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Abstract: For the wounded triage, transport and cooperative scheduling problem of emergency surgery in urban 

emergency rescue, this study uses the idea of supply chain collaborative scheduling, considers factors such as the 

number of the wounded, rescue vehicle capacity and hospital operation time to achieve the optimization goals of 

the shortest rescue response time and the most economical transportation capacity, establishes a mixed integer 

programming model, and designs a two-stage scheduling algorithm to solve the model. It uses the relative gap 

between the maximum time span of the entire rescue process and the optimal performance under ideal conditions 

to measure the performance of the algorithm. The simulation experiments show that the two-stage scheduling 

algorithm has better problem-solving ability for scenarios with larger number of the wounded and stronger carrying 

capacity, and has better performance than MFF algorithm and MBF algorithm. 

Keywords: Urban emergency; Collaborative scheduling; Mixed integer programming model; Two-stage 

scheduling algorithm 

1. Introduction

In the emergency rescue, the wounded triage, transshipment and emergency surgery constitute the complete

process of emergency rescue. Due to the shortage of resources involved in the rescue, it is necessary to strengthen 

the close cooperation among various rescue jobs and coordinate the implementation in order to complete it 

efficiently. rescue work. With the development of network information technology, all kinds of data can be shared 

well, and real-time information of each rescue link can be obtained conveniently. Therefore, it is necessary to 

organically combine the wounded triage, transshipment and emergency surgery to form a complete rescue chain 

for collaborative scheduling. 

The rescue chain in emergency rescue is similar to the supply chain in industrial production. It belongs to the 

collaborative scheduling problem of rescue transportation under the condition of limited vehicles. It can use a 

similar supply chain processing method to achieve collaborative optimization. At present, there is no literature on 

combining all links in emergency rescue to achieve collaborative scheduling, let alone using supply chain methods 

to study the optimization of emergency rescue processes, so this study herein is theoretically innovative. 

Many scholars have studied from different perspectives on the problem of production and transportation 

collaborative scheduling in the supply chain, and have obtained many good results. Liu [1] studied the production 

and transportation collaborative scheduling problem and divided the transportation into two stages; with the 

research goal of minimizing the sum of the manufacturing span time and the total installation cost, he proposed 

two genetic algorithms, and illustrated the improved genetic algorithm through simulation experiments. The 

algorithm can solve the problem very well and has better performance than the basic genetic algorithm. Garcia and 

Lozano [2] studied the collaborative scheduling under multiple constraints such as limited productivity, vehicle 

quantity and order time window, gave an integer programming model, and used the tabu search algorithm to solve 

it. Niu and Han [3] proposed a two-stage scheduling algorithm based on the unit manufacturing problem, which 

solves the problem through process decomposition and algorithm optimization. The scheduling algorithm uses a 

combination of "accurate" calculation and "approximate" solution. This method not only improves the 
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computational efficiency but also takes into account the global optimization goal. Hu et al. [4] studied the single-

machine ordering problem of collaborative scheduling of processing and transportation. The optimization goal is 

to minimize the arrival time of the last workpiece sent to the customer, and an optimal algorithm for this problem 

is given, and is proved that the worst case bound is 3/2. Ng et al. [5] studied the single-machine, serial batch, and 

total completion time scheduling problems with priority constraints, same release date and processing time, and 

proposed a dynamic programming algorithm with time complexity as O (n5). Liu et al. [6] studied the batch 

scheduling problem under the condition of unlimited capacity of the batch machine, with the goal of minimizing 

the total completion time, and proved that the problem is NP. 

This study uses the idea of supply chain of industrial manufacturing to analyze the collaborative scheduling of 

each rescue link in emergency rescue, fully considers the number of wounded and the capacity of rescue vehicles, 

realizes the scheduling process with the shortest rescue response time and the most economical capacity, 

establishes a mathematical model, designs an optimization algorithm, and analyzes the performance of the 

algorithm, and finally tests the actual effect of the algorithm through simulation. 

2. Problem Description

After an emergency occurs, the rescue force goes deep into the disaster area, and first triages the wounded 

rescued. Therefore, it is necessary to open up a field as a place for triage. Due to the shortage of medical rescue 

forces, the wounded must enter the triage field for queuing and the triage adopts the combination of fuzzy 

qualitative method and quantitative scoring method. The wounded who are triaged according to their injuries are 

transported to the hospital in batches by rescue vehicles for further surgical treatment. This process forms a 

complete rescue chain, and only the collaborative scheduling of each rescue link can ensure efficient and fast 

rescue. The rescue chain process is shown in Figure 1. 

Triage field

Surgery hospital
Transportation of the wounded

Figure 1. Emergency rescue chain process 

Assuming that n wounded persons {W1, W2, …, Wn} arrives at the triage field dynamically, these wounded need 

to undergo triage in the triage field. Due to the urgency of the rescue, the triage operation is a continuous batch 

operation, the wounded are sent batch by batch and receive triage one by one, and the end time of the triage is 

equal to the completion time of the last one in this batch of wounded. The ordering count value of the wounded Wi 

and the time spent in the triage process are recorded as si and pi, the time to arrive at the triage field is recorded as 

ri. Denote the triage time of bk batch of wounded who received triage on the triage field as Pk, then  

, 1,2, ,
i k

k

i

W b

P p i n


= =  (1) 

Assume that the carrying capacity of the vehicle is c. Due to the limited number of medical personnel, each 

batch of wounded must queue up for examination, and the waiting time for the wounded is set to be s. Obviously, 

the time of the last wounded entering the triage field in a batch of wounded is the waiting time of this batch of 

wounded. When a batch of wounded has been examined, the batch of wounded are immediately transferred by 

rescue vehicles. Assume that the one-way travel time of the rescue vehicle from the triage field to the operation 

hospital is T. When a batch of wounded arrive at the hospital, the batch of wounded will be operated on in the 

operating room of the hospital. Due to the existence of multiple operating rooms, the emergency rescue operation 

can be operated on multiple wounded in the same batch at the same time. This mode is a parallel processing 

machine [7] mode. The operation time of each batch of wounded is equal to a constant P. According to the actual 

situation of the operation of the wounded, it is assumed pi+s≥P, i=1, 2, …, n. 
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3. Problem Modeling

First, the parameters of the given mathematical model are as follows:

’ is total number of wounded; i is the number of the wounded, i=1, 2, …, n; si is the counted number of the

wounded i; ri is the time when the wounded i arrives at the triage field; pi is the examination time of the wounded 

i in a certain triage group on the triage field; P is the operation time of each batch of wounded in the hospital 

operating room; c is the maximum number of wounded in a batch in the triage field, or the carrying capacity of a 

transfer vehicle; L is the total number of batches, satisfying ⌈𝑠𝑖/𝑐⌉ ≤ 𝐿 ≤ 𝑛; k, f is the batch number, k=1, 2, …,

L; s is the waiting time of wounded in line in the triage field; T is the one-way travel time of the rescue vehicle 

from the triage field to the operation hospital; M is a large positive integer. The decision variables defined are as 

follows: 

xik: If the wounded i is assigned to the k batch for triage and transfer, then xik=0; otherwise xik=1; ykf: If the 

wounded of the k batch in the triage field are triaged before the f batch, then ykf=0; otherwise ykf=1; zkf: If the 

wounded of the k batch in the hospital operating room are operated before the f batch, then zkf=0; otherwise zkf=1; 

Pk: The sum of the triage time of the wounded in the k batch of the triage field; S1k: Triage start time of the wounded 

in the k batch of the triage field; C1k: Triage end time of the wounded in the k batch of triage field; S2k: Start time 

of operation of the wounded in the k batch of operating room of the hospital; C2k: End k time of operation of the 

wounded in the k batch of operating room of the hospital; Cmax: The maximum time span of whole rescue process 

or the duration during which the severest wound in the rescue chain is treated. 

The mixed integer programming model of the problem is as follows: 

maxMinC (2) 

s.t.

1
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2 2 , 1,2, ,k kC S P k L= + =  (7) 

2 2 , 1,2, ,k kC S P k L= + =  (8) 

( )1 1 1 0, 1,2, , ; 1,2, , ;f

k f kfC C P s y M k L f L k f− + + − −  =  =   (9) 

1, 1,2, , ; 1,2, , ;kf fkz z k L f L k f+ = =  =   (10) 

max 2 , 1,2, ,kC C k L =  (11) 

{0,1}, ,ikx i k  (12) 

{0,1}, ,kfy k f  (13) 

{0,1}, ,kfz k f  (14) 

In the model, Formula (2) is the objective function, which represents the span time to minimize the whole rescue. 

Formulas (3) ~ (14) are constraint conditions, in which, Formula (3) indicates that any wounded can only be 

assigned to one rescue process batch, and Formula (4) indicates that the total number of all wounded in any batch 
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cannot exceed the transportation capacity of vehicles c, Formula (5) indicates that the triage of a batch of wounded 

must begin on the premise that all the wounded in the batch can arrived, Formula (6) indicates the completion time 

of a batch of wounded in the triage field, Formulas (7) and (8) represent the start time and end time of a batch of 

wounded in the operating room of the hospital respectively. Formula (9) shows that there is no overlap in the triage 

process of the wounded in the triage field. Formula (10) indicates that due to the limitation of hospital surgical 

resources, any two rescue batches at a certain moment cannot be operated simultaneously in the surgical hospital. 

Formula (11) indicates the nature of the entire rescue process time, and Formulas (12) ~ (14) indicate the range of 

values of the decision variable. 

For the above mathematical model, according to the actual situation of emergency rescue, the following theory 

is considered: 

Lemma 1 If the order of the wounded in the same batch that participates in the triage is interchanged, the 

scheduling result will not be affected. 

Corollary 1 For any optimal scheduling scheme, if the arrival time of any existing batch of wounded is sorted 

in increasing order and then undergoes triage, this operation will not affect the optimal nature of the scheduling 

scheme. 

Lemma 2 In the optimal scheduling scheme, there is an optimal solution, which contains the batch allocation 

strategy for the wounded. If all the batches are sorted according to the increasing order of preparation time, this 

operation does not affect the optimal nature of the scheduling scheme, where the batch preparation time is the 

maximum arrival time of the wounded in the batch. 

Prove Assume that 𝑟𝑚𝑎𝑥 = 𝑚𝑎𝑥
1≤𝑖≤𝑛

{𝑟𝑖} represents the maximum time for the wounded to arrive at the triage field;

in the scheduling scheme, there is a certain batch bl receiving triage at the triage field; at the same time, there are 

two adjacent wounded batches bk and bf behind the batch bl. Considering the universality, assuming that rk>rf 

represents the time to arrive at the triage field, it is only necessary to prove that it is still the optimal solution when 

the triage start time is S1k>S1f. If the end time of the triage of the wounded in the l batch of the triage field is C1l, 

there are two situations: 

(1) C1l≥rmax

If S1k<S1f, the end time of triage of the batch bk is C'1k=S1k+2s+Pf+Pk=C1f, obviously if the batches bk and bf are

interchanged, the solution of the scheduling scheme is still the optimal solution, which does not affect the final 

result at all, so it is still set S1k>S1f. 

(2) C1l<rmax

When rf<rk≤C1l, the same as (1), it can be concluded that the scheduling scheme is still optimal when S1k>S1f.

When rf≤C1l<rk, if S1k<S1f, then C1f=rk+2s+Pf+Pk; when the batches bk and bf are interchanged, the end time of the 

batches bk and bf is respectively C’1f=C1l+s+Pf and C’1k=max{rk+s+Pk, C1l+2s+Pf+Pk}, it can be concluded that 

C'1k<C1f. Obviously, this conclusion does not conform to the nature of the optimal solution, and contradicts the 

assumption, so the optimal scheduling scheme should satisfy S1k>S1f. When C1l<rf<rk, if S1k<S1f, then 

C1f=rk+2s+Pf+Pk; when batches bk and bf are interchanged, the end time of triage of batches bf and bk is respectively 

C'1f=rf+s+Pf and C'1k=max{rk+s+Pk, rf+2s+Pf+Pk}, it can be concluded that C'1k<C1f. Obviously, this conclusion 

does not conform to the nature of the optimal solution, and contradicts the assumption, so the optimal scheduling 

scheme should satisfy S1k>S1f. 

In summary, when S1k>S1f, it is still the optimal solution, and the lemma is proved. 

Lemma 3 Suppose there is a scheduling scheme G, G{…, bk, bk+1,…}, if bk+1={Wj}, j=1, 2, …, n, satisfies 

S1k<rj<S1k+s and ∑ 𝑠𝑖𝑊𝑖∈𝑏𝑘
+𝑊𝑗 ≤ 𝑐, then when the wounded Wj join the batch bk, the scheduling scheme is better

than the original scheme. 

Prove From rj<S1k+s and C1k=S1k+s+Pk, rj<C1k can be obtained; therefore, C1(k+1)=S1(k+1)+s+Pk+1=S1k+2s+Pk+pj. 

Since ∑ 𝑠𝑖𝑊𝑖∈𝑏𝑘
+𝑊𝑗 ≤ 𝑐, there is enough queue space in the bk batch for the wounded Wj to join it. If the

wounded Wj is added to the batch bk, the start and end time of triage of the bk batch in the triage field are updated 

to S'1k=rj and C'1k=S'1k+s+Pk+pj=rj+s+Pk+pj respectively. Therefore, C'1k-C1(k+1)=rj+s+Pk+pj-(S1k+2s+Pk+pj)=rj-S1k-

s. Since rj< S1k+s, C'1k<C1(k+1). Lemma 3 is proved. 

Lemma 4 Assume that the wounded of two adjacent batches bk and bf are triaged at the triage field, this scheme 

π* is the optimal scheduling scheme. If S1k>S1f, then S2k>S2f. 

Prove Since the operation mode of the hospital's operating room belongs to the parallel batch machine mode, it 

is assumed that the earliest time of operation in the hospital's operating room is E, and the earliest operation time 

that the batch bk and bf can be operated is marked as Tk and Tf respectively, Tf=C1f+T and Tk=C1k+T can be obtained, 

so Tk>Tf. If S2k<S2f, then C2f=max{Tk, E}+2P, where P is a constant, representing the operation time of a batch of 

wounded. If bk and bf are interchanged, the end time of the operation of the bk batch is C'2k=max{max{Tf, E}+P, 

Tk}+P, then C'2k≤C2f; this conclusion does not conform to the nature of the optimal solution, and contradicts the 

hypothesis. Therefore, S2k>S2f, the lemma is proved.  

In the triage, some special situations may occur, for example, all wounded have the same arrival time r, and this 

special situation is called "the same release moment". 

Lemma 5 In the case of "the same release time", there are L* batches of wounded in an optimal dispatching 
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scheme π*, then Cmax(π*)=r+L*
s+∑ 𝑝𝑖

𝑛
𝑖=1 +T+P.

Prove Considering this situation, all wounded at time of r can be triaged at the triage field. Then, for b1, 

C11=S11+s+P1=r+s+P1 and C21=S21+P=r+s+P1+T+P. In the same way, for b2, C12=S12+s+P2=r+2s+P1+P2. If it is 

recorded C21 as the triage start time of any new batch, then based on pi+s≥P, C12+T≥C21, get 

C22=S22+P=r+2s+P1+P2+T+P; similarly, for the l batch, bl, l=3, 4, …, L*, C1l=r+ls+ ∑ 𝑃𝑘𝑙
𝑘=1  and

C2l=S2l+P=r+ls+∑ 𝑃𝑘𝑙
𝑘=1 +T+P. Obviously, Cmax=𝐶2𝐿∗=r+L*

s+∑ 𝑃𝑘𝐿∗

𝑘=1 +T+P, because ∑ 𝑃𝑘𝐿∗

𝑘=1 = ∑ 𝑝𝑖
𝑛
𝑖=1 , get

Cmax=r+L*
s+∑ 𝑝𝑖

𝑛
𝑖=1 +T+P.

From Lemma 5, there are: 

Corollary 2 In the case of "the same release moment", if there are L batches in a scheduling scheme π, 

Cmax(π)≥r+L*
s+∑ 𝑝𝑖

𝑛
𝑖=1 +T+P.

Corollary 3 In the case of "the same release moment", Cmax≥r+⌈𝑠𝑖/𝑐⌉ ⋅ 𝑠 + ∑ 𝑝𝑖
𝑛
𝑖=1 +T+P.

Lemma 6 In the case of "the same release moment", if there is a scheduling scheme π with no extra idle time in 

the triage and wounded transfer process, then the fewer batches designed in the scheme is, the better the scheduling 

solution is. 

Prove Assume that in two scheduling schemes π and π', there is no extra idle time in the process of triage and 

wounded transfer. The number of batches contained in π is L, the number of batches contained in π' is L', and by 

Lemma 3, Cmax(π)=r+Ls+ ∑ 𝑝𝑖
𝑛
𝑖=1 +T+P and Cmax(π')=r+L's+ ∑ 𝑝𝑖

𝑛
𝑖=1 +T+P, then Cmax(π)-Cmax(π')

=r+Ls+∑ 𝑝𝑖
𝑛
𝑖=1 +T+P–(r+L's+∑ 𝑝𝑖

𝑛
𝑖=1 +T+P). If L≥L', then Cmax(π)≥Cmax(π'); otherwise, Cmax(π)<Cmax(π').

From Lemma 6, there are: 

Corollary 4 In the case of "the same release time", the optimal scheduling scheme has the least number of 

batches among all scheduling schemes. 

Lemma 7 In the case of "the same release time", there is an optimal scheduling scheme. If the order of any two 

wounded batches in this scheme is interchanged, the scheme is still the optimal scheduling scheme. 

Prove Considering the universality, it is assumed that there is an optimal scheduling scheme, which has batches 

bk and bf and the triage order of the bk batch is close to bf. If all the wounded can receive triage on the triage field 

at r, then C1f=S1f+s+Pf and C1k=S1k+s+Pk=S1f+2s+Pf+Pk. When the batches bk and bf are interchanged on the triage 

field, the start and end time of triage of the batch bk is updated to S'1k=S1f and C'ik =S'ik+s+Pk respectively. The end 

time of triage of the bf batch is updated to C'if =C'ik+s+Pf=S1f+2s+Pk+Pf, then C1k=C'1f. According to Lemma 5, the 

end time of triage of the bf batch is C2f=C'2k. Therefore, this scheme remains optimal. 

4. Algorithm Design and Performance Analysis

Based on the problem nature of the whole rescue chain of triage, wounded transfer and emergency surgery, this 

study designs a two-stage scheduling algorithm (TS-A). The first stage of the algorithm is used to solve the 

scheduling problem when the end time of triage of the k batch of wounded in the triage is C1k<rmax, where 𝑟𝑚𝑎𝑥 =
𝑚𝑎𝑥

𝑖=1,2,…𝑛
{𝑟𝑖}. The second stage is used to solve the scheduling problem when the start time of triage of the k batch

of wounded in the triage is S1k≥rmax. In the scheduling scheme, the situation of the wounded joining the batch and 

the order of the batches in the scheme has been determined, the problem of the second stage is equivalent to the 

case of "the same release time", then all the unscheduled wounded have reached the triage field at the time rmax. 

The first stage of TS-A algorithm is based on Lemma 3, and the second stage is based on Lemma 5, 6.6, 6.7 and 

FFD algorithm [8]. It’s essential to define the ordering rules first. Rule 1: Sort the wounded in the non-decreasing 

order of the time they arrived at the triage field. If multiple wounded arrive at the same time, then sort them in the 

non-increasing order of the count value of the wounded. Rule 2: Sort the wounded in the non-increasing order of 

the count value of wounded arriving at the triage field. The parameters of the TS-A algorithm are defined as: 

W={W1, W2, …, Wn}the set of wounded; A(t) is the set of effectively dispatched wounded at the time t; U(t) 

represents the set of wounded who do not participate in the scheduling scheme at time t; K(t) represents the set of 

wounded who do not participate in the scheduling scheme and not belong to A(t) at time t, then K(t)=U(t)\A(t); B 

represents a set of batches in a scheduling; Sk represents the total count value of the wounded in the bk batch; Q 

represents the batch number of the wounded who participate in the triage last in the first stage. 

The steps of the first stage of the algorithm are as follows: 

Step 1: Set k=1, b=ϕ, S1=0, S11=r1, P1=0, t=r1, U(t)=W, 𝐴(𝑡) = {𝑊𝑖 ∣ 𝑟𝑖 = 𝑡}, and K(t)=U(t)\A(t). The wounded

in the sets U(t), A(t) and K(t) are sorted according to rule 1. 

Step 2: If t≥rmax, jump to the second stage; otherwise, jump to Step 3. 

Step 3: According to the ordering rules, determine whether each wounded in the set A(t) can be added to the bk 

batch. If Sk+si≤c, then bk⋃bk{Wi}, Sk=Sk+si and Pk=Pk+pi. Update the sets U(t), A(t) and K(t). 

Step 4: If Sk=c, jump to Step 7; otherwise, jump to Step 5. 

Step 5: According to the ordering rules, determine whether each wounded in the set K(t) can be added to the bk 

batch. If Sk+si≤c and ri≤αs+t, where the parameter α(0≤α≤1) has a certain impact on the performance of the 

algorithm, it is usually taken α=0.3 and s is the queuing waiting time; if the condition is met, then jump to Step 6; 
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otherwise, jump to Step 7. 

Step 6: Set bk⋃bk{Wi}, Sk=Sk+si, Pk=Pk+pi and S1k=t, update the set U(t), jump to Step 8. 

Step 7: For the bk batch for triage, set B=B⋃bk, let t=r+s+Pk and C1k=t. If U(t)=ϕ, the algorithm stops; otherwise, 

let k= k+1, bk=ϕ, Sk=0 and Pk=0, jump to Step 8. 

Step 8: Set 𝑡 = 𝑚𝑎𝑥{𝑚𝑖𝑛{𝑟𝑖 ∣ 𝑊𝑖 ∈ 𝑈(𝑡)} , 𝑡} and S1k=t, update the sets A(t) and K(t), jump to the second stage.

The steps of the second stage of the algorithm are as follows: 

Step 1: Sort the wounded in the set U(t) according to ordering rule 2. Set Q=k and k= k+1, add the wounded 

with the set U(t) with the number of 1 into the bk batch, and then update the set U(t). 

Step 2: If U(t)=ϕ, stop; otherwise, jump to Step 3. 

Step 3: Set i= i+1, add the i wounded to the batch whose batch number is the smallest and greater than Q, and 

the count value of the wounded should not be greater than c-si, update the set U(t), and jump to Step 2. 

According to Lemma 2, 4 and 7, when all the wounded are arranged in the first and second stages, these batches 

start the scheduling process according to the order in which they are generated. 

In order to evaluate the performance of the TS-A algorithm, two lower bounds of the problem under ideal 

conditions are considered. The first lower bound means that if the problem is specialized that all the wounded have 

arrived at the triage field at the time rmin, then 𝑟𝑚𝑖𝑛 = 𝑚𝑖𝑛
𝑖=1,2,…,𝑛

{𝑟𝑖}, denoted as LB1, its lower bound is less than or

equal to the lower bound of the original problem. According to Corollary 3, it can be obtained: 

1 min

1

/
n

i i

i

LB r s c s p T P
=

= +  + + +   

The second lower bound assumes that there is no additional idle time during the operation in the hospital 

operating room, calculate the minimum arrival time of the wounded, the end time of triage of the first wound batch, 

the one-way transportation time between the triage field and the hospital, and the sum of the operation time of all 

batches in the hospital, i.e., LB2=rmin+P1+T+LP. As 𝑃1 ≥𝑚𝑖𝑛 𝑖=1,2,…𝑛 {𝑝𝑖}, 𝐿 ≥ ⌈𝑠𝑖/𝑐⌉, then:

 2 min 1,2, ,min /i n i iLB r s p T s c P= = + + + +   

Therefore, for the whole process of the rescue chain, the optimal performance under ideal conditions is the 

maximum value of the above two lower bounds, i.e.,  

   1 2 min min 1,2, ,

1

max , max / , min /
n

i i i n i i

i

LB LB LB r s c s p T P r s p T s c P= 

=

 
= = +  + + + + + + +        

 


5. Simulation Demonstration and Analysis

In order to test the performance of the two-stage algorithm TS-A, the analysis is carried out through simulation 

experiments. In the simulation experiment, the number of wounded and the time to arrive at the triage field are 

represented by discrete values and interval values respectively, such as the number of wounded, 𝑛 ∈
{300, 500, 700, 1000, 1500,2000} and the time 𝑟𝑖 ∈ [1,200] when the wounded arrive at the triage field, i=1,

2, …, n. In the same way, the triage capacity of the triage team or the transport capacity of the transport vehicle 

𝑐 ∈ {150,280} in the triage field, the count value of the wounded 𝑠𝑖 ∈ [1, 𝑛], 𝑖 = 1,2, …𝑛, the triage time of the

wounded 𝑝𝑖 ∈ [1,20], the waiting time of the wounded in the triage field is 𝑠 ∈ [0,20], the transfer time of the

wounded between the triage field and the hospital is 𝑇 ∈ [30,80], and the operation time of the wounded in the 

operating room of the hospital is 𝑃 ∈ [45,130]. 
In order to evaluate the performance of the algorithm, the TS-A algorithm is compared with the MFF algorithm 

and the MBF algorithm [9]. The relative gap between the maximum time span of the whole rescue process obtained 

by the two-stage algorithm TS-A and the optimal performance under ideal conditions (the maximum of the two 

lower bounds) can be used to measure the performance of the algorithm. The relative gap percentage is as follows: 

max 100%
HC LB

RG
LB

−
= 

Considering the factors that usually vary in simulation experiments, the number of wounded and the number of 

wounded triaged in each batch or the capacity of rescue vehicles can be used as experimental factors, and the 

performance of the algorithm is tested with and variables n and c. n represents the number of wounded, c represents 

the capacity of each batch for triage or the carrying capacity of the vehicle, repeat the experiments for ten times 
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with the values of n and c. 

Because 𝑐 ∈ {150,280} and 𝑛 ∈ {300, 500, 700, 1000, 1500,2000}, the experiment is divided into two cases: 

c=150 and c=280. 

(1) When c=150, after 10 repeated experiments, the average value of RG obtained is shown in Figure 2.

It can be seen from the figure that when the number of wounded increases, the average value of RG calculated

by the TS-A algorithm decreases. When the number of wounded ranges from 300 to 2000, the average value of 

RG ranges from 0.75% to 3.23%. It shows that when the capacity of each batch of triage or the carrying capacity 

of the transport vehicle is 150, as the number of wounded increases, the performance of the algorithm is closer to 

the optimal performance under ideal conditions. The experimental results also show that the TS-A algorithm has 

better performance than the MFF algorithm and MBF algorithm. 

Figure 2. The experimental results of the average gap percentage when c=150 

(2) When c=280, after 10 repeated experiments, the average value of RG obtained is shown in Figure 3.

It can be seen from the figure that when the number of wounded increases, the average value of RG calculated

by the TS-A algorithm decreases. When the number of wounded ranges from 300 to 2,000, the average value of 

RG ranges from 0.23% to 2.94%. It shows that when the capacity of each batch of triage or the carrying capacity 

of the transport vehicle is 280, as the number of wounded increases, the performance of the algorithm is closer to 

the optimal performance under ideal conditions. The experimental results also show that the TS-A algorithm has 

better performance than the MFF algorithm and MBF algorithm. 

Figure 3. The experimental results of the average gap percentage when c=280 
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Similarly, when the capacity of each batch of triage or the carrying capacity of the transport vehicle increases, 

the average gap percentage also decreases, indicating that the increase in the capacity of each batch of triage or 

the carrying capacity of the transport vehicle will improve the performance of the algorithm. The above two graphs 

show that the TS-A algorithm proposed herein has a better solution and better performance for the situation where 

the number of wounded is larger and the carrying capacity is stronger. 

6. Conclusions

For the wounded triage, transport and cooperative scheduling problem of emergency surgery in urban

emergency rescue, this study adopts a supply chain-like processing method to realize the collaborative scheduling 

of each rescue link. It mainly considers the collaborative scheduling problem of triage, transport and surgery under 

the constraint factors such as the different time when the wounded arrive at the triage field and the different 

transport capacity of the transport vehicles. The research goal is to minimize the whole rescue time span of different 

batches of wounded in the rescue process; it establishes a mathematical model to arrange batches of wounded 

according to the capacity of the triage field or the transport capacity of the transport vehicle, analyzes the impact 

of batches on the whole process time, and gives the nature of the problem in general and special cases. 

In order to evaluate the performance of the TS-A algorithm, this study finally gives a two-stage algorithm TS-

A and constructs the lower bound of the problem domain under the ideal state. The simulation experiment shows 

that the TS-A algorithm proposed herein is superior to the other two algorithms mentioned in references. At the 

same time, for the case of a large number of wounded and a large rescue vehicle capacity, the experiment can 

obtain better results, which shows that the algorithm can handle large-scale collaborative scheduling problems. 
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