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Abstract: The optimization of traffic flow, enhancement of safety measures, and minimization of emissions in
intelligent transportation system (ITS) pivotally depend on the Vehicle License Plate Recognition (VLPR) technology.
Challenges predominantly arise in the precise localization and accurate identification of license plates, which are
critical for the applicability of VLPR across various domains, including law enforcement, traffic management, and
both governmental and private sectors. Utilization in electronic toll collection, personal security, visitor management,
and smart parking systems is commercially significant. In this investigation, a novel methodology grounded in the
Kanade-Lucas-Tomasi (KLT) algorithm is introduced, targeting the localization, segmentation, and recognition of
characters within license plates. Implementation was conducted utilizing MATLAB software, with grayscale images
derived from both still cameras and video footage serving as the input. An extensive evaluation of the results revealed
an accuracy of 99.267%, a precision of 100%, a recall of 99.267%, and an F-Score of 99.632%, thereby surpassing
the performance of existing methodologies. The contribution of this research is significant in addressing critical
challenges inherent in VLPR systems and achieving an enhanced performance standard.

Keywords: Intelligent transportation system (ITS); MATLAB; Vehicle detection; Kanade-Lucas-Tomasi (KLT)
algorithm

1 Introduction

The transformative impact of technological advancements on numerous facets of daily life is undeniable, and
the realm of transportation management stands as a prime example [1]. Within the ambit of ITS, the development
of VLPR systems has been identified as crucial for achieving optimal traffic management and bolstering security
measures. These systems are adept at capturing and deciphering vehicle license plate numbers, thereby offering a
broad spectrum of applications encompassing access control in parking lots, crime prevention, and traffic analysis.
The origins of VLPR can be traced back to the 1970s, marking the commencement of efforts to automate the
reading of license plates [2]. Yet, it was the advent of digital cameras and image processing techniques that
propelled the widespread adoption of VLPR systems. Early iterations of these systems predominantly employed
rule-based approaches, utilizing manually crafted features to discern license plate characters [3, 4]. These initial
systems, however, demonstrated limitations in adapting to variances in lighting conditions, image quality, and
license plate formats. A paradigm shift towards machine learning-based approaches for VLPR has been observed
in recent years [5–7]. Such algorithms, capable of learning from data, exhibit enhanced robustness to fluctuations
in image quality and conditions. VLPR systems, it is acknowledged, occupy a central role across diverse sectors,
finding application in scenarios ranging from toll collection and traffic enforcement to border control and vehicle
tracking [8, 9]. The present research is committed to contributing to the evolution of VLPR technology, with the
objective of forging a system characterized by accuracy, robustness, and efficiency [10, 11]. Emphasis will be placed
on image enhancement, license plate detection, character segmentation, character recognition, and the optimization
of the overall system.

This paper’s structure is as follows: Section 2 provides a comprehensive review of the VLPR literature. In
Section 3, the research methodology designed to address existing challenges in VLPR and improve its performance
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is outlined, with innovative techniques integrated to enhance accuracy, robustness, and efficiency. Empirical findings
are presented in Section 4, where performance metrics, comparative studies, and practical insights are explored. The
paper concludes in Section 5, emphasizing the contributions of this work to the advancement of VLPR systems and
the assurance of safer and more efficient transportation networks.

2 Literature Review

The review encompasses an exploration of various methodologies pertinent to object tracking, with a particular
emphasis on applications within traffic monitoring and surveillance contexts. Techniques such as video analytics,
vehicle detection, and motion tracking are scrutinized. The evaluation encompasses a range of algorithms, including
ne-Class Support Vector Machine (OC-SVM) and Convolutional Neural Network (CNN)-based approaches, with a
focus on augmenting accuracy and mitigating false alarm occurrences. The overarching aim is articulated as the
enhancement of object tracking efficacy in real-time scenarios, inclusive of challenging environmental conditions.
In the work of Velazquez-Pupo et al. [12], a stationary camera is utilized in a video analytics context, serving
multifarious functions such as vehicle detection, occlusion handling, vehicle counting, tracking, and classification.
Within this context, the application of OC-SVM with an RBF Kernel is highlighted, having demonstrated superior
performance, particularly in the classification of midsize vehicles, yielding a F-measure of 98.190% and 99.051%
respectively. It is underscored that SVM is acknowledged as the optimal classifier in this scenario. Furthermore, the
research conducted by Qu et al. [13] is brought into focus, advocating for the implementation of an accurate moving
vehicle detector. This encompasses the incorporation of techniques such as candidate target recognition, CNN-based
vehicle screening, and the application of motion sensors with image normalization for real-time scenarios, aiming for
a high detection rate. Empirical studies employing diverse datasets underscore the effectiveness of moving vehicle
detection, achieving up to 90% detection performance for automobiles, while maintaining an average false alarm
rate below 10%.

In the work presented by Sarcevic and Pletl [14], a novel technique has been introduced for the filtration of
false alarms. Regulations have been constructed separately, based on various data types derived from the signals,
serving as the foundation for the filtration process. The parameters exerting the most significant influence were
subjected to independent examination across each data type. Subsequently, these parameters were amalgamated
into sophisticated algorithms to yield more precise outcomes. Optimization of the model parameters was achieved
through the application of evolutionary algorithms. Results garnered from this approach indicate that 97% of false
detections could be successfully eliminated, with a negligible loss of 0.3% in accurate detection systems, when
rules are meticulously crafted. It was observed that even the application of a singular parameter could facilitate this
process.

In a separate study conducted by Guo et al. [15], an augmented Single Shot MultiBox Detector (SSD) method has
been proposed, aimed at addressing the shortcomings associated with low accuracy and missing detections in existing
SSD methodologies for object tracking. The backbone of the proposed SSD network is ResNet50, selected for its
capability to extract intricate details pertaining to vehicle features. The Feature Fusion Model, designed to enhance
the accuracy of small target vehicle recognition, amalgamates positional data from shallow features with semantic
information from feature representation. The incorporation of a Squeeze-and-Excitation (SE) block within the feature
extraction layer further augments the model’s performance, enabling more comprehensive feature extraction and a
reevaluation of the channel’s significance. Experimental findings attest to the efficacy of the modified approach, as
evidenced by an average accuracy of 83.09% on a dataset comprising home-built vehicles, surpassing the accuracy
of the preceding algorithm by 3.23% . The work of Ma et al. [16] introduces the Partial Anchors based Detection
Network (PADeN), advocating for the identification and subsequent removal of incomplete anchors on vehicles to
expedite the object detection process significantly. Contextual information is utilized within PADeN to discern
and discard unnecessary anchors, enhancing the efficiency of object detection in images. The integration of the
centerness mask branch into the network is highlighted as a pivotal enhancement to PADeN’s performance. Results
from this study indicate a Mean Average Precision (mAP) of 76.9%, positioning PADeN as a superior method in
comparison to previous object tracking methodologies.

In another study, Barnouti et al. [17] propose the utilization of the KLT tracker in conjunction with the Two-
Dimensional Principal Component Analysis (2DPCA) tracker for the purpose of monitoring and recognizing facial
features within video sequences. The initial phase employs the Viola-Jones face identification technique for face
detection in images or video sequences, followed by the application of the KLT method for face tracking. The KLT
tracker maintains a long-term tracking capability of facial objects across successive frames, ensuring continuity
even in instances of facial appearance and disappearance. The 2DPCA feature extraction method is utilized for
noise reduction and enhancement of face recognition through a distance classifier. The proposed methodology
undergoes validation using the Face94 database and webcam images. Experimental results confirm the efficacy of
the Viola-Jones method in frontal face detection, the proficiency of the KLT system in face tracking across diverse
webcam-shot videos, and the successful face recognition capabilities of 2DPCA in both the Face94 dataset and
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computer webcam video series.
In the work of Yue [18], a recursive tracking system oriented towards Augmented Reality (AR) for human motion

tracking is introduced. This system leverages the positional relationship between consecutive frames, employing
the KLT approach in tandem with Oriented Rapid and Rotated Brief (ORB) feature descriptors. The KLT tracking
technique is applied to track the ORB feature descriptor, matching the first frame image and the reference image,
while concurrently tracking the feature descriptor from the preceding frame in the current frame. This approach
effectively mitigates the phenomenon of virtual object jitter. Comparative analysis reveals that the recursive tracking
method surpasses the detection tracking strategy in terms of both speed and accuracy. Nevertheless, the study
acknowledges the existence of challenges, particularly the inability to develop a feature tracking technique with
enhanced accuracy and extended tracking longevity to diminish or mitigate the effects of cumulative error.

In the work conducted by Ramakrishnan et al. [19], an investigation into the optimization of the window size in
the KLT tracking algorithm was presented, emphasizing the necessity of adapting the window size to mitigate the
impact of distortions surrounding each feature point. The researchers introduced an adaptive window size technique,
employing the iterations of the KLT algorithm as a metric to assess the quality of the tracks and consequently
determine the optimal window sizes. Experimental results from well-established tracking datasets indicated that this
adaptive approach exhibits enhanced robustness in comparison to the conventional fixed-window KLT, and offers a
comparable level of robustness to the affine KLT, all the while achieving an average runtime speedup of seven-fold.

The system “Traffic Sensor” was introduced by Fernández et al. [20], employing deep learning techniques for the
automatic detection and classification of vehicles on highways, utilizing a stationary, calibrated camera. The models
were trained on a novel traffic image dataset, inclusive of images captured under sub-optimal lighting and weather
conditions, as well as low-resolution images. The system is comprised of two principal modules: the first responsible
for vehicle detection and classification, and the second for vehicle tracking. Extensive evaluation and comparison
of various neural models were conducted for the first module, culminating in the selection of a network based on
YOLOv3 or YOLOv4, trained on the new traffic dataset. The second module integrates a straightforward spatial
association technique with the more intricate KLT tracker for the tracking of moving vehicles. Validation of the
system was undertaken through numerous tests on challenging traffic videos, demonstrating the system’s capability
to effectively and real-time detect, track, and classify vehicles on highways.

Yin et al. [21] detailed the development of an optical flow target tracking system based on the KLT algorithm,
implemented on the OpenCV platform and evaluated in the context of a water pipeline intelligent inspection
competition. The technique leverages the optical flow method, aiming to achieve high detection certainty and rapid
operational speed for frame differentiation, with a particular focus on underwater target detection and localization.
The system ensures the stable control error of an underwater vehicle’s motion through the application of incremental
Proportional-Integral-Derivative (PID) control.

Several limitations have been identified in the prevailing state-of-the-art algorithm employed for the tasks of
vehicle detection and tracking. These constraints are primarily attributed to the algorithm’s inherent complexity,
its operation within a confined frequency range for feature extraction, and its reliance on the minimum enclosing
rectangle (MER) as a mechanism for object detection. The adoption of a SVM for the task of classification,
particularly in scenarios characterized by high traffic volumes and noisy datasets, has been observed to yield
suboptimal performance [22, 23]. The algorithm’s effectiveness is further compromised by its dependence on a fixed
threshold value, a factor that serves to impede its adaptive capabilities.

The proposed approach distinguishes itself through several innovative facets:
•The employment of Haar features in conjunction with the KLT algorithm is central to the development of a

vehicle detection and tracking algorithm, which is anticipated to demonstrate both computational efficiency and
robustness.

•A deep learning model is integrated with the aim of enhancing the accuracy of the proposed algorithm,
particularly when applied to extensive datasets and those characterized by the presence of noise.

•The introduction of a novel thresholding technique is proposed, with the objective of rendering the algorithm
less susceptible to variations in threshold values.

In alignment with these innovative aspects, the study sets forth several key research objectives:
•A methodological framework is to be established for the processing and analytical examination of real-time

video data, with a particular focus on the accurate localization of vehicle license plates. This effort is expected to
significantly contribute to the location and retrieval of lost automobiles.

•The capabilities of Haar features and the KLT algorithm are to be harnessed for the detection and tracking of
vehicles within video streams.

•A rigorous comparative analysis is planned, wherein the proposed methodology will be evaluated against existing
approaches. This evaluation will utilize a comprehensive set of performance metrics, including but not limited to
accuracy, efficiency, recall, and precision, ensuring a thorough assessment of the methodologies in question.
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3 Methodology

To fulfill the established research objectives, a novel integration of Haar features and the KLT algorithm is
introduced, enhancing the vehicle detection and tracking process. Haar features are utilized for their capacity to
robustly identify distinctive object characteristics, while the KLT algorithm is employed to facilitate object tracking
across frames within real-time video streams [15, 24]. The objective of employing these techniques is to augment
both accuracy and efficiency, thereby mitigating the limitations identified in the extant algorithm.

3.1 Proposed Methods

In the framework of the study, the following methodologies are employed:
Haar Features
Characterized by their simplistic rectangular shape, Haar features serve to represent the edges and corners of

objects within images. Their computational efficiency in extraction, coupled with their demonstrated efficacy in
diverse image processing tasks, including object detection and tracking, renders them a valuable tool in this context.

KLT Algorithm
The KLT algorithm, grounded in optical flow principles, is employed for feature tracking within video sequences.

It operates on the premise that the brightness of a pixel remains invariant over time, thus facilitating the tracking of
feature movement.

Deep Learning
Artificial neural networks form the basis of deep learning, a subset of machine learning. This technique has shown

substantial effectiveness across a myriad of image processing tasks, including those pertinent to object detection and
tracking.

3.2 Workflow

The methodology encompasses several pivotal steps, delineated in Figure 1:
Step 1: Real-Time Video Data Processing: Vehicle license plates are located and extracted through the processing

of input video data in real time.
Step 2: Haar Feature-Based Vehicle Detection: Vehicles within video frames are detected with precision, utilizing

Haar features.
Step 3: KLT-Based Vehicle Tracking: Subsequent to detection, vehicles are continuously monitored across

consecutive frames through the application of the KLT algorithm.
Step 4: Performance Evaluation: The efficacy of the proposed methodology is rigorously assessed through

comparative analysis with pre-existing methods. Accuracy, efficiency, recall, and precision are employed as the key
performance indicators in this evaluation.

Figure 1. Workflow of the proposed method

The incorporation of Haar features and the KLT algorithm is substantiated by their proven efficacy in this domain.
Haar features excel in robustly discerning vehicles within video frames, whereas the KLT algorithm guarantees
seamless tracking of the vehicles once identified, across various frames. The integration of an adaptive thresholding
technique further refines the system’s adaptability and overall performance, promising enhanced accuracy, particularly
in scenarios characterized by high traffic volumes and prevalent noise.

4 Results and Discussion

In the current urban milieu, the escalating vehicular population necessitates advanced VLPR systems, as instances
of vehicle theft, traffic violations, and unauthorized access to restricted areas are witnessing a surge. This manuscript
introduces a novel methodology leveraging the KLT) algorithm, meticulously designed for the localization, segmen-
tation, and recognition of characters on license plates. The method is delineated across key phases: detection of the
number plate, segmentation of characters, and subsequent character recognition. A thorough comparative analysis,
juxtaposed with extant methodologies, is presented herein.
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Figure 2. Plate detection of car

Figure 3. License plate detection (KLT+RCNN)

Figure 2 shows a car with a plate. The plate is rectangular and white. It has black lettering. The car is parked
in front of a garage. Whereas Figure 3 shows the detection of the car plate using KLT and R-CNN. KLT is a
feature tracking algorithm that tracks the movement of the plate over time. R-CNN is an object detection algorithm
that detects the location of the plate in the image. The efficacy of the proposed approach is rigorously evaluated
through a plethora of performance metrics, including but not limited to precision, accuracy, recall, and the F1-
score. These metrics collectively afford a holistic evaluation of the model’s performance capabilities. Furthermore,
quantitative insights pertaining to processing time, speed, and computational complexity are elucidated, providing a
comprehensive overview of the system’s operational efficiency.

4.1 Precision

Precision, a prevalent metric in assessing the efficacy of text classification and information retrieval systems,
quantifies the proportion of retrieved items that are pertinent to the user’s query.

Precision =
The number of accurately predicted positive instances

The total count of positive instances in the dataset
(1)

Figure 4. Comparison of precision

Figure 4 shows a bar chart comparing the precision of existing and proposed license plate detection methods.
The KLT+R-CNN method has the highest precision of the two methods as seen from the figure. This is because
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KLT+R-CNN use a combination of feature tracking and object detection to identify license plates. Feature tracking
helps to identify the plate’s location in the image, while object detection helps to confirm whether the object identified
is actually a license plate.

4.2 Accuracy

Accuracy stands as the predominant metric for gauging the performance of a classification model, being derived
from the ratio of correctly classified instances to the aggregate sum of instances. On the other hand, the error rate
offers an alternative measure of classification efficacy, computed as the quotient of incorrectly classified instances
and the total number of instances classified correctly. Figure 5 compares the accuracy of different plate detection
methods. The blue bar represents the average accuracy of the proposed algorithm, whereas the orange bar represents
the average accuracy of the existing CNN model.

Accuracy =
The count of positive instancescorrectly predicted

The total count of positive predictions made
(2)

Figure 5. Comparison of accuracy

The performance of the proposed method is presented in Table 1, which includes accuracy scores for both
our method and existing algorithms. The accuracy is a measure of how much detection are correct. A higher
accuracy score indicates that the algorithm is more likely to correctly identify license plates. As shown in the table,
the proposed algorithm has the highest accuracy amongst all the other algorithms. This means that the proposed
algorithm is more likely to correctly identify license plates than the other algorithms.

Table 1. Accuracy performance of proposed method versus existing algorithms

Algorithm Accuracy
ZF 0.94

VGG16 0.97
VGG-CNN-M-1024 0.96

ResNet101 0.94
ResNet50 0.97

OKM-CNN 0.98
Proposed 0.99267

4.3 Recall

It is deemed suitable when the primary objective lies in the minimization of false negatives. On certain occasions,
the emphasis is placed on obtaining precise predictions for the positive class. Figure 6 compares the recall of different
plate detection methods. As shown in the figure, the proposed algorithm has a recall of 90%, which is significantly
higher than the recall of the existing algorithm, which is 80%. This suggests that the proposed algorithm is more
likely to correctly identify plates in an image.

Recall =
No. of correctly predcted positive instances

The total count of positive instances in the dataset
(3)
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Figure 6. Comparison of recall

4.4 F1-Score

The F-score, alternatively referred to as the F1-score, constitutes a critical metric employed in assessing a model’s
performance in dataset analysis. It predominantly finds its application in the scrutiny of binary classification systems,
responsible for assigning instances to either ‘positive’ or ‘negative’ classes. Fundamentally, the F-score functions as
a balanced mechanism to amalgamate both the precision and recall of the model, being rigorously delineated as the
harmonic mean of the model’s respective precision and recall metrics.

F1-Score = 2 ∗ Pecision ∗ Recall
Pecision + Recall

(4)

Figure 7. Comparison of F-score

Figure 8. Performance analysis of proposed work

Figure 7 shows the comparison of the model F-score across different feature sets. In this figure, the x-axis
represents the different feature sets that were used to train the model, and the y-axis represents the F-score of the
model. The blue line shows the F-score of the model that was trained on the full set of features, and the other lines
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show the F-score of the model that was trained on subsets of the features. As it can be seen, the F-score increases as
the number of features increases. However, the increase in F-score starts to level off after a certain number of features.
This suggests that there is a point at which adding more features does not significantly improve the performance of
the model. Figure 8 provides a visual representation of the performance of the proposed method compared to the
existing work. The figure shows that the proposed method consistently outperforms the existing work across all four
parameters.

Table 2. Parameters performance of proposed method versus existing algorithms

Parameters Existing Work Proposed Work
Accuracy 74.572 99.267

Recall 74.572 99.267
Precision 100 100
F-Score 85.434 99.632

Table 2 compares the performance of the proposed method to existing algorithms in terms of four key parameters:
accuracy, recall, precision, and F1-score. In case of accuracy, the proposed method has an accuracy of 99.267%,
while the existing work has an accuracy of 74.572%. This means that the proposed method is much better at correctly
classifying instances than the existing work.

In case of recall, the proposed method has a recall of 99.267%, while the existing work has a recall of 74.572%.
This means that the proposed method is also better at correctly classifying positive instances than the existing work.
For precision, the proposed method has a precision of 100%, while the existing work has a precision of 100%.
This means that the proposed method is very good at avoiding false positives, while the existing work has a similar
performance.

F1-score is the harmonic mean of precision and recall. It is a more balanced measure of overall performance than
either precision or recall alone. In this case, the proposed method has an F1-score of 99.632%, which is significantly
higher than the F1-score of 85.434% for the existing work. This means that the proposed method is better at both
correctly classifying positive instances and avoiding false positives.

Overall, the proposed method is significantly more accurate, has a higher recall, and has a higher F1-score. These
results suggest that the proposed method is a more effective approach to the task of classification.

Figure 9. Snapshot of coding with extract LBP features

Figure 9 presents the performance metrics of the proposed KLT-based approach, revealing an impressive accuracy
of 99.267%, a precision of 100%, a recall of 99.267%, and an F-Score of 99.632%. These results markedly outperform
those achieved by existing techniques. The KLT method has demonstrated its robustness and precision in character
localization and segmentation, culminating in enhanced accuracy for character recognition.

5 Conclusion

The burgeoning population density worldwide necessitates efficacious methodologies for vehicle detection,
crucial for traffic management optimization. In this study, a robust VLPR system has been elucidated, utilizing
Raspberry Pi for video processing. This system adeptly identifies and extracts numerical information from vehicle
license plates through a meticulously designed suite of methodologies and algorithms.

The feasibility of the VLPR system for practical implementation in traffic control and management has been
established, with promising implications for enhancing law enforcement, traffic surveillance, and security measures.
The KLT-based method proposed herein has demonstrated its capability to develop a vehicle detection and tracking
algorithm that is not only computationally efficient but also robust and precise, addressing the limitations inherent
in existing methodologies.

In conclusion, the current research has validated the effectiveness of the VLPR system, laying a solid groundwork
for its practical and impactful applications. As continual refinements and expansions are made to this work, there
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is a potential for technology to play a pivotal role in surmounting contemporary challenges, further harnessing its
capacity to contribute to societal advancement.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.
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