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Abstract: The rapid urbanization accompanying the evolution into “smart” communities presents numerous
challenges, not least of which is the significant increase in road vehicles. This proliferation exacerbates congestion
and accident rates, posing major barriers to the successful implementation of innovative technologies such as
Wireless Sensor networks (WSNs), surveillance cameras, and the Internet of Things (IoT). Accurate traffic flow
prediction, a crucial component of these technological initiatives, requires a reliable and efficient methodology.
This research explores the implementation of an intelligent traffic control system that employs a Transferable
Texture Convolutional Neural Network (TTCNN). The design of this system eschews the traditional pooling layer,
instead incorporating three convolutional layers and a single Energy Layer (EL). This configuration facilitates the
provision of real-time traffic updates, which can enhance the utility and efficiency of the smart city infrastructure.
A model inspired by the Hybrid Fruit Fly (HFFO) optimizes the system’s hyperparameters. The application of
HFFO to the TTCNN showcases the potential for improved accuracy in traffic flow prediction. Simulation results
suggest that the HFFO provides superior organizational boundaries for the TTCNN, enhancing the overall accuracy
of the model’s predictions. The hybrid forecasting method discussed herein demonstrates its potential to
outperform other established techniques. This investigation sheds light on the potential benefits of applying deep
learning algorithms and hybrid models in the context of traffic flow prediction and control, contributing to the
ongoing development of smart urban communities.

Keywords: Hybrid fruit fly optimization; Wireless sensor networks; Traffic flow prediction; Convolutional neural
network; Vehicles; Surveillance camera

1 Introduction

Smart vehicles are now a practical choice for urban residents because to the widespread availability of
autonomous driving technologies that have been shrunk in recent years. By performing tasks like collision
avoidance, identification, autonomous vehicles lighten the load on human drivers. And because of their enhanced
fuel efficiency and reduced emissions, vehicles equipped with autonomous driving technology can better manage
traffic flow and minimize congestion [1]. Providing safe and dependable transportation for the elderly and the
disabled, solving parking issues, and reducing the number of accidents due by human mistake are all ways in which
autonomous vehicles help people in their everyday lives [2].

People today spend the vast majority of their waking hours away from home [3]. This includes commutes to
and from work, visits to entertainment venues and retail establishments, and trips to and from the city centre. This
undoubtedly threw a wrench into daily mobility and prompted the creation of parking services so that people wouldn’t
have to waste time and gas driving aimlessly about downtown in quest of a parking spot. On the one hand, this results
in more greenhouse gas emissions and harms, it exacerbates driver annoyance and urban traffic, both of which are
major contributors to increased vehicle collisions [4].

Due to the evolving nature of the global economy and contemporary lifestyle, urban areas have been expanding
at a dizzying clip recently. When it comes to city planning and urban development, information and communication
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technologies are essential [5]. The goal of these new knowledges and networked smart devices is to create smart
cities and maximize the efficiency of urban services that are directly related to inhabitants [6]. Every aspect of daily
living benefits from the technological advancements made possible by smart cities [7, 8]. Increases in automobile
ownership over the previous five years have been alarming, leading to gridlock, accidents, and even driver disease
as a result of the stress and irritation they generate [9]. Poor management, and the need for drivers to move around
aimlessly in search of parking spaces in already-crowded areas are to blame [10].

Major technological advancements, shifts in corporate practices, and global environmental issues have all
contributed to the emergence of the study of “smart cities and communities” (SCC). (ICT) that link infrastructure, to
data monitoring and asset management systems are among the technologies that make SCC possible [11]. Internet of
Things (IoT) is another technology that allows for even the tiniest devices to attach to the Internet and report on their
status [12]. IoT technology enables the interconnection of devices from many sectors, including the transportation
network, power plants, and private homes [13].

Processing and analyzing the obtained data is necessary for realizing the possible of SCC in any request area.
Finding connections, causes, and patterns in data is made possible by AI. The updated AI coaching and user behaviour
improvement suggestions might be more specific and useful [6, 7]. Many problems are still to be solved in terms
of SCC, and some of them are detailed below. Over the past 60 years, there have been enormous shifts in the way
businesses function. The decline of manufacturing and the expansion of services to businesses and individuals are
seen in the GDP trends from 1947 to 2009. About half of the United States’ industrial GDP has been lost. Conversely,
GDP growth for commercial and professional services is 400% [14]. The percentage of GDP contributed by services
has climbed from 72.8% to 77.4% during the past 17 years The study’s most significant findings are as follows.

•For the purpose of traffic flow prognostication, we present a novel (TTCNN).
•For our TTCNN architecture, we employ the EL (energy layer). We can keep texture information, keep the

productivity vector small, and improve the replica’s learning capacity in this way.
•Improve the quality of the solutions generated by the original fruit-fly optimization (FFO) procedure by creating

a hybrid version of the algorithm that uses swarm intelligence.
The remainder of the paper follows this construction: The relevant literature is presented in Section 2, shadowed

by a problem statement in Section 3. Section 4 delivers a concise summary of the optional perfect. In Section 5,
we display the consequences of our comparison of the projected model to the already available validation methods.
Section 6 provides a conclusion.

2 Related Works

In order to anticipate traffic flows, Bao et al. [15] offer a new technique based on (ST-CGCN). Based on physical
locations, past data records, and external interference among traffic nodes, we first build a matrix. To further
enhance the joint modelling capabilities of spatial-temporal characteristics and external influences, these fused
into a multifaceted matrix by incorporating self-learning dynamic weights. Next, modules for extracting spatial
characteristics and temporal information are developed so that dynamic spatial-temporal aspects may be described.
The spatial feature extraction component is made up of a residual unit and a graph convolution operator using a
suggested make up the temporal feature extraction component.

Djenouri et al. [16] have explored a novel convolutional system for predicting urban traffic flows in an edge IoT
setting by combining graph prediction in a single pipeline. First, the raw data set of urban traffic road networks is
pre-processed using a connected graph pre-processing procedure to eliminate unwanted noise. The road network is
effectively explored by employing an outlier identification approach to filter out unnecessary designs and noise. The
generated graph is then used to train an network, which is ultimately used to provide traffic predictions for the city.
A novel branch-and-bound-based optimization approach is created to fine-tune the values of the planned framework.
Multiple datasets and reference methodologies are used in a thorough review for contrast. The findings demonstrate
that, especially with a high sum of nodes in the graph, the suggested framework performs solutions.

To deal with the novel crown epidemic’s extremely discontinuous and irregular character, Li et al. [17] offer a
deep-space temporal traffic discrete wavelet transform (DSTM-DWT). First, DSTM-DWT dissects flow information
into components such as trend, amplitude, and baseline. Second, we use a graph-based approach to designing
the transportation network’s spatial connection, including newly available data on the crown pneumonia outbreak
into the attributes of each node. The geographical correlation of each node is then determined using the graph
convolutional network, while the temporal correlation is determined using the temporal convolutional network. This
paper offers a graph memory network (GMN) for converting discrete magnitudes split by discrete wavelet transform
into high-dimensional discrete features, which is a solution to the flow data epidemic. Once the traffic data has been
forecasted using DWT, the traffic trend and discrete baseline may be separated out, and the GMN-predicted discrete
model can be compared to the outcome of the inverse DWT.

A unique attention-based learning model has been proposed by Jia and Cai [18] to accurately flow at road
crossings throughout an entire city. To begin, we look at how turning traffic is distributed over space and time.
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Then, to predict the reversal of traffic, a four-part, end-to-end deep learning framework is developed. To learn
spatial dependencies and sparseness, we adapt a graph convolutional network, and to learn temporal dependencies
and fluctuations, we design a gate recurrent unit mechanism. Our model was trained and tested using trajectories
collected from taxi rides in Wuhan, China. According to the outcomes, our model provides more accurate estimates
of turning traffic flow than the present state-of-the-art representations.

Henry gas is a new method developed by Escorcia-Gutierrez et al. [19] for 6G-enabled vehicular networks. The
primary goal of the described HGSODL-TFF method is to foretell the volume of traffic in the 6G equipped VANET.
Furthermore, the traffic data is initially preprocessed in the HGSODL-TFF model with a z-score normalization
technique. In addition, a deep belief network (DBN) perfect is used to predict traffic volumes with impressive
accuracy. The DBN model’s forecasting performance may be optimized by adjusting hyperparameters like the count,
and batch size using the HSGO method. The HGSODL-TFF model is experimentally validated using test data, and
the findings are analyzed in detail. According to the simulation findings, the HGSODL-TFF model is superior than
the other contemporary methods.

Air traffic flow may be predicted using a convolution network (TAaDGCN) proposed by Cai et al. [20], which
takes into explanation both the airspace structure and the flow paths. To begin, we build a spatial capture the
interdependencies between neighbouring and OD sectors. As a next step, we employ a (SE) block to symbolize
potentially connected flight sectors in order to incorporate long route information. In addition, a module is used to
retrieve historical aspects of the input sequence in order to define the temporal evolution pattern. A spatio-temporal
block, including several geographical and temporal relationships, is built from the aforementioned blocks. The
experimental findings from using real-world flight data show that methods in terms of prediction performance,
especially those that disregard the sector’s spatial structure.

3 Challenges Addressed by SCC

Over the past 60 years, there have been enormous shifts in the way business’s function. The decline of
manufacturing and the expansion of services to businesses and individuals are seen in the GDP trends from 1947
to 2009. About half of the United States’ industrial GDP has been lost. Conversely, GDP growth for commercial
and professional services is 400% [14]. The percentage of GDP contributed by services has climbed from 72.8%
to 77.4% during the past 17 years [21], while the percentage contributed by industry has declined from 22.5% to
18.6%.

This tendency is mostly attributable to digitalization with the aid of ICT, and with the most recent developments in
computation power, AI is emerging as a crucial technology to exploit the data and advance the services. Consumption
of energy, especially from nonrenewable sources like oil, is another difficulty. In 2017, primary energy consumption
in Europe was 1561 Mtoe, 5.3% more than the EU goal for 2020. In 2018, crude oil accounted for 36% of all energy
production, followed by natural gas (21%), renewables (15%), solid fossil fuel (15%), and nuclear (13%). Industry
accounts for 31% of final energy consumption in the EU, followed by transport (28%), homes (25%), services (2%),
according to a recent study [22].

4 Proposed Methodology
4.1 Mathematical Perfect of Traffic Flow in Road Sections

Figure 1. Extraction of the sum of vehicles on a road section

Vehicle volume, average speed, and vehicle density are all indicators of a road segment’s traffic flow. The flow
shift and the threshold value of the index [23] are both unique to individual stretches of road. One-way streets have
only one oncoming and one going lane. Figure 1 illustrates how the sum of cars arriving and departing the road
segment during 5(n 1) 5n minutes, as well as the sum of vehicles already present in the road segment, affect the
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traffic flow along that section of road. This allows us to derive the following formula for determining the number of
cars currently using this stretch of road at time k.

Q(k) =

k∑
i=1

qin(i)−
k∑

i=1

qout (i) + q0 (1)

where, q0 is the sum of vehicles comprised in the early period; and qin(i) and qout (i) are the number of vehicles
incoming and section, correspondingly.

Figure 2. Extraction of the sum of vehicles on a road section

Figure 2 illustrates the process of vehicle count extraction along a multi-channel road stretch. Setting up several
detection intersections and using the data obtained from these sensors to anticipate the sum of cars on the complicated
road segments is required to estimate the volume of traffic on the multi-channel road segment. Here is how we may
define k, the current number of cars:

Q̄(k) =

N∑
i=1

k∑
s=0

q̄in(i, s)−
M∑
j=1

k∑
s=0

q̄out(j, s) + q̄0 (2)

where, Q̄(k) is the entire vehicle capacity on the multifaceted road segment; q̄0 is the sum of vehicles at the early
instant; and q̄in(i, s) and q̄out (j, s) are the sum of vehicles incoming and exiting the unit at the sth instant from the
ith on-ramp and jth off-ramp, correspondingly.

4.2 Network Architecture

For the purpose of traffic forecasting, the TTCNN framework is described. The suggested deep CNN takes
into account these three picture characteristics: First of all, certain description patterns are considerably smaller
than the source picture, but the convolution filter can still locate the pattern if its size is equivalent to the size of
the convolution filter mask. Second, certain areas of the picture might make use of particular forms or designs.
Convoluting the full source picture is another way to define these models. In addition, the downsampled pixels play
a crucial role in the max-pooling layer without altering the overall form of the original mammography.

Two pooling layers, a third convolution layer, and an output layer (EL) are all part of the proposed TTCNN. The
fully connected (FC) layer is then shadowed by a softmax layer. By averaging the corrected activation output, EL
précises the feature maps of the previous convolutional layer. A value, representing the energy response of a filter
bank, is returned for each feature map. This design not only improves efficiency in learning texture functions but
also uses less memory and compute. This compromise between speed and processing time is made possible by EL.
The primary motivation for implementing this layer is to maintain the original layer’s data flow. The output of EL is
flattened and delivered to the concatenation layer after the final pooling layer. Through this link, information about
the image’s contours and textures is flattened into a new vector and sent across the completely linked layer. Table 1
provides a comprehensive explanation of the projected network, including input and output dimensions. Eq. (3)
provides a mathematical formula for calculating the convolution layer’s output size.

output =
Ia − Ib + 2S

ϱ+ 1
(3)

where, Ia and Ib signifies the filter size correspondingly, S denotes the ϱ is the stride value.
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Table 1. Projected texture CNN construction layers

Layers Types Padding Input size Kernel extent to form
each feature map

Stride Output size

1 Convolutional layer 1 [1 1 1 1] 64×64×1 5×5 [1 1] 62×62×16
2 Max pooling layer 1 [1 1 1 1] 62×62×16 2×2 [2 2] 32×32×16
3 Convolutional layer 2 [1 1 1 1] 32×32×16 5×5 [1 1] 30×30×32
4 ReLU
5 Max pooling layer 2 [1 1 1 1] 30×30×32 2×2 [2 2] 16×16×32
6 Softmax layer - - - - -
7 Classification layer - - - - -
8 Convolutional layer 3 [1 1 1 1] 16×16×32 3×3 [1 1] 16×16×64
9 ReLU

10 EL - 16×16×64 - - 128×1
11 Dropout - 128×1 - - 128×1
12 FC2 - 1024×1 - - 2×1
13 FC1 - 128×1 - - 1024×1
14 Dropout - 1024×1 - - 1024×1

After that, we use three convolution 16 and 32 channels, respectively, for their output. The third convolution
layer, with a kernel size of 3×3, and 64 output channels, is investigated as an intermediary texture attributes. The
convolution layer can only be used to learn a maximum of 31,744 parameters, which are then computed using the
methods in Eqns. (4) and (5):

ξv = ζv × (Ik × ϱ+ 1) (4)

ξv = ζv +Xk × ϱ× ζv (5)

where, ξv signifies the CNN layer limits, Ik signifies the kernel size, and ζv denotes the channel amount.
At each convolution layer, the output of the neuron coupled to the input is calculated. The answer is the dot

product of its mass and the lowest input field connected with it. A 16-kernel 32x32x16 output is created by the first
convolution layer. The production of the neurons in the first convolution layer may be calculated using Eq. (6):

Sϑ =
∑
ϑ

Cϑ × Tϑ + Pϑ (6)

where, Sϑ is the feature maps used to generate an output, Cϑ is the feature maps used to generate input, and Tϑ is
the weighted map. After that, the output of the last convolution layer is mapped onto an energy descriptor. After
the third convolutional layer, energy layers are merged according to the specifications of the energy descriptor. It
performs similarly to a texture description for a cluttered, thick surface. Eq. (7) explains the relationship:

EL(ξ, ϑ) = ρ

[
j∑

i=1

Tω
i ϑi + P

]
(7)

where, EL(ξ, ϑ) represents the EL weighted vector, j stands for the EL input influences, and represents the EL
output layer. The link between the EL and FC layers is substantially smaller compared to the final traditional
convolution layer, which reduces the number of trainable parameters. Furthermore, EL learns during both forwards
and backwards propagation by retaining energy information from the previous layer. Additionally, EL enhances the
network’s general learning ability and simplifies the proposed system by decreasing the vector size of the subsequent
FC layer. Learnable EL parameters can be determined by solving Eq. (8):

ξEL = ηm × ηm−1 (8)

where, ξEL is the EL learnable limits, ηm is the current FC neuron, and ηm−1 is the previous FC layer neuron.
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Between the rectified linear unit (ReLU) layer, a batch normalization and activation function is utilized to expedite
the training process. The internal covariance shift can be eliminated by employing batch normalization. The mean
and standard deviation can be normalized to achieve this goal. Mean and Variance are determined using Eqns. (9)
and (10), respectively, in the bulk normalization procedure.

τQ =
1

n

n∑
i

li (9)

vQ =
1

n
×

n∑
i

(li − τQ)
2 (10)

where, τQ and vQ indicates the average and standard deviation, and n is the smallest possible batch size for the
features in the 1i dimension. The number n equals 64 in our study. Eq. (11) describes how to determine the batch
normalisation:

λi =
ϑi − τ√
v2 + ϕ

α+A (11)

where, a and A are the possible starting values for each output layer’s learnable parameters. Eq. (12) computes the
ReLU activation function, and Eq. (13) determines the ReLU layer’s output:

λi,j,k = max 0, ϑi,j,k (12)

λReLU = ReLU(Bnorm(Conv(w, x))) (13)

where, λi,j,k means characteristics of the final element, while (i, j, k) means characteristics of the first element.
The subsequent shrinking of feature maps, weights, and calculations due to the pooling layer demonstrates that the
control network has been overfit. Eq. (14) is a mathematical formula used to determine the max pooling layer:

Mpool = max

0,
∑
Q

ϑk−1Tϑ

 (14)

where, Mpool signifies the maps, Q indicates the input feature maps, and T signifies the vector. The work utilizes
two max pooling layers, each with a kernel size of 2×2.

To avoid overfitting training data, the dropout layer is used throughout the weighted update phase to continuously
delete a subset of random parameters. Drop editing is used throughout the weighted update process to delete a
selection of random parameters to prevent overfitting of the training data. Because FC layers contain the most
network-wide features, they are particularly sensitive to over-compatibility difficulties when training data is used. As
a result, the dropout layer is established after the FC layer. To do classification, the softmax layer employs the loss
function. For softmax, the valid probability values are between zero and one. Eq. (15) provides the mathematical
formulation of the loss function.

kl = δj + log
∑
i

exp (δi) (15)

where, kl signifies the total loss and δj having the class δ which is i-th element. The goal is to minimise the
probability dissimilarity among the true label and the assessed label computed by the softmax purpose in Eq. (16):

λi =
expδj∑
i exp (δi)

(16)

Here, the proposed models’ hyper-parameter tuning is carried out by improved fruit fly optimization procedure.
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4.2.1 Original fruit-fly optimization procedure
The original FFO algorithm takes its name and inspiration from the foraging habits of the fruit fly. The four-step

original fruit-fly optimisation technique:
•initialization,
•population evaluation,
•osphresis foraging,
•vision.
As shown in Eq. (17), initial solutions (fruit flies) are created at random inside the provided lower and upper

boundaries, with xi,j denoting the i-th solution and the j subscript indicating the element’s location within the i-th
solution. Lower bound (lb) and upper bound (ub) stand for limits. rand is a uniformly distributed random sum
generator.

xi,j = rand (ubj − lbj) + lbj (17)

Following the initialisation of the population, the positions of the solutions are updated according to the phase,
during which the solutions migrate at random with respect to their previous positions, as shown in Eq. (18), where
the solutions’ new positions are indicated by x

(t+1)
i,j , the current solution is x(t)

i,j , rand() 2 [-1, 1]. The iteration counter
is signified by t.

x
(t+1)
i,j = x

(t)
i,j ± rand() (18)

After the position is updated, the fitness value of each solution is determined, and the greedy selection process
decides whether the previous position or the new one should be maintained. The vision foraging phase is the next
step in the algorithm. A new answer will replace an older one if its fitness value is higher; otherwise, the older
solution will continue in the populace while the newer one is eliminated. Upon meeting the stop condition, the
algorithm exits and delivers the optimal solution.
4.2.2 Proposed hybrid FFO

The FFO is easy to customize because of its uncomplicated structure, few parameters, and flexibility in solving
a wide variety of problems. Despite its benefits, however, this approach is not without its flaws. The method has the
potential to become stuck in local minima, has a static position update technique, and is not very good at exploiting
opportunities.

Experiments on unbounded functions revealed the algorithm’s flaws. Because of its superiority in intensification,
the firefly algorithm (FA) search mechanism has been added into the algorithm to improve exploitation. In addition,
opposition-based learning (OBL) is presented as a means of enhancing the search space exploration process.

The acronym HEFFF stands for “hybrid enhanced fruit-fly firefly” to describe the name of the hybrid algorithm.
At first, Eq. (17) is used to produce a random population. If the random number is less than 0.5, then the FFO
search mechanism is used in even iterations; otherwise, opposition-based learning is performed; and the firefly search
mechanism is used in odd iterations.

The definition of the inverse number,X′ is given by Eq. (19).

x
′(t+1)
i = lb+ ub− x

(t)
i (19)

To determine how far apart two solutions are, the firefly search process uses Eq. (20), where ri,j signifies the
distance xj . At zero distance, ′ represents how alluring the healthiest firefly (the optimal option) is. The random
number k is drawn from a Gaussian distribution with control parameters and alpha.

x
(t+1)
i = x

(t)
i +

β0

1 + γr2i,j
(xj − xi) + a(k − 0.5) (20)

ri,j = ∥xi − xj∥ =

√√√√ D∑
k=1

(xi,k − xj,k)
2 (21)

According to reference [24], a dynamic stage is used for a control limit to further enhance the algorithm’s
efficiency, where a value continuously decreases from the beginning value (a0), is reached through the course of
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the iterations. Eq. (22) defines the update of a value at each repetition as follows: where t is the current iteration,
MaxIter is the extreme sum of repetitions, a(t) is the value of an at the present iteration, and u is the updated value
a(t+ 1).

a(t+1) = a(t) ·
(
1− t

Maxlter

)
(22)

Algorithm 1 exemplifies the main phases of the projected method [25].

Algorithm 1 Pseudo-code of projected model
Initialize the population randomly by Eq. (17)
Initialize the FA parameters of β0, γ, a
Set the iteration counter t to 0 and define the termination criteria
Evaluate the fitness of each individuals
while termination criteria is not satisfied do
for i = 1 to N do
if t is even then
if rand < 0.5 then
Update the position according to FFO updating mechanism by Eq. (18)
else
Use OBL procedure by Eq. (19)
end if
else
Perform FA search using Eq. (20)
end if
end for
Evaluate the solutions, and if the new solution has better fitness than the old one, replace the old solution
Sort the population according to the fitness value of the solutions and save the best solution
Replace the worst solutions (30% in the population) by new random solutions
end while
Return the best solution

Figure 3. The cross section of the road and its traffic flow are compared
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5 Simulation Experiments
5.1 Dataset and Pre-Processing

Our experimental dataset consists of traffic counts recorded along California State Route 1 during the course of
31 days, beginning on March 1 and ending on March 31 [26]. The ratio of training data to validation data to test data
is 6:2:2. We use data on traffic flows from March 1st through March 19th for our training set, March 20th through
March 25th for our validation set, and March 26th through March 31st for our test set. The traffic data in the road
segment scenario is computed using the mathematical model discussed in Section 2 because this dataset is a cross
section dataset. Figure 3 depicts a comparison of daily and weekly traffic volumes on the road lane. It is clear that
the amplitude, temporal correlation, and time lag of the road segment’s traffic flow are all higher than those of the
overall traffic flow.

5.2 Dataset and Pre-Processing

The suggested model’s predictive power is graphically represented in Table 2 by calculating the bias among the
anticipated value and the actual traffic flow of ten randomly selected samples. It demonstrates that the suggested
model has better predictive accuracy than the state-of-the-art methods.

Table 2. The foretold value and real traffic of the projected model with existing models

Sample Actual data Proposed LSTM CNN
Bias (%) Predicted value Predicted value Bias (%) Predicted value Bias (%)

5 14.01 3.26% 14.47 15.27 9.02% 16.10 14.92%
65 5.61 4.15% 5.84 5.47 3.27% 5.18 7.68%
99 39.84 4.97% 41.82 46.23 16.04% 39.67 0.44%

123 55.07 0.80% 54.63 54.76 0.56% 52.39 4.86%
138 55.85 0.03% 55.83 54.70 2.05% 59.80 7.07%
174 77.12 4.12% 80.3 76.06 1.37% 80.9 4.90%
175 74.56 2.33% 76.30 76.46 2.55% 87.37 17.19%
244 30.26 0.63% 30.07 28.99 4.20% 31.88 5.35%
261 28.64 8.41% 31.05 31.28 9.22% 33.64 17.47%
281 13.77 3.20% 14.21 15.65 13.65% 13.85 0.58%

In the above Table 2 represent that the proposed model with existing models. In this analysis we have used
different sample analysis. In the 5th sample the actual data is 14.01 and the proposed model reached the foretold
value is 14.47 and Bias (%) as 3.26% and the LSTM model the Predicted Value as 15.27 and Bias (%) value as
9.02% and the CNN model the predicted value as 16.10 and Bias as 14.92 respectively. In the 65th sample the actual
data is 5.61 and the projected model reached the predicted value is 5.84 and Bias 4.15% and the LSTM model the
Predicted Value as 5.47 and Bias (%) value as 3.27% and the CNN model the predicted value as 5.18 and Bias as
7.68 respectively. In the 99th sample the actual data is 39.84 and the projected model reached the predicted value
is 41.82 and Bias (%) as 4.97% and the LSTM model the Predicted Value as 46.23 and Bias value as 16.04% and
the CNN model the predicted value as 39.67 and Bias as 0.44 respectively. In the 123th sample the actual data is
555.07 and the proposed model reached the predicted value is 54.63 and Bias (%) as 0.80% and the LSTM model
the Predicted Value as 54.76 and Bias (%) value as 0.56% and the CNN model the predicted value as 52.39 and Bias
as 4.86% respectively. In the 138th sample the actual data is 55.85 and the projected model reached the predicted
value is 55.83 and Bias (%) as 0.03% and the LSTM model the Foretold Value as 54.70 and Bias value as 2.05%
and the CNN model the predicted value as 59.80 and Bias as 7.07 respectively. In the 174th sample the actual data
is 77.12 and the projected model reached the foretold value is 80.03 and Bias as 4.12% and the LSTM model the
Foretold Value as 76.06 and Bias (%) value as 1.37% and the CNN model the foretold value as 80.09 and Bias as
4.90 respectively. In the 175th sample the actual data is 74.56 and the proposed model reached the predicted value
is 76.30 and Bias (%) as2.33% and the LSTM model the Foretold Value as 76.46 and Bias (%) value as 2.55% and
the CNN model the foretold value as 87.37 and Bias as 7.19 respectively. In the 244th sample the actual data is
30.26 and the proposed model reached the foretold value is 30.07 and Bias (%) as 0.63% and the LSTM model the
Predicted Value as 28.99 and Bias value as 4.20% and the CNN perfect the foretold value as 31.88 and Bias as 5.35
respectively. In the 261th sample the actual data is 28.64 and the proposed model reached the foretold value is 31.05
and Bias (%) as 8.41% and the LSTM model the Foretold Value as 31.28 and Bias value as 9.22% and the CNN
model the foretold value as 33.64 and Bias as 17.47 respectively. In the 281th sample the actual data is 13.77 and the
proposed model reached the foretold value is 14.21 and Bias (%) as3.20% and the LSTM perfect the Predicted Value
as 15.65 and Bias (%) value as 13.65% and the CNN model the foretold value as 13.85 and Bias as 0.58 respectively.
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5.3 Performances Metrics

Based on the aforementioned criteria, the following measures of effectiveness are analysed.
Accuracy: It is hypothesised what fraction of the test dataset contains of connection records with a predicted

ratio. Accuracy, as stated, is a suitable measure for use on an experimental dataset with evenly distributed classes.
Precision: It takes as input the total number of attachment logs and makes an educated judgement as to what

percentage of those logs were successfully detected. Higher precision (Precision [0,1]) in an ML model is preferable.
F1-Score: The harmonic mean is accuracy and memory. A higher F1-score (F1-score for [0,1]) is preferable.
False Positive Rate (FPR): Traffic is determined by dividing the sum of regular connecting records by the total

sum of standard connection records. The ML model is enhanced with a reduced FPR (FPR [0,1]).

Table 3. Prediction analysis of various DL classifiers

Algorithm Precision Recall F-score Accuracy
LSTM 96.17 92.32 92.10 94.16

Proposed model 98.32 94.62 94.53 95.62
MLP 87.21 80.15 80.43 80.10
DBN 84.32 85.93 83.45 85.71
AE 92.43 92.15 91.68 92.10

RNN 93.48 92.44 91.81 92.46
DNN 90.21 89.54 89.03 89.52
CNN 96.61 92.52 92.24 94.53

In the above Table 3 signify that the prediction analysis of various DL Classifiers. In this analysis we have used
different classifiers. In the initial analysis of MLP model reached the accuracy of 80.10 and the precision value
as 87.21 and the recall value of 80.15 and finally, F-score value as 80.43 respectively. DBN model reached the
accuracy of 85.71 and the precision value as 84.32 and the recall value of 85.93 and finally, F-score value as 83.45
respectively. AE model reached the accuracy of 92.10 and the precision value as 92.43 and the recall value of 92.15
and finally, F-score value as 91.68 respectively. In the next model of RNN model reached the accuracy of 92.46 and
the precision value as 93.48 and the recall value of 92.44 and finally, F-score value as 91.81 respectively. In the next
model of DNN model reached the accuracy of 89.52 and the precision value as 90.21 and the recall value of 89.54
and finally, F-score value as 89.03 respectively. In the next model of CNN model reached the accuracy of 94.53 and
the precision value as 96.61 and the recall value of 92.52 and finally, F-score value as 92.24 respectively. In the next
model of LSTM model reached the accuracy of 94.16 and the precision value as 96.17 and the recall value of 92.32
and finally, F-score value as 92.10 correspondingly. In the next suggested model of Proposed model reached the
accuracy of 95.62 and the precision value as 98.32 and the recall value of 94.62 and finally, F-score value as 94.53
correspondingly. In this comparisons investigation the projected model reached the better consequences than other
compared models (See Figure 4 and Figure 5).

Figure 4. Validation comparison of various models

98



Figure 5. Graphical illustration of proposed DL model

6 Conclusions

Using the traffic flow data from the cross section, this research first establishes a mathematical model of the road
segments, and then uses this model to derive the traffic flow information for the road segments. After that, we put the
enhanced TTCNN to use to complete the traffic flow prediction process. The TTCNN architecture relies on an EL
to analyze texture characteristics, extract the broad shape information, cap the output vector’s size, and fine-tune the
model’s receptiveness to new input. TTCNN is sensitive to the starting weight, thus the HFFO is built to optimize the
TTCNN’s structural parameters using a combination of a parallel search method and a group cooperation technique.
The experimental consequences validate the superiority of our projected HFFO over the HFFO -TTCNN hybrid
perfect improves prediction accuracy and convergence speed by using high-quality structural parameters found by
the proposed HFFO for the TTCNN. In the next suggested model of Proposed model reached the accuracy of 95.62
and the precision value as 98.32 and the recall value of 94.62 and finally, F-score value as 94.53 correspondingly.
In this comparisons investigation the projected model reached the better consequences than other compared models.
The geographical aspect of traffic flow is ignored in favour of its temporal counterpart for the purposes of this article.
The prediction performance may be greatly enhanced by including the spatio-temporal characteristic into the input
matrix in future research.
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