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Abstract: Foggy road conditions present significant challenges for road monitoring systems and autonomous driving,
as conventional defogging techniques often fail to accurately recover fine details of road structures, particularly under
dense fog conditions, and may introduce undesirable artifacts. Furthermore, these methods typically lack the ability
to dynamically adjust transmission maps, leading to imprecise differentiation between foggy and clear areas. To
address these limitations, a novel approach to image dehazing is proposed, which combines an entropy-weighted
Gaussian Mixture Model (EW-GMM) with Pythagorean fuzzy aggregation (PFA) and a level set refinement technique.
The method enhances the performance of existing models by adaptively adjusting the influence of each Gaussian
component based on entropy, with greater emphasis placed on regions exhibiting higher uncertainty, thereby enabling
more accurate restoration of foggy images. The EW-GMM is further refined using PFA, which integrates fuzzy
membership functions with entropy-based weights to improve the distinction between foggy and clear regions. A
level set method is subsequently applied to smooth the transmission map, reducing noise and preserving critical
image details. This process is guided by an energy functional that accounts for spatial smoothness, entropy-weighted
components, and observed pixel intensities, ensuring a more robust and accurate dehazing effect. Experimental
results demonstrate that the proposed model outperforms conventional methods in terms of feature similarity, image
quality, and cross-correlation, while significantly reducing execution time. The results highlight the efficiency and
robustness of the proposed approach, making it a promising solution for real-time image processing applications,
particularly in the context of road monitoring and autonomous driving systems.

Keywords: Image defogging; Fuzzy aggregation; Entropy; Level-set method; Real-time processing; Road monitoring;
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1 Introduction

Image defogging, or dehazing, plays a crucial role in enhancing the visibility and quality of road images
compromised by environmental conditions such as fog, haze, and smog. These atmospheric phenomena scatter
light, leading to a significant reduction in contrast, color fidelity, and overall image clarity [1–4]. Such degradation
presents substantial challenges in critical applications, including road monitoring, autonomous driving, and traffic
surveillance, where high-quality visual data is indispensable for ensuring safety and informed decision-making.
The restoration of clear, unobstructed road images is essential not only for improving driver visibility but also for
optimizing transportation systems and safeguarding public well-being.

A key concept in numerous defogging methods is the atmospheric scattering model, which characterizes the
interaction of light with atmospheric particles, leading to image haziness [5, 6]. Variables such as the distance
between the camera and the object, as well as the concentration of atmospheric particles, significantly influence
the degree of image degradation. Accurately understanding and modeling these factors is pivotal for recovering
the scene’s true radiance, which reflects the original, unobstructed image. This is especially critical in applications
such as road navigation and control systems, where high-quality imagery is essential for obstacle detection and
precise environmental analysis. In addition to road-based applications, the restoration of clear imagery has broader
ramifications in fields such as remote sensing, aerial imaging, and environmental monitoring.
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Several approaches have been proposed to tackle the problem of road image defogging, with methods categorized
into enhancement-based, restoration-based, and deep learning-based techniques [7–14]. Enhancement-based techniques
aim to improve image quality visually without explicitly modeling the degradation process. Methods such as
histogram equalization and adaptive contrast adjustment can enhance visual appeal but often fail to recover the true
scene radiance, resulting in unnatural or distorted outputs. Retinex-based approaches, inspired by the human visual
system, attempt to separate lighting from reflectance to improve visibility. However, these methods can struggle
with issues like color distortion and noise enhancement. For instance, Tan [8] proposed a method for improving
visibility in adverse weather using a single image, but this approach has limitations in accurately restoring scene
details. Moreover, such methods may not perform well in dynamic conditions where haze density fluctuates spatially
and temporally.

Restoration-based methods aim to reconstruct the original scene radiance by modeling the physical haze formation
process. The dark channel prior (DCP) is a well-known technique in this category, which assumes that at least one-
color channel in most non-sky regions will have low intensity. While DCP has demonstrated effective defogging
performance, it often introduces halo artifacts, especially in sky areas, and requires additional post-processing to
achieve optimal results. Other restoration methods, such as polarization-based approaches, use multiple polarized
images for depth estimation, and fusion-based methods combine images captured under varying conditions [9, 15].
These techniques aim to overcome the shortcomings of enhancement-based methods but can introduce computational
complexity and dependency on specific imaging conditions. For example, fusion methods require images taken at
different exposures, which may not always be feasible in real-time applications.

Road defogging models have gained significant attention due to their crucial role in enhancing visibility and
safety in adverse weather conditions. Shi and Song [16] proposed Defog YOLO, a deep-learning-based approach for
road object detection in foggy weather. Their model integrates a dehazing module with the YOLO object detection
framework, significantly improving the visibility of road scenes before detecting objects. The model effectively
restores object details lost due to dense fog, achieving high accuracy in detecting vehicles and pedestrians. However,
one of its limitations is the increased computational complexity, making it less suitable for real-time applications on
resource-constrained devices. Additionally, while the model performs well in synthetic fog scenarios, its effectiveness
in varying real-world conditions, such as nighttime fog, requires further evaluation.

Another notable study by Choi et al. [17] introduced a fog detection mechanism to improve the effectiveness of
de-fogging algorithms for road driving images. Their method utilizes image-based analysis techniques to differentiate
foggy scenes from clear ones, optimizing the subsequent de-fogging process. In their follow-up study in 2018, Jeong
et al. [18] proposed a Fast Fog Detection method, which significantly reduces the processing time of fog recognition
using enhanced feature extraction techniques. These models excel in detecting and differentiating varying fog
densities, ensuring that the right level of dehazing is applied. However, their performance is limited in extremely
dense fog conditions where image contrast is severely degraded, and their reliance on prior assumptions about fog
distribution may limit adaptability in unpredictable weather scenarios.

Singh and Kumar [19] introduced a Gain Coefficient-Based Trilateral Filter for defogging road images, focusing
on preserving edge details while enhancing image clarity. The filter adaptively adjusts image contrast and sharpness,
resulting in improved scene perception. Similarly, Guo et al. [20] developed a Fast Defogging and Restoration
Assessment Approach, which prioritizes real-time processing by balancing computational efficiency and image
quality restoration. These approaches achieve notable success in improving image contrast and retaining texture
details. However, their limitations include a dependency on specific parameter tuning, which may require adjustments
for different fog densities and lighting conditions. Additionally, they may struggle with color distortion, affecting
the natural appearance of road scenes after defogging.

Despite the advances in road image defogging techniques, many existing models still face significant limitations
in accurately differentiating between clear and foggy regions. These limitations arise primarily due to the static
nature of component weights, which do not adapt to the inherent uncertainty present in road images. As a result,
traditional methods often fail to dynamically adjust to varying uncertainties in the image, leading to suboptimal
performance, particularly in regions with high variability, noise, or complex lighting conditions. Moreover, many
approaches struggle to refine the transmission map effectively and ensure smoothness across the image, making it
challenging to obtain consistent and accurate results in real-world scenarios such as autonomous driving, intelligent
transportation systems, and road monitoring, where precise visibility and edge definition are crucial.

To overcome these limitations, this paper introduces a novel road image defogging approach that integrates an
EW-GMM with PFA and level set refinement. This dynamic weighting mechanism allows the model to adjust
the influence of each component based on its uncertainty, focusing more on regions with lower uncertainty and
less on those with higher uncertainty. The model achieves this through a probabilistic distribution framework that
represents pixel intensities as a weighted sum of Gaussian distributions, where the weights are determined based on
the entropy of each component. Additionally, the incorporation of PFA enhances the robustness of the model by
refining the transmission map, giving greater importance to more certain regions while dynamically adjusting for
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uncertain areas. The framework is further optimized using a level set method, which ensures spatial smoothness and
improves the accuracy of foggy region delineation. By addressing the challenges of uncertainty handling, spatial
coherence, and dynamic weighting, the proposed model provides a more effective solution for road image defogging
and segmentation tasks, particularly in complex, foggy driving environments.

The proposed model utilizes a probabilistic mixture approach to model pixel intensities in an image. The key
components of the model are as follows:

Probabilistic Mixture Model for Pixel Intensities: A mixture of Gaussian distributions is used to represent
different regions of the image, such as clear and foggy areas, ensuring accurate modeling of road scenes.

Entropy-Based Weighting for Gaussian Components: The weights of each Gaussian component are dynamically
adjusted based on their entropy. Components with higher entropy (more uncertainty) receive smaller weights, while
those with lower entropy (less uncertainty) receive larger weights, allowing for more precise defogging in critical
areas such as road edges and lane markings.

Impact of High and Low Entropy: The model adjusts the influence of each Gaussian component by prioritizing
low-entropy (high-certainty) areas, such as vehicle contours and road signs, while reducing the influence of high-
entropy (low-certainty) regions affected by dense fog.

Fuzzy Aggregation with Pythagorean Fuzzy Logic: Fuzzy aggregation is employed to integrate multiple fuzzy
sets derived from the image, considering the entropy-based weights of the Gaussian components. This ensures that
more certain components contribute significantly to the refined transmission map, resulting in improved contrast and
visibility for road scenes.

Level Set Refinement for Smoothing: The transmission map is further refined using a level set method, which
smooths the map and reduces noise, particularly in uncertain regions. The level set method minimizes an energy
functional that balances smoothness and intensity accuracy, ensuring a more natural and visually coherent defogged
road image.

This approach effectively adjusts for uncertainty in pixel intensities and refines road images through fuzzy
aggregation and level set techniques, leading to enhanced visibility and improved scene perception for autonomous
driving and intelligent transportation applications.

The structure of the paper is as follows: Section 2 reviews previous defogging techniques, discussing their
strengths and limitations. Section 3 introduces the proposed defogging model, elaborating on the integration of
fuzzy logic with advanced image processing methods for enhanced fog removal. Section 4 presents the experimental
results, including a comprehensive analysis of evaluation metrics and a comparison of the performance of the
proposed defogging model with existing approaches. Finally, Section 5 concludes the paper, summarizing the key
findings and suggesting future research directions for improving fog removal techniques.

2 Related Work

In recent years, significant advancements have been made in the field of image defogging and enhancement,
particularly for improving visibility and quality under foggy conditions. A notable contribution in this area is the
work by Sabitha and Eluri [21], who proposed an innovative image defogging and enhancement method based on
the Retinex algorithm. This method was designed to address the common issue of image degradation caused by fog,
which typically results in low contrast, poor visibility, and blurred details. Sabitha’s approach effectively mitigates
the blurring of image details that often occurs in foggy weather, providing a clearer and more accurate representation
of the scene. The Retinex-based method not only improves the overall image quality but also enhances the fine
details, making it suitable for a wide range of applications, such as surveillance and autonomous driving. However,
the approach struggles with heavy fog, as it does not consistently provide accurate results in such extreme conditions.
The method’s performance declines under dense fog, leading to potential limitations in achieving the desired clarity
and detail restoration.

Image dehazing has been a significant challenge in computer vision, particularly in poor visibility conditions such
as haze, fog, or mist. The Cross-Entropy Deep Learning Neural Network (CE-DLNN) and the Guided Multi-Model
Adaptive Network (GMAN) have been explored for dehazing, with a study by Sabitha and Eluri [21] comparing their
performance. The results show that GMAN outperforms CE-DLNN in terms of PSNR, SSIM, and MAE, producing
clearer and more detailed images. Additionally, combining GMAN with CE-DLNN enhances the performance of
both methods, suggesting the benefit of integrating multiple models for improved dehazing. The mathematical
formulation of this model can be defined as follows:

Ifinal(x, y) = β1 ·
(

Ihazy(x, y)−A

max (t(x, y), t0)
+A

)
+ β2 · fCE (Ihazy(x, y); θ)

where, Ihazy(x, y) is the input hazy image, A is the atmospheric light, t(x, y) is the transmission map estimated by
GMAN, t0 is a small constant to avoid division by zero, and fCE (Ihazy(x, y); θ) represents the dehazed output from
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CE-DLNN. The weighting factors β1 and β2 satisfy β1 + β2= 1, ensuring a balanced integration of the two models’
outputs.

However, these approaches have limitations, including the need for substantial computational resources and large
datasets for training. While GMAN performs well in dehazing, its ability to handle extreme weather conditions like
heavy rain or snow has not been fully explored, and further research is needed to test the scalability and generalization
of these models for real-time applications.

Li and Xu [22] proposed image defogging method demonstrates significant advancements in addressing the
challenges of reduced visibility in haze-affected road traffic scenarios. By integrating the DCP algorithm with image
region segmentation, the model effectively enhances image details, resulting in superior visual quality and improved
target detection capabilities. This makes the method particularly valuable for intelligent transportation systems, as it
contributes to safer driving conditions and more reliable traffic monitoring. The mathematical function representing
the image dehazing process based on the improved DCP method can be expressed as:

J(x) =
I(x)−A

max
(
1− ω ·miny∈Ω(x)

(
minc∈{r,g,b} Ic(y)

)
, t0
) +A

where, J(x) is the dehazed image (scene radiance) at pixel x, I(x) is the observed hazy image, and A represents
the atmospheric light estimated from the brightest pixels in the dark channel. The term ω is a weighting parameter
controlling the extent of haze removal, andminc∈{r,g,b} I

c(y) represents the minimum intensity across RGB channels
at pixel y. The operator miny∈Ω(x) calculates the minimum value within a local patch Ω(x) centered at pixel x,
while t0 is a small constant used to avoid division by zero. This equation integrates all steps, including dark channel
computation, transmission estimation, and radiance recovery, into a single concise representation.

However, the approach is not without limitations. The reliance on the DCP algorithm can lead to artifacts in
bright regions or areas with minimal haze, which may compromise the overall image quality in specific scenarios.
Additionally, the inclusion of region segmentation increases computational complexity, potentially limiting the
method’s applicability in real-time traffic systems. Future work should focus on optimizing the algorithm to address
these challenges while maintaining its effectiveness in diverse traffic.

3 The Propose Mathematical Approach

The proposed mathematical framework models the pixel intensities of an image through a probabilistic mixture
approach, where the pixel intensity I(x) is described by a mixture of probability distributions. Each distribution in
the mixture represents a specific region of the image, such as clear or foggy areas. The overall distribution of pixel
intensities is represented as the sum of weighted individual distributions. These weights are determined dynamically
using the entropy of each component, allowing the model to adjust the influence of each component based on its
uncertainty. The probability distribution model is formulated as follows:

P (I(x)) =

K∑
k=1

wkπkN
(
I(x) | µk, σ

2
k

)
where, P (I(x)) is the probability distribution of pixel intensity I(x) in our proposed model. wk is the weight of
the k-th Gaussian component. This weight reflects the importance of the Gaussian component in modeling the
pixel intensities, and it is dynamically adjusted based on the entropy of each component. πk is the prior probability,
indicating how likely Gaussian component is to represent a given pixel intensity. N

(
I(x) | µk, σ

2
k

)
is the Gaussian

distribution with mean µk and variance σ2
k.

In the proposed model, the pixel intensities are modeled as a weighted sum of Gaussian distributions. Each
Gaussian component corresponds to different regions of intensity distributions in the image, such as clear or foggy
regions.

3.1 Weights Based on Entropy in EW-GMM

In our proposed approach, we introduce the concept of entropy to determine the weight wk for each Gaussian
component. This weight is now defined based on the entropy Hk of each Gaussian component. The entropy
quantifies the uncertainty or spread of the Gaussian component. We propose to dynamically adjust the weight of
each component using the entropy term as follows:

wk = 1−Hk

where, Hk is the entropy of the k-th Gaussian component and defined as follows:

Hk =
1

2

(
1 + log

(
2πσ2

k

))

19



where, σ2
k represents the variance of the k-th Gaussian component. The underlying idea behind this formulation

is that Gaussian components with higher uncertainty (i.e., higher entropy) are assigned smaller weights, while
components with lower uncertainty (i.e., lower entropy) are given larger weights. This adjustment enables the model
to place greater emphasis on more certain regions and less on uncertain ones.

3.2 Impact of High and Low Entropy in Our Proposed Model

In our proposed model, the entropy term plays a crucial role in determining how much influence each Gaussian
component will have on the final result. Specifically:

High Entropy (Hk): A Gaussian component with high entropy means it is more spread out, and thus represents
a region with more uncertainty about the pixel intensities. In our model, such components are given smaller weights
(since wk = 1−Hk), meaning they will contribute less to the final output.

Low Entropy (Hk): A Gaussian component with low entropy indicates a more concentrated distribution,
meaning there is less uncertainty about the pixel intensities in that region. In our model, these components are given
larger weights, meaning they will have a greater influence on the final result.

To further refine the transmission map and ensure more accurate fog cleaning, we propose using PFA. This
approach combines the fuzzy logic with the EW-GMM by aggregating multiple fuzzy sets derived from the image
data. The fuzzy aggregation incorporates the weights based on the entropy values of the Gaussian components, and
it is formulated as:

t′(x) =

∑K
k=1 wkµk(x)∑K

k=1 wk

where, t′(x) is the refined transmission map after fuzzy aggregation. µk(x) is the membership function for the k-th
component, representing the degree of belonging of pixel x to the k-th component.

This fuzzy aggregation helps to enhance the segmentation by giving higher importance to more certain Gaussian
components and dynamically adjusting the weight for uncertain components.

3.3 Level Set Refinement

After the fuzzy aggregation, we further refine the transmission map using a level set method. This step helps to
smooth the transmission map and reduce noise, especially in uncertain regions. The minimized energy functional
for the level set refinement is defined as:

min
t′(x)

E (t′(x)) =

∫ (
(∇t′(x))

2
+ λ

K∑
k=1

wk (µk(x)− t′(x))
2
+ λ′ (I(x)− t′(x))

2

)
dx

where, ∇t′(x) represents the gradient of the transmission map, capturing the spatial smoothness. The term µk(x)
are the mean values of the Gaussian components at each pixel location. λ and λ′ are regularization parameters
controlling the influence of the entropy term and the intensity error term and I(x) is the observed image intensity.

The level set refinement enhances the accuracy of the transmission map by considering both the entropy-weighted
Gaussian components and the fuzzy membership functions. It helps to smooth the map and better delineate the
boundaries between different regions in the image.

The PFA model offers significant advantages for defogging by effectively handling uncertainty and improving
visibility in degraded road images. Unlike traditional fuzzy models, PFA incorporates both membership µ and
non-membership v degrees, allowing for a more precise representation of foggy and clear regions. Its entropy-
based weighting mechanism dynamically adjusts the influence of each component, prioritizing regions with lower
uncertainty and reducing the impact of noise and intensity variations. This leads to more accurate transmission map
estimation, ensuring a smoother and more adaptive defogging process. Additionally, PFA provides better resilience
against noise and blur, making it particularly effective in challenging environments with varying fog densities. By
leveraging these strengths, the proposed approach achieves enhanced visibility, improved edge definition, and more
consistent dehazing results for road monitoring and autonomous driving applications.

4 Experimental Setup and Parameter Configuration

To assess the effectiveness of the proposed EW-GMM for road defogging, which incorporates Fuzzy Aggregation
and Level Set Refinement, a series of experiments were conducted using fog-affected road images. These images
were obtained from publicly available datasets, including the RESIDE dataset and the Foggy Driving dataset, selected
for their diverse representation of fog densities, road types, and environmental conditions. The datasets included
more than 300 images, ensuring a comprehensive evaluation of the proposed model. Before applying the model, the
images underwent a preprocessing stage to standardize input conditions and enhance image clarity. First, all images
were resized to a standardized resolution of 256×256 pixels to maintain uniform dimensions and ensure consistent
feature extraction across different image sizes. Next, adaptive histogram equalization was applied to normalize
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intensity distributions, enhancing contrast between foggy and clear regions. To further refine the images, a Gaussian
smoothing filter was used to suppress unwanted noise, preventing random intensity fluctuations from affecting the
defogging process. Additionally, a Laplacian filter was applied to enhance edge details, ensuring better distinction
between road structures and foggy back-grounds. These preprocessing steps significantly improved the robustness
of the model against varying levels of fog intensity. To enhance clarity, visual representations of the preprocessing
results, including the original foggy image, contrast-enhanced image, noise-reduced image, and edge-enhanced
image, will be included in the revised manuscript. The experiments were executed on a system equipped with
MATLAB 2019, a high-performance CPU, 8 GB of RAM, and Windows 10 (64-bit), ensuring efficient processing
for evaluating the model under diverse foggy conditions.

The parameter settings for the EW-GMM-based model were determined based on extensive experimentation and
fine-tuning. Specifically, the GMM components were adjusted to match the intensity distribution characteristics
of foggy road images. In the model, the mean intensity µk for the Gaussian components was set to 120 , and the
standard deviation σk was set to 25 for foggy regions, based on the statistical analysis of pixel intensity distributions
from the training set. The weights for the PFA operator, w1 and w2, were set to 0.7 and 0.3, respectively, based on
the relative importance of clear and foggy regions in the image. For the level set refinement, the threshold parameter
α was empirically set to 0.5. These values were chosen since foggy areas typically exhibit intensity clusters in this
range, allowing the model to effectively identify fog-affected regions and remove fog from the image.

Figure 1 illustrates a foggy image with added noise, alongside the corresponding defogging result produced by
the proposed model and the ground truth image. This highlights the capability of the proposed method to restore
the image clarity and reduce the noise effectively while closely matching the ground truth. Figure 2 provides a
comparative analysis of defogging performance using input foggy images. The first column displays the original
foggy images, while the second and third columns showcase the defogging results from Sabitha and Eluri [21] and Li
and Xu [22], respectively. The fourth column features the outcomes of the proposed model, demonstrating its ability
to deliver improved clarity and detail preservation compared to the other methods. These visual results emphasize
the proposed model’s superior performance in handling foggy conditions and preserving image quality.

Figure 1. The foggy image with noise, result of the proposed model and the ground truth

Figure 2. Comparison of defogging techniques

In Figure 2, the first column contains the input foggy images, while the second column illustrates the outcomes
achieved by Sabitha and Eluri [21]. The third column showcases the results obtained by Li and Xu [22], and the final
column features the defogged images produced by the proposed model, which exhibit enhanced clarity and superior
detail preservation.

Figure 3 provides a detailed comparative analysis of the performance of the competing models and the proposed
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model. The first column shows the input foggy images with a noise level of 0.1, serving as the baseline for evaluation.
The second column illustrates the defogging results obtained using the method proposed by Sabitha and Eluri [21],
highlighting its effectiveness in partially improving visibility. The third column displays the outcomes produced by
Li’s model, which shows further enhancement in clarity compared to Sabitha’s method. The final column presents
the results achieved by the proposed model, which demonstrate significantly improved clarity and superior detail
preservation. This comparison underscores the proposed model’s ability to handle challenging conditions with fog
and noise while maintaining high image quality and visual fidelity.

Figure 3. Comparative performance evaluation of defogging models

In Figure 3, the first column displays the input foggy images with a noise level of 0.1. The second column
presents the defogging results obtained by Sabitha and Eluri [21], followed by the third column, which shows the
outcomes achieved by Li and Xu [22]. Finally, the last column highlights the defogging results produced by the
proposed model.

Figure 4 demonstrates the performance of various models in handling blurred images. The first column presents
the input blurred image, serving as the baseline for comparison. The second column depicts the defogging results
achieved by Sabitha and Eluri [21], which show moderate improvement in visibility but limited detail recovery. The
third column illustrates the outcomes from Li’s model, offering enhanced sharpness and clarity compared to the
previous method. Finally, the fourth column highlights the results of the proposed model, showcasing its exceptional
ability to handle blurred images effectively. The proposed model not only restores clarity but also preserves intricate
details, further emphasizing its robustness and adaptability in processing both foggy and blurred images. This
demonstrates its superior performance across a range of challenging visual conditions.

Figure 4. Comparison of blurred image restoration results using different models

In Figure 4, the provided blurred image is shown in the first column, followed by the results of Sabitha and
Eluri [21] in the second column, Li and Xu [22] in the third column, and the proposed model in the fourth column,
respectively.

4.1 Statistical Analysis for Proposed Model

The mathematical calculations in the context of defogging (or image dehazing) involve evaluating the quality
of defogged images using various metrics, such as Mean Squared Error (MSE), Feature Similarity Index (FSIM),
Universal Image Quality Index (UIQI), and statistical tests. These calculations help quantify the performance of the
proposed defogging model against other competing models.
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4.1.1 MSE
MSE is used to assess the difference between the original (fog-free) image and the defogged image. A lower

MSE indicates better quality. The MSE is calculated as:

MSE =
1

N

N∑
i=1

(Iorig(i)− Idefog (i))
2

where, Iorig is the original (fog-free) image, Idefog is the defogged image, N is the total number of pixels in the image.

4.1.2 FSIM
FSIM evaluates the similarity between the original and defogged images based on the low-level features like

edges and gradients. The FSIM is given by:

FSIM (Iorig, Idefog) =

∑N
i=1 similarity (Iorig(i), Idefog(i))

N

where, similarity (·) is a feature similarity measure based on edge and gradient information, N is the total number
of pixels in the image.
4.1.3 UIQI

UIQI is another important metric that evaluates the perceptual quality of defogged images by considering
luminance, contrast, and structure, similar to SSIM, but with a more robust approach to image distortion. The UIQI
is given by:

UIQI (Iorig , Idefog ) =
(2µorig µdefog + C1) (2σorigdefog + C2)(

µ2
orig + µ2

defog + C1

)(
σ2

orig + σ2
defog + C2

)
where, µorig and µdefog are the mean intensities of the original and defogged images, σ2

orig and σ2
defog are the variances

of the original and defogged images, σorigdefog is the covariance between the original and defogged images, C1 and
C2 are constants used to stabilize the denominator.
4.1.4 Paired t-test for defogging model comparison

The paired t-test is used to compare the performance of the proposed defogging model against competing models.
The test statistic is calculated as:

t =
d̄

sd/
√
n

where, d̄ is the mean of the differences between the paired samples (i.e., the difference in MSE, FSIM, or UIQI
values between the proposed defogging model and another model), sd is the standard deviation of these differences,
n is the number of pairs (number of test images).

p = 2× P (T ≥ |t|)

where, P (T ≥ |t|) represents the probability of obtaining a test statistic at least as extreme as the observed t-value
under the null hypothesis. The pvalue associated with the t-test is used to determine if the observed difference in
performance is statistically significant.
4.1.5 One-way ANOVA for model comparison

One-way ANOVA is applied to compare the performance of multiple defogging models across various metrics.
The F-statistic is calculated as:

F =
Between-group variability
Within-group variability

where, between-group variability measures how much the means of the different models differ from the overall mean,
within-group variability measures the variability within each group of model outputs.

p = P (F ≥ Fobs)

where, Fobs is the observed F-statistic, and the probability is computed from the F-distribution with the appropriate
degrees of freedom. A large F -value and a small p -value indicate that at least one of the models performs significantly
differently from the others.
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4.1.6 Wilcoxon Signed-Rank (WSR) test for defogging efficiency comparison
The WSR Test is a non-parametric test used to compare the execution time of the proposed defogging model with

competing models. It is calculated as:

W =
∑

(signed ranks of execution time differences)

where, the differences between execution times of the proposed and competing models are ranked, and the sign of
each difference is retained. The p-value obtained from this test indicates whether there is a significant difference in
execution time between the models. The p-value is defined as follows:

p = 2× P (W ≥ Wobs)

where, P (W ≥ Wobs ) is derived from the Wilcoxon rank-sum distribution.
4.1.7 Execution time comparison (second)

The efficiency of the proposed defogging model can also be assessed by measuring its execution time on a test
set of images. The average execution time is compared to that of other defogging models using statistical tests such
as the paired t-test and the WSR Test to assess if the proposed model is significantly faster without compromising
image quality.
4.1.8 Image fidelity comparison

Image fidelity can be measured using a set of perceptual metrics such as Normalized Cross-Correlation
(NCC). NCC is used to assess how closely the defogged image matches the original image in terms of pixel-level
correspondence. The NCC is calculated as:

NCC =

∑N
i=1 (Iorig(i)− µorig) (Idefog(i)− µdefog)√∑N

i=1 (Iorig(i)− µorig)
2∑N

i=1 (Idefog(i)− µdefog)
2

where, µorig and µdefog are the mean pixel values of the original and defogged images, respectively.
The closer the NCC value is to 1, the better the image fidelity.
The performance comparison between the proposed defogging model and the competing models (Sabitha’s model

and Li’s model) is presented in Table 1. The results demonstrate that the proposed model consistently outperforms
the existing methods across various quality metrics, execution time, and statistical significance tests.

Table 1. Comparison of the proposed defogging model with competing Sabitha’s model and Li’s model

Metric Our Model Sabitha’s Model Li’s Model
MSE 0.023 0.045 0.039
FSIM 0.95± 0.01 0.85± 0.02 0.89± 0.02
UIQI 0.92± 0.02 0.88± 0.03 0.84± 0.04
NCC 0.98± 0.01 0.93± 0.02 0.91± 0.03

Execution time (s) 2.2± 0.3 7.4± 0.5 6.5± 0.4
Paired t-test (p-value) < 0.01 — —

WSR (p-value) < 0.05 — —
ANOVA (p-value) < 0.01 — —

MSE: The proposed model achieved the lowest MSE value of 0.023, significantly better than Sabitha (0.045)
and Li (0.039). This indicates that the defogged images generated by the proposed model are closer to the original
(fog-free) images, showcasing its ability to minimize reconstruction errors.

FSIM: The FSIM of the proposed model (0.95±0.01) is significantly higher than that of Sabitha (0.85±0.02)
and Li (0.89±0.02). This demonstrates the superior preservation of structural and perceptual features, such as edges
and gradients, by the proposed model.

UIOI: The proposed model also exhibited a higher UIOI (0.92±0.02) compared to Sabitha (0.88±0.03) and
Li (0.84±0.04). This highlights its robustness in maintaining luminance, contrast, and structure, ensuring visually
pleasing results.

NCC: With an NCC of 0.98±0.01, the proposed model achieved closer pixel-level correspondence with the
original images compared to Sabitha (0.93±0.02) and Li (0.91±0.03). This underscores the high fidelity of the
defogged images produced by the proposed approach.
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Execution time: The proposed model was also the fastest, with an average execution time of 2.2±0.3 seconds,
outperforming Sabitha (7.4±0.5 seconds) and Li (6.5±0.4 seconds). This efficiency is particularly advantageous for
real-time applications, where rapid processing is essential.

The statistical tests further validate the superiority of the proposed model. The paired t-test results (p-value <
0.01) confirm significant improvements in metrics like FSIM and UIQI over competing models. Similarly, the WSR
test (p-value < 0.05) indicates that the proposed model’s execution time is significantly shorter. Finally, the one-way
ANOVA (p-value < 0.01) demonstrates that the observed differences among the models are statistically significant.

The combination of lower MSE, higher FSIM, UIQI, and NCC, and reduced execution time demonstrates the
overall effectiveness of the proposed defogging model (see Figure 5). The statistical significance of the results
further supports its robustness and reliability. These findings suggest that the proposed model is well-suited for
applications requiring high-quality defogging with efficient processing, such as autonomous driving, remote sensing,
and surveillance systems.

Figure 5. Comparative performance evaluation of defogging models

The proposed model outperforms Sabitha’s model and Li’s model with the lowest MSE, highest FSIM and UIQI
values, and the shortest execution time, demonstrating superior image quality and computational efficiency.

5 Conclusion

In this work, a novel image defogging model has been proposed, integrating EW-GMM with PFA for road image
defogging. The model dynamically adjusts the influence of each Gaussian component based on entropy, thereby
improving the differentiation between foggy and clear regions. This dynamic weighting mechanism enhances the
model’s flexibility, making it more effective in addressing various fog densities and uncertainties inherent in road
images. The incorporation of PFA further refines the transmission map, improving image contrast while preserving
important structural details. Additionally, the level set refinement method smooths the transmission map, improving
the distinction between foggy and clear regions, ensuring accurate fog removal and clearer road boundaries.

Despite its promising performance, the model is limited in extremely dense fog conditions or in the presence
of non-homogeneous haze, where finer structural details may not be fully restored. Furthermore, the reliance on
predefined parameters constrains the adaptability of the model in dynamic atmospheric conditions. Future work will

25



focus on overcoming these limitations by incorporating adaptive parameter selection techniques and learning-based
frameworks to enhance the model’s adaptability. The potential integration of deep learning techniques will be
explored to improve the generalization of the model across diverse environments. Moreover, efforts will be directed
towards extending the applicability of the model for real-time defogging in autonomous vehicles, satellite imaging,
and aerial surveillance, broadening its use in challenging imaging scenarios.
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