is placed near the center (r = 0.2), indicating a more general, higher-level
category.

Hyperbolic Distances. For any two vertices u, v ∈ V ,

dH(ϕ(u), ϕ(v)) = arcosh
(
1 + 2

∥ϕ(u)− ϕ(v)∥2

(1− ∥ϕ(u)∥2) (1− ∥ϕ(v)∥2)

)
. (185)

For instance,
dH

(
ϕ(D1), ϕ(D2)

)
is large (two departments far apart near boundary), (186)

whereas
dH

(
ϕ(D1), ϕ(O)

)
is moderate (department to company center). (187)

Hyperedge Representations µ(e). Optionally, for each e ∈ E, we can define

µ(e) = argmin
z∈H2

∑
v∈e

dH
(
z, ϕ(v)

)2 (188)

as the hyperbolic Fréchet mean. Concretely:
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• µ(e1) (Project Alpha) lies along the geodesic midpoint between ϕ(D1) and ϕ(D2), at moderate radius r ≈ 0.8.
• µ(e2) (D1 & O) lies between ϕ(D1) and ϕ(O), closer to O since O is at small r.
• µ(e3) (D2 & O) similarly lies between ϕ(D2) and ϕ(O).
Real-World Interpretation.
• D1 = {T1, T2} is Department 1 (e.g., “Engineering & R&D”), flattening toT1∪T2 = {Alice,Bob,Carol,Dave}.
• D2 = {T2, T3} is Department 2 (e.g., “R&D & Operations”), flattening to {Carol,Dave,Eve,Frank}.
• O = {T1, T2, T3} is the entire company, flattening to all six employees {Alice, . . . ,Frank}.
• Project Alpha (e1) is a collaboration between Department 1 and Department 2. In hyperbolic space, D1 and
D2 are near the boundary in opposite directions, reflecting distinct but interconnected subunits.

• All-Hands Summit comprises both Department 1 and the whole company: e2 = {D1, O}. Its Fréchet mean
µ(e2) lies closer to the center, indicating a more general event. Similarly, e3 = {D2, O} captures Department
2 joining the company event.

• Embedding in H2 encodes the hierarchy: specialized departments (r = 0.8) are near the boundary, while
the overall company (r = 0.2) is near the center. Distances in H2 correlate with organizational separa-
tion—departments that share more teams (e.g., D1 and D2 both include T2) still appear relatively far because
they reside near opposite angles.

Hence, H(2)
H = (V, E, ϕ) provides a higher-order, hyperbolic representation of a company’s team–department–

organization hierarchy and their collaborative projects.
Theorem5. Every classical hyperbolic hypergraph is a special case of a hyperbolic n-SuperHyperGraph. In

particular, let
HH = (V0, E0, ϕ0) (189)

be a classical hyperbolic hypergraph with V0 ⊆ V0, E0 ⊆ { e ⊆ V0 | |e| ≥ 2 }, and ϕ0 : V0 → Hd an injective
embedding. Then, for any n ≥ 0, there exists a hyperbolic n-SuperHyperGraph

H(n)
H = (V, E, ϕ) (190)

and a flattening function
F : Pn(V0) → V0, (191)

defined recursively by

F (x) = x for x ∈ V0, F (A) =
⋃
a∈A

F (a) for A ∈ Pk(V0), k ≥ 1, (192)

such that
F (V ) = V0, {F (e) : e ∈ E} = E0, and ϕ = ϕ0 ◦ F. (193)

Proof. We consider two cases.
Case 1: n = 0. Since P0(V0) = V0, a hyperbolic 0-SuperHyperGraph is given by

H(0)
H = (V0, E0, ϕ0), (194)

which is exactly the classical hyperbolic hypergraph HH.
Case 2: n ≥ 1. Define the flattening function F : Pn(V0) → V0 recursively by

F (x) = x for x ∈ V0, F (A) =
⋃
a∈A

F (a) for A ∈ Pk(V0), k ≥ 1. (195)

Now, construct the hyperbolic n-SuperHyperGraph H(n)
H = (V, E, ϕ) by choosing

V ⊆ Pn(V0) (196)

such that F (V ) = V0 (i.e., for every v ∈ V0 there is some u ∈ V with F (u) = v), and choose

E ⊆ { e ⊆ V | |e| ≥ 2 } (197)

so that
{F (e) : e ∈ E} = E0. (198)

Define the embedding ϕ : V → Hd by

ϕ(u) = ϕ0(F (u)) for each u ∈ V. (199)

Since ϕ0 is injective and F maps each u ∈ V to an element of V0, the composed mapping ϕ = ϕ0 ◦ F is
injective. By construction, flattening the vertices and hyperedges of H(n)

H via F recovers the classical hyperbolic
hypergraph HH. This shows that every hyperbolic hypergraph is a special case (obtained by flattening) of a hyperbolic
n-SuperHyperGraph.
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4 Conclusion and Future Work

In this paper, we extended Knowledge Hypergraphs, Multimodal Hypergraphs, Lattice Hypergraphs, and
Hyperbolic Hypergraphs using the SuperHyperGraph framework, introducing Knowledge SuperHypergraphs,
Multimodal SuperHypergraphs, Lattice SuperHypergraphs, and Hyperbolic SuperHypergraphs.

One potential direction is to further generalize the graph classes introduced here by incorporating elements from
various advanced set theories, including Fuzzy Sets, Intuitionistic Fuzzy Sets, Soft Sets, Hypersoft sets, Neutrosophic
Sets, Rough Sets, Plithogenic Sets, and Hyperrough Sets. Developing graph structures that integrate these concepts
would provide new theoretical insights and broaden their range of applications. Furthermore, exploring real-world
applications of these extended graph models could open up exciting avenues for future research.
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