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Abstract: Rapid urbanization in Bangladesh has exponentially exacerbated environmental stressors, most notably in
Dhaka and Rajshahi, where climate-related concerns are becoming more prevalent. This study adopted geographic
information system (GIS) and remote sensing techniques to delineate and assess climate risk zones in Dhaka
City Corporation (DCC) and Rajshahi City Corporation (RCC) in 2020 and 2024. The evaluation involved the
incorporation of land use/land cover (LULC), land surface temperature (LST), and air pollution indicators. Sentinel-
2A multispectral imager (MSI) was used to calculate LULC, Landsat-8 optical land imager (OLI) for LST, and
Sentinel-5P for atmospheric pollutants, such as NO,, SO,, CO, and PM,s. The analysis revealed that the built-up
land in Dhaka was expanded by 4.38% whereas in Rajshahi, it was 8.91%. Rajshahi recorded a maximum LST of
46.7°C in 2024, when compared to 37.6°C in Dhaka. The level of air pollution was consistently high in Dhaka,
with an average concentration of NO, reaching 36.4 pmol/m?, almost quadrupled the 9.81 pmol/m? in Rajshahi.
Weighted overlay analysis demonstrated that 5.38% and 1.63% of the areas in Dhaka and Rajshahi, respectively, were
categorized as very high-risk zones in 2024. The very low-risk zones accounted for less than 1.5% in both cities.
These findings suggested significant regional differences in urban climate risk as Dhaka was experiencing more
severe circumstances, due to dense urbanization and rising pollution levels. The study unraveled the potential of GIS
and remote sensing-based multi-parameter integration for urban climate risk zoning, as well as the establishment of
city-specific adaptation and mitigation measures in Bangladesh.

Keywords: Urban expansion; Climate risk zones; Land surface temperature; Air pollution; Land use, Google Earth
Engine

1 Introduction

Rapid urban expansion significantly alters land use patterns, particularly in developing countries, leading to
profound environmental and climatic consequences [1]. The transformation of natural landscapes into built-up envi-
ronments results in increased carbon emissions, climate change, unplanned urban growth, and overall environmental
degradation, rendering urban areas less sustainable for human settlement [2, 3]. Urban sprawl often extends beyond
planned areas, encroaching on vulnerable regions and creating climate risk zones [4]. Among the most critical
consequences of this expansion is the modification of land surface temperature (LST), which has direct implications
for urban climate risks, particularly through the intensification of urban heat islands (UHI) [5-7]. As urbanization
progresses, UHI effects exacerbate temperature extremes, deteriorating environmental conditions and impacting
public health [8, 9]. Global warming amplifies LST, with drylands experiencing up to 44% more warming than
humid regions at the same increase in global temperature, leading to disproportionate climate risks for nearly 38%
of the population in the world [10]. Rising temperatures and changing weather patterns increase the formation and
persistence of pollutants, such as ozone and PM, 5. Especially during heatwaves and stagnation events, there would
be more frequent and severe air pollution episodes, thus raising mortality and morbidity rates [11—13]. Besides, rapid
urban growth hinders the development of optimum housing and causes informal settlements or slums. As a result,
these portions of urban areas typically lack crucial services such as clean water, sanitation, and adequate green space,
which create unhygienic and miserable living conditions [14]. Being one of the most pressing concerns in urban
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areas, air pollution has been exacerbated by rapid population growth, increased vehicular emissions, industrialization,
and unplanned urbanization [15]. The global urban population, which was approximately 30% in 1950, surpassed
50% in 2014 and is projected to reach 60% by 2030, accounting for nearly 5 billion people [16].

Numerous studies have documented the combined effects of climate change and urbanization on rising temper-
atures, air pollution, and heat stress in cities worldwide. For instance, a study by Chapman et al. [17] highlighted
the impact of climate change and urban growth on urban climate and heat stress in Brisbane, Australia. Abulibdeh
et al. [18] illustrated the relationship among land use, LST, and carbon footprints in arid urban areas of Doha, Qatar.
Their study demonstrated how rapid urbanization altered land use, leading to increased LST and higher energy
consumption. Furthermore, Hien et al. [19] showcased in their studies how urban expansion played a role in altering
atmospheric parameters and the impact of urban expansion on the air pollution landscape. They employed multi-
regional input-output (MRIO) models to identify traffic, industrial, and residential emissions as major contributors
to worsening air quality. A study by Ji et al. [20] in Asia demonstrated the changes and interrelationships between
regionally eco-environmental quality and landscape pattern in the Jing-Jin-Ji (J1J) urban agglomeration from 2001 to
2015. The combined effects of air pollution and climate change significantly increased the risk of chronic respiratory
diseases, cardiovascular problems, mental health disorders, and premature death. Utilizing Shannon entropy and
landscape metrics for urban sprawl studies, Aurora and Furuya [21] analyzed the relationship between urban sprawl
and ecological quality in Chiba Prefecture with the spatial context of the metropolitan region. Climate risk zoning
could incorporate ecosystem service mapping to inform where green infrastructure or nature-based solutions are
most needed, hence supporting both adaptation and sustainability [22].

Satellite-based remote sensing approaches are indispensable for assessing LST and UHI over time and space [23].
Remote sensing, often combined with geographic information system (GIS) and probabilistic modeling, enables
detailed mapping of climate risk zones for hazards like floods, droughts, and groundwater scarcity [24]. However,
traditional remote sensing indices such as normalized difference vegetation index (NDVI), normalized difference
water index (NDWI), soil adjusted vegetation index (SAVI), and infrared percentage vegetation index (IPVI) have
shown limitations in accurately characterizing land use and land cover (LULC) categories due to spectral mixing
issues [25]. These challenges arise from the complex spectral responses of different land cover types, including
built-up areas, water bodies, vegetation, agricultural land, and barren lands [26]. In this regard, Google Earth
Engine (GEE) has become a potent cloud-based platform for big data processing, enabling large-scale analysis of
satellite imagery, without the demand for extensive computational resources [27]. GEE as a reliable tool, is capable
of studying urban expansion, changes in LST, and trends of air pollution as well as assessing risk zones at high
spatial and temporal resolutions. GIS is essential for conducting spatial analysis, mapping risk zones, and integrating
multiple data layers of hazards, exposure, and vulnerability [28]. Multi-criteria evaluation framework combines
hazard, exposure, and vulnerability indicators to produce implementable risk maps, which often adopt influence
matrices and risk indices to evaluate the combined impact of multiple hazards and vulnerabilities [28, 29]. The
weighted linear combination (WLC) method involves assigning a weight to each risk indicator based on its perceived
importance. It then sums the weighted indicators to generate a composite risk score for each spatial unit, which
allows trade-offs among criteria and could be easily administered in GIS environments [30].

Prior studies on Dhaka City Corporation (DCC) and Rajshahi City Corporation (RCC) have primarily focused
on either changes in LST or trends of air pollution, thus overlooking their combined impact on climate risk zones.
For instance, Ahmed et al. [31] and Rahman et al. [32] simulated LULC changes and their impact on LST in
Dhaka, Bangladesh. Similarly, Zarin and Esraz-Ul-Zannat [33] investigated changes in air quality in Dhaka using
Transitional Potential Modeling and Cellular Automata Simulation. Other studies, such as those by Biswas et al. [34]
and Rahnuma et al. [35], examined air quality in relation to LULC changes using advanced analytical techniques like
particle-induced X-ray emission (PIXE), Statgraphics, and positive matrix factorization (PMF). Meanwhile, Akash
and Puja [36] assessed fluctuations of LST in LULC changes and rapidly urbanizing environments in Dhaka and
Rajshahi. They emphasized the impact of urbanization on heat stress through ground-based and satellite-derived
observations.

Most studies envisaged either UHI or air pollution as a pivotal problem in a city, yet there is a lack of research on
combining these factors to analyze climate risks for a future sustainable city environment. Given these gaps in the
existing literature, this study employed an innovative approach by integrating high-resolution remote sensing data
with GEE-based cloud computing. The approach, when applied in DCC and RCC, could shed light on the combined
impact of urban expansion on LST and air pollution parameters, with LULC changes over the time. Traditional
studies depended on conventional GIS techniques or ground-based measurements to analyze these issues separately.
Nevertheless, the current research integrated LULC, LST, air pollution parameters, and a time series analysis; it
leveraged big-data analytics to delineate climate risk zones, thus achieving greater precision for DCC and RCC.

Climate risk zoning guides where and how development should occur, in order to ensure new buildings and
infrastructure are sited and designed to withstand local climate hazards. This supports sustainable urban growth
by balancing development needs with environmental protection. Besides, the study subsumed a weighted overlay
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analysis, along with the data, to mark high-risk urban zones by considering several environmental stresses. The key
objectives of this study are: (1) to analyze the spatiotemporal dynamics of urban expansion in DCC and RCC from
2020 to 2024; (2) to identify and delineate climate risk zones linked to temperature and air pollution stress; and (3)
to examine the interrelationship between urban expansion and climate risk zones. The findings will bridge existing
research gaps, inform urban sustainability strategies, and contribute to effective mitigation and adaptation measures
in rapidly expanding cities.

2 Materials and Method
2.1 Study Area

The present study focused on DCC and RCC (Figure 1).

DCC: Dhaka is one of the fastest expanding mega cities of Bangladesh. Situated between 23°41'N to 23°55'N
latitude and 90°20'E to 90°30’E longitude, DCC is the most populated city in the country. The city consists of
two administrative divisions, Dhaka North City Corporation (DNCC) and Dhaka South City Corporation (DSCC).
DNCC comprises 54 wards, covering areas such as Mirpur, Gulshan, and Uttara, while DSCC consists of 75 wards,
covering regions including Paltan, Motijheel, and Dhanmondi [37]. The current population of DCC is over 10.2
million, with DNCC having 5.98 million and DSCC having 4.3 million residents [38]. The city has witnessed rapid
urbanization and extreme LULC change with built up expansion, encroaching upon vegetation and water bodies [39].
The process has directly impacted LST, which drives the UHI effect, resulting in higher temperatures, increased
energy demand, and less environmental sustainability [40].

RCC: Rajshahi is located in the northwestern part of Bangladesh. Geographically, it spans between 24°20'N
and 24°24'N latitude and 88°32E and 88°40'E longitude, encompassing an area of 95.56 km? [41]. The city is
situated on the north bank of the Padma River near the Bangladesh-India border, and is surrounded by the satellite
towns of Nowhata and Katakhali [42]. The current population of RCC is over half a million. Rajshahi, the “Silk
City” of Bangladesh, is the hub of the textile industry and has experienced unprecedented LULC changes in the
recent decades. The residential, commercial, and industrial growth has expanded the urban area by transforming
agricultural land and open spaces into built-up land [43]. The rapidly evolving LULC has significantly impacted
LST, where studies revealed a strong correlation between urban growth and rising temperatures, with consequential
thermal discomfort and environmental degradation [44].
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Figure 1. Locations of the study areas, DCC and RCC

Our research focused on DCC and RCC, since they are more vulnerable to climate-related concerns. DCC,
the capital of Bangladesh, has severe floods, heatwaves, and air pollution. Over 60% of Dhaka was built-up with
low vegetation and water bodies, thus intensifying the UHI effect and heightening its vulnerability to heatwaves,
which adversely harm public health and infrastructure [45, 46]. Similar to this situation, RCC is vulnerable to
high temperatures, as the built-up area in the city expanded by over 53% from 1992 to 2022. The UHI effect was
intensified by the dramatic decline in green cover, which reduced the thermal comfort zones [47, 48]. Demarcating
the climate risk zones in these cities is critical for establishing tailored adaptation and mitigation measures to boost
resilience and sustainability.
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2.2 Description of the Data

Satellite imagery of 2020 and 2024 for conducting LULC (Table 1) and estimating LST (Table 2) respectively,
was obtained from GEE and the United States Geological Survey (USGS) Earth Explorer. The years have been
chosen on the basis of the acceleration of urbanization trend, emerging climatic shifts, and data availability. The
cloud cover was less than 15%.

Table 1. Description of the images used for conducting LULC

Military Grid Central

Sy Sl DUl e e Sy 00 g S
(MGRS) ) (m)
2 0.490 10
3 0.560 10
4 0.665 10
Sentinel 2A 17 April 2020  MSI 100 km/100 km 8 0.833 10
8A 0.865 20
11 1.613 20
12 2.190 20
beC 2 0.490 10
3 0.560 10
4 0.665 10
Sentinel 2A 16 April 2024  MSI 100 km/100 km 8 0.833 10
8A 0.865 20
11 1.613 20
12 2.190 20
2 0.490 10
3 0.560 10
4 0.665 10
Sentinel 2A 15 April 2020  MSI 100 km/100 km 8 0.833 10
8A 0.865 20
11 1.613 20
12 2.190 20
RCC 2 0.490 10
3 0.560 10
4 0.665 10
Sentinel 2A 4 May 2024 MSI 100 km/100 km 8 0.833 10
8A 0.865 20
11 1.613 20
12 2.190 20

Note: MSI: multispectral imager

2.3 Image Preprocessing

Atmospheric correction of images from Sentinel 2A was done utilizing GEE to minimize radiometric distortions.
The Sentinel-2 cloud mask (SCL) band was adopted to identify and exclude cloudy pixels from the analysis, thus
ensuring the accuracy of LULC classifications. Temporal and spatial averaging were performed to reduce noise and
enhance signal quality in the air pollution data.

2.4 Estimation of LST

LST was estimated in ArcGIS 10.8 from Landsat 8 imagery using the Mono-Window Algorithm (MWA), which
requires several key parameters:
Top-of-Atmosphere (L) [49]:

LN= My X Qcar + AL (1)

where, M}, = Radiance multiplicative scaling factor (from metadata RADIANCE_MULT_BAND_10; -0.00003342);
Ay, = Radiance additive scaling factor (from metadata: RADLANCE_ADD_BAND_10; -0.0010); Q¢ 41, = Quantized
and calibrated standard product pixel value (DN).
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Table 2. Description of the images used for estimating LST

Study  Satellite Date of Band Spectral Spatial
Area Data Acquisition Sensor  Path/Row No. Range (um) Resolution (m)
4 0.64-0.67 30
Landsat 8 30 March 2020 OLI 137/44 5 0.85-0.88 30
10 10.6-11.19 60
bee 4 0.64-0.67 30
Landsat 8 26 April 2024 OLI 137/44 5 0.85-0.88 30
10 10.6-11.19 60 (resampled to 30)
4 0.64-0.67 30
Landsat 8 6 April 2020 OLI 137/44 5 0.85-0.88 30
10 10.6-11.19 60 (resampled to 30)
RCC 064067 30
Landsat 8 3 May 2024 OLI 137/44 5 0.85-0.88 30

10 10.6-11.19 60 (resampled to 30)
Note: OLI: optical land imager

Brightness Temperature (BT) [50]:
In (IL% + 1)

where, K1 = 774.89 W /m? /sr/pm; Ko = 1321.08 K.
Normalized Difference Vegetation Index (NDVI) [51]:

BT —273.15 2)

NIR - RED
NDV[= ——————
v NIR+ RED )
where, NIR = Near Infrared; NIR and RED represent the B4 and B5 bands, respectively.

Proportion of Vegetation (Pv) [43]:

2
P, = ( NDVI — NDV Iyin ) @)

NDVImax - NDVIInin
where, Pv = Proportion of Vegetation; NDVI = DN values from NDVI Image; NDVI,,,;,, = Minimum DN values

from NDVI Image; NDVI,,, ., = Maximum DN values from NDVI Image.
Land Surface Emissivity (LSE) [52]:

LSE = 0.004 x Pv + 0.986 5)

where, 0.986 corresponds to a correction value of the equation.
Final LST Calculation [53]:

LST — BT ©)

1+ (2EL) x n(E)

where, )\ is the wavelength of emitted radiance (approximately 10.8 pm for Band 10); C; is the second radiation
constant (approximately 14,388 nm K); E is the land surface emissivity (LSE).

2.5 LULC Classifications

Supervised classification was conducted in GEE using the Random Forest (RF) classifier, a machine learning
algorithm with high precision in LULC mapping [54]. Training samples were collected for five major land cover
classes: waterbody, vegetation, built-up area, barren land, and agricultural land (Table 3).

A total of 200 training samples were obtained for each class of the two study areas separately for classification.
The classifier was trained on labeled samples with an equal number of decision trees to enhance classification
accuracy.
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Table 3. Description of the LULC classes

LULC Classes Description
Waterbody Areas seasonally or permanently covered with Wate'r, including Iakes, rivers, ponds,
) wetlands, and reservoirs.
. Land dominated by natural or planted green cover, such as forests, small trees, shrubs,
Vegetation

and tree canopies, etc.
Urban, peri-urban, or semi-urban areas built with man-made structures, such as
buildings, factories, roads, and other small settlements.
Barren land Exposed soil, sand, rocks, or arid land with little to no vegetation cover.
Areas used for systematic crop cultivation and farming activities, including irrigated

and rainfed fields

Built-up area

Agricultural land

2.6 Assessment of Accuracy

An error matrix was produced, and such important parameters as Overall Accuracy (OA) and Kappa coefficient
were derived for the accuracy assessment [55]. Independent validation points were randomly chosen from high-
resolution images and cross-checked with the classified raster. The number of random points used in the procedure
of conducting the accuracy assessment was 50 for each of the years of DCC and RCC, and the sample strategy used
in this process was “Stratified Random”.

2.7 Change Detection

Post-classification comparison was performed to assess LULC changes among 2016, 2020, and 2024. Classified
maps were superimposed, and area statistics were computed to quantify changes of land cover class over the time.
Temporal trends were analyzed to detect urban expansion in DCC and RCC.

2.8 Analysis of Air Pollution

To evaluate the air quality of DCC and RCC, four key atmospheric pollutants, i.e., NO,, SO,, CO, and PM; s were
selected as indicators, due to their strong association with anthropogenic activities, including vehicular emissions,
industrial processes, and energy consumption, which are recognized as major contributors to urban climate risks.

The estimation of pollutant concentrations was carried out using GEE, which provides an efficient cloud-based
platform for processing multi-source atmospheric datasets. Sentinel-5SP TROPOMI products were utilized to extract
column concentrations of NO,, SO,, and CO, while the NASA GEOS-CF v1 Reanalysis dataset was employed to
estimate surface-level PM; 5 concentrations at hourly temporal resolution. The datasets were filtered for the study
period from year 2020 to 2024. To capture the peak air pollution period, the analysis was restricted to winter
(November to December), when atmospheric stability, reduced height of boundary layers, and increased emissions
typically result in elevated pollution levels across Bangladeshi cities. The pollutant layers were then spatially clipped
to the administrative boundaries of DCC and RCC to facilitate inter-city comparability. Monthly composites were
generated to represent the seasonal conditions, and seasonal means were calculated for subsequent analysis.

2.9 Climate Risk Zone Mapping

To delineate urban climate risk zones in DCC and RCC, a multi-criteria evaluation (MCE) framework was
employed using the six selected indicators: LULC, LST, NO,, SO,, CO, and PM, 5. These variables were integrated
through a weighted linear combination (WLC) method, where each indicator was assigned a relative weight according
to its influence on urban climate risk. Weights for each class of LULC was given as per Table 4.

With the weighted linear combination, factors are combined by applying a weight to each, followed by a
summation of the results to yield a suitability map [56]:

S=> wizi @)

where, S is suitability, wi is weight of factor 4, and w7 is the criterion score of factor .

Weights were determined hypothetically based on scientific relevance from the literature on urban heat, air
pollution, and public health outcomes (Table 5). Thermal stress (represented by LST) and PM, 5 were assigned the
highest weights due to their strong association with human health and climatic extremes [57]. LULC was given a
moderate weight, in recognition of its role in mediating both thermal response and pollution dispersion [58]. Gaseous
pollutants, NO,, SO,, and CO were weighted somewhat lower, to reflect their localized but still significant impact
on air quality and climate risks.

Figure 2 shows the overall workflow of the methodology undergone to conduct the research.

176



Table 4. Risk categories of LULC classes

LULC Risk Category
Waterbody 1
Built-up area 5
Vegetation 2
Agricultural-land 3
Barren land 4

Table 5. Weights assigned for each parameter

Parameter Weight Rationale
LULC 20 Urban areas contributed to heat island effects.
LST 25 High LST correlated with climate risks.
NO, 15 Major pollutant affecting air quality.
SO, 10 Pollutant contributing to acid rain and affecting climate.
CO 10 Indicator of incomplete combustion, linked to urban pollution.
PM; 5 10 Significant health and environmental hazard.

Data Acquisition

. Satellite Imagery (Sentinel 2A and Landsat 8) Image Preprocessing

- LULC Data (Year: 2016, 2020, 2024) ’C\ls;ﬁ’dm“j‘a"sigmr““"”
. Air Pollution Data (Sentinel 5P) . Resamplin agd Noise Reduction
- NO,, SO,, and CO, PM, 5 Concentration piing

( LULC Classification )

Random Forest Classifier in GEE
5 LULC Classes: Built-up, Waterbody,
Vegetation, Agricultural Land, Baren Land.

\
v
/ LST Estimation
. Landsat 8 Thermal Basal Processing (Mono-
Window Algorithm)

TOA Radiance Calibration
Brightness Temperature (BT)
NDVI & Proportion of Vegetation
Land Surface Emissivity

K LST Derivation /

|

Air Pollution Analysis
NO,, SO,, and CO, PM, 5 Concentration Mapping
(In GEE)
. J

!

s N
Change Detection Analysis

Post-Classification Comparison (LULC Changes
L from 2016-2024) )
v
("~ Climate Risk Zone Mapping (Weighted N
Overlay Analysis)
* Reclassification of LULC, LST, and Air
Pollution Layers

»  Weight Assignment

\° Climate Risk Zoning )
v

Interpretation & Comparison (Temporal &
Spatial Analysis of Climate Risk Zones)

r

Figure 2. Methodological workflow for climate risk zoning of DCC and RCC

3 Results

3.1 Urban Expansion Patterns

Before analyzing the LULC maps, an accuracy assessment of each year has been conducted to validate the
classification results in Table 6. The overall accuracy for the two listed years of DCC and RCC was more than 90%;
the Kappa coefficient was more than 0.89 (Table 06).

The findings showed that built-up areas increased significantly throughout the research period, whereas vegetation,
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waterbody, and agricultural land decreased (Table 7).

The categorization results demonstrated that urban expansion has been more prominent in DCC than RCC
(Figure 3). In DCC, the built-up area, which displaced green spaces and wetlands, has grown dramatically. RCC, in
comparison, showed a more gradual shift, with agricultural land conversion serving as the principal engine of urban
expansion. The statistical study revealed a greater yearly urban expansion rate in DCC.

Land use/Land cover of Dhaka City Corporation

90°200°E 90250 90°300°E 90'200°E 90'250°E 90°300°E

2020 2024

23'500N
23°500N

23'450N
23°450N

23°400°N
23°400N

0 200E W0250E 000E 0 200E 0250E 000E
Legend N
- Waterbody
- Vegetation . A
- Coordinate System:
P WGS 1984 UTM ZONE 46N o 3 10 20
Barren land =
Kilometers
Agricultural land
(@)

Land use/Land cover of Rajshahi City Corporation

88'330°E 88°360°E 88'390°E 88'330°E 88°360°E 88'390°E

2020 2024
(b)

24°240N

24°240°N

24°210N

24210N

88°330°E 88°360°E 88°390°E 88°330°E 88360 88°390°E

Legend
- Waterbody N
- Vegetation A
B suitu Coordinate System: R ) . s
WGS 1984 UTM ZONE 45N
Barren land E
Kilometers

Agricultural land

(b)

Figure 3. LULC in 2020 and 2024: (a) DCC; (b) RCC
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Table 6. Results of the accuracy assessment of LULC classification

Study Area DCC RCC

Year 2020 2024 2020 2024
Waterbody 90 100 90 100

Vegetation 80 100 100 92.31

User accuracy (%) Built-up 95.83 96.15 100 95.24
Barren land 100 90.91 80 90
Agricultural land 90 70 80 90
Waterbody 90 90.91 100 100
Vegetation 100 83.33 93.75 100

Producer accuracy (%) Built-up 100 96.15 85 95.24
Barren land 76.92 90.91 88.89 75
Agricultural land 90 100 100 100

Overall accuracy (%) 92.18 92.53 91.94 93.75

Kappa coefficient 0.89879 0.90124 0.89680 0.91972

Table 7. LULC changes of DCC and RCC

DCC RCC

LULC Areain 2020 Areain 2024 Changes Areain2020 Areain2024 Changes
(%) (%) (%) (o) (%) (%)
Waterbody 6.78 6.54 -0.24 11.29 9.15 -2.14
Vegetation 19.98 16.51 -3.47 30.4 24.78 -5.62
Built-up area 47.17 51.55 4.38 31.78 40.69 8.91
Barren land 20.01 21.44 1.43 15.48 20.87 5.39
Agricultural land 6.06 3.96 2.1 11.05 451 -6.54

3.2 LST Variability

The temporal analysis showed an increase in LST from 2020 to 2024 (Figure 4). The highest recorded LST values,
illustrating the influence of urbanization and land cover changes, were found in both cities in 2024. A comparative
analysis of LST with LULC categories demonstrated that built-up areas consistently exhibited substantially greater
temperatures than vegetation and water bodies.

3.3 Analysis of Air Pollution

The concentrations of all four pollutants in DCC depicted a scenario of deteriorating air quality (Figure 5). The
mean NO, concentration increased from 28.3 pmol/m? in 2020 to 36.4 pmol/m?2 in 2024, with the highest intensities
clustered along major traffic corridors and industrial hubs. The level of SO, rose slightly from 11.5 pmol/m? in
2020 to 14.95 pmol/m? in 2024, with persistent hotspots in southern and western zones dominated by brick kilns
and industrial facilities. The concentration of CO also showed a minor increase from 0.049 mol/m?2 in 2020 to 0.051
mol/m? in 2024, with higher values detected in central Dhaka and peri-urban expansion areas. On the other hand,
the mean concentration of PM; 5 decreased from 185.53 ng/m?2 in 2020 to 139.78 pg/m? in 2024 (Table 8).

Table 8. Mean concentrations of air pollutants in DCC and RCC in year 2020 and 2024

City Year NO; (umol/m?) SO, (umol/m?) CO (mol/m?) PM,s(ng/m’)

DCC 2020 28.3 11.5 0.049 185.53
2024 36.4 14.95 0.051 185.53
RCC 2020 9.03 12.5 0.049 205.8
2024 9.81 20.8 0.051 169.59

RCC demonstrated comparatively lower concentrations of all pollutants but displayed an upward trajectory
(Figure 6) similar to Dhaka. NO, increased from 9.03 pmol/m?2 in 2020 to 9.81 pmol/m? in 2024, particularly
concentrated in central transport corridors. The level of SO, was relatively modest, rising from 12.5 pmol/m?2 to
20.8 pmol/m? over the study period, with hotspots emerging in industrial peripheries. The concentration of CO in
RCC showed a minor increase from 0.049 mol/m? in 2020 to 0.051 mol/m? in 2024, while the concentration of PM, 5
exhibited a decrease from 205.8 pg/m® in 2020 to 169.59 ng/m? in 2024, still higher than that in DCC (Table 8).
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Figure 5. Pollutants in DCC for years 2020 and 2024: (a) Concentrations of NO, and SO;; (b) Concentrations of
CO and PM2.5

3.4 Identification of Climate Risk Zones

The climate risk zones were divided into five categories: very low, low, moderate, high, and extremely high
risk (Table 9). The spatial distribution and proportion of regions falling into each category in DCC and RCC were
examined for year 2020 and 2024.

Table 9. Changes in the climate risk zones of DCC and RCC

Risk Zones DCC RCC
Areain 2020 (%) Areain 2024 (%) Areain 2020 (%) Areain 2024 (%)
Very low 1.04 1.48 0.004 0.54
Low 18.38 17.46 20.251 21.80
Moderate 44.03 42.53 70.255 39.34
High 35.93 33.16 9.490 36.69
Very high 0.61 5.38 — 1.63

The moderate-risk zone remained dominant in DCC throughout the research though its extent dropped slightly,
as additional places moved into higher-risk categories. The high-risk zone, while still encompassing a substantial
portion of the city, was also on the decline. However, the most alarming trend could be visualized in the very
high-risk category, which increased considerably in 2024 compared to 2020, thus implying a rise in severe urban
area and air pollution levels. Meanwhile, the very low and low-risk zones showed slight variations, indicating
localized improvements in environmental circumstances in some places (Figure 7).

In RCC, the most striking development was the significant decline in the moderate-risk zone, which once
encompassed a large area of the city but had shrunk significantly by 2024. This transition was followed by a
significant rise in high-risk locations, indicating increased environmental stress. Furthermore, the emergence of a
previously undetected very high-risk zone highlighted the rising climate vulnerability in certain areas of the city

(Figure 8).
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3.5 Nexus Between Urban Area and Climate Risk Zones

The investigation of urban growth and climate risk zones in DCC and RCC showed a substantial link between
rapid urbanization and increased climate vulnerability. The geographical overlay of changes in LULC with climate
risk zones showed that built-up areas increased at the expense of vegetation cover and water bodies, resulting in
higher LST and poorer air quality.

In DCC, intensely urbanized regions correspond to high and extremely high-risk zones. The loss of green areas
and wetlands has increased surface heat absorption, thus aggravating the impact of UHI.

A comparable pattern, but with a somewhat lesser intensity, is seen in RCC. High-risk areas have increased as a
result of urban growth, especially along commercial and transit routes in the city.

3.6 Comparison Between DCC and RCC
3.6.1 Urban expansion

Compared to RCC, DCC, as the capital city, showed a far greater magnitude of urban growth. The usually fast
urbanization and population expansion were reflected in the substantially larger increase in built-up areas in DCC.
Approximately 18% more land was covered by built-up regions, which replaced formerly vegetated and agricultural
land.

In contrast, RCC had a very moderate growth in built-up areas, increasing by around 10% throughout the same
period. This suggested a slower rate of urbanization than DCC, most likely as a result of slower population growth
and other socioeconomic variables (Figure 9).
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Figure 9. Comparison of LULC between DCC and RCC from year 2020-2024

3.6.2 LST & pollution

Due to its accelerating urbanization, DCC saw a significant rise in LST, with UHIs becoming more noticeable in
2024. This indicated that DCC was more susceptible to climate threats, especially when densely populated places
paired with greater levels of air pollutants like NO,, SO,, CO, and PM; 5.

RCC also showed an increase in LST over the same period, but the growth was less pronounced, and air pollution
levels were relatively lower compared to DCC. The distribution of low to moderate risk zones in RCC indicated a
relatively better environmental condition despite urban expansion.

3.6.3 Climate risk zones

Owing to the intensifying UHI effect and the densification of built-up regions, DCC experienced a larger
percentage of high and extremely high-risk zones, especially in 2024. The moderate-risk zones in DCC somewhat
shrank, thus indicating that the recently urbanized regions were more susceptible to the effects of climate change
caused by increased pollution and heat.

With a higher percentage of low- and moderate-risk locations, RCC had a more evenly distributed risk zone. In
2024, however, there was a notable rise in high-risk areas, mostly as a result of land cover changes and urbanization.
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4 Discussion

Two significant Bangladeshi cities, DCC and RCC, were investigated to unveil a thorough evaluation of the
relationships among urban growth, LST, and air pollution, as well as how these factors collaborate in order to
delineate climate risk zones. The results unequivocally showed that, especially in DCC, where urbanization has
proceeded at a far more aggressive rate, fast urban expansion was substantially correlated with rising LST and
declining air quality.

The growth in climate risk zones that coincides with the expansion of built-up area in DCC (4.38%) and RCC
(8.91%) between 2020 and 2024 supported earlier findings that urban sprawl exacerbated the effects of UHI and
environmental degradation [6, 49]. The severity and distribution of dangers are where the cities diverge most. Denser
development and substantial vegetation loss characterize DCC, which exhibits an explicit movement toward high and
extremely high-risk zones. This is consistent with the research by Ahmed et al. [31] and Zarin and Zannat [33], they
found that the densely populated areas in Dhaka were hotspots for air pollution and UHI concerns. These findings
align with global research that emphasized the compounding consequences of urbanization, land conversion, and
climatic stress in places like Guangzhou in China and Hanoi in Vietnam [7, 19]. More than 60% of Dhaka is built-up,
correlating with high LST and robust UHI effects. High- and very high-risk heat zones are concentrated in areas
with dense built-up land and low vegetation, especially in the southern and central city [46, 59].

RCC, on the other hand, shows a gradual but notable transformation. As rural lands transformed into built-up
regions, moderate-risk zones moved toward higher-risk categories, especially along industrial belts and transportation
corridors [36, 41, 42]. The developing risk environment in RCC reflected that cities with slow development might
still be prone to climate vulnerability.

The integrated climate risk zoning technique integrates LULC, LST, and several air pollutants like NO,, SO,
CO, and PM, 5 with a weighted overlay analysis. This is one of the main innovations lacking in urban studies
conducted in Bangladesh. Although earlier studies concentrated on either LST [24, 31] or air quality [34, 35, 60],
few have addressed their synergistic effects on defining climate risk zones across time. Effective risk reduction
requires incorporating climate adaptation into urban planning, such as resilient infrastructure, green spaces, and
flood protection systems. Cities with proactive planning (e.g., Amsterdam) fare better than those with reactive or
inadequate measures (e.g., Houston) [61]. Accelerated urbanization of a city, if not adequately managed, may greatly
heighten its vulnerability to climate-related dangers in view of rising temperatures and degraded air quality. The
growth in high-risk and extremely high-risk zones in DCC and RCC urges for the incorporation of climate risk
assessments into urban design. Expanding urban green spaces, optimizing land use, and integrating LST data into
planning could mitigate heat risks and enhance resilience [62].

Using GEE for multi-temporal LST extraction and LULC classification improves the scalability and accuracy of
analysis, in order to provide a methodological advancement in conventional GIS-based research [63]. This study
emphasized how risk categories were dynamically redistributed over the time. An increasing trajectory of climate
vulnerability was depicted by the considerable expansion in extremely high-risk zones in DCC (from 0.61% to
5.38%) and RCC (from 0% to 1.63%) by 2024. Even secondary cities like RCC are susceptible to compounded
urban climate hazards [45, 47].

To counteract the impact of UHI and LST, cities should emphasize green infrastructure such as parks, green
roofs, and urban trees [64]. Previous research indicated that urban greening and improved land use planning could
reduce the impact of UHI and pollutant loads [9, 44, 51]. However, the implementation of greening in the developing
DCC remains to be limited, owing to minor integration of climate-adaptive infrastructure.

This study contributed to the current body of knowledge by combining several environmental indicators and
providing a reproducible framework for climate risk zoning in rapidly urbanizing areas. The weighted overlay
technique provides policymakers with an obvious and spatially explicit framework to determine priority intervention
zones for urban resilience planning. By devising detailed and spatially explicit risk maps, climate risk zoning
enables city planners and policymakers to make informed decisions, revise zoning plans, and impose interventions
that enhance urban resilience.

5 Conclusions

This study presented a detailed spatiotemporal evaluation of urban development, LST fluctuation, and air pollution
levels in DCC and RCC, with a focus on their influence on climate risk zones. Having adopted GIS and remote
sensing techniques, this study illustrated a substantial link between growing urbanization and climate risks, thus
calling for sustainable urban planning and climate adaptation solutions.

The expansion of built-up regions has increased their exposure to high heat, air pollution, and environmental
degradation, rendering cities more vulnerable to climate-related health and infrastructure issues. The findings
underscored the need of incorporating climate risk assessments into urban planning frameworks in order to prevent
negative consequences and strengthen urban resilience.
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To tactfully address these issues, legislators and urban planners should prioritize sustainable land use policies,
green infrastructure development, and stricter air quality control. Implementing nature-based solutions, such as
urban trees, green roofs, and water conservation measures, could assist in attenuating the UHI effect and alleviating
environmental stress. Strong adherence to the legislation of emission control, promotion of public transportation,
and use of sustainable energy sources may considerably enhance air quality and overall urban livability. By inference,
this study advocated proactive urban planning and environmental management in rapidly urbanizing cities, such as
Dhaka and Rajshahi. GIS and remote sensing technology could help city administrators and politicians establish
better informed and climate-resilient policies with ease for ensuring long-term urban expansion, while simultaneously
protecting public health and environmental stability.
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