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Abstract: Automated detection of vehicle dents remains a challenging task due to variability in lighting conditions,
surface textures, and the presence of minor deformations that may mimic actual dents. This paper presents a
novel hybrid framework that integrates color deviation analysis, fuzzy classification, and the Structural Similarity
Index (SSI) to enhance detection robustness and accuracy. The proposed model employs an adaptive bounding box
generation technique, optimized via morphological operations, for precise dent localization. A newly introduced
Color Difference Metric (CDM), computed in the Hue, Saturation, and Value (HSV) color space, quantifies subtle
color deviations induced by dents, improving the system’s sensitivity to minor deformations. Furthermore, a
hybrid classification mechanism—merging step-function classification with fuzzy membership functions—ensures
smoother transitions between dent severity levels, mitigating the risks of hard thresholding. SSI serves as a structural
integrity validator, helping to differentiate true dents from surface irregularities and lighting artifacts. A Dent
Confidence Score is computed as a weighted aggregation of the step-function output, fuzzy confidence levels, and
SSI response, effectively balancing sensitivity and specificity. Dents are categorized into three interpretable classes:
No Dent, Possible Dent, and Confirmed Dent. Evaluation on real-world datasets—encompassing diverse lighting
conditions, vehicle colors, and camera angles—demonstrates the model’s superior performance. Compared to
traditional approaches, our method significantly improves key metrics such as Intersection over Union (IoU), Dice
Coefficient, Precision, Recall, and F1-Score, underscoring its applicability in real-world automated dent detection
systems.

Keywords: Dent detection; Color deviation analysis; Fuzzy classification; SSI; CDM; Adaptive bounding box;
Image processing; Deep learning alternative

1 Introduction

Vehicle dent detection plays a vital role in ensuring quality control during automotive manufacturing and
maintenance processes. Accurate identification of dents and deformations is essential for maintaining vehicle
aesthetics, structural integrity, and customer satisfaction. Traditionally, this task has relied on manual visual
inspection, which is often time-consuming, subjective, and inconsistent. To address these limitations, recent
advancements have focused on automated approaches using computer vision, artificial intelligence (AI), and machine
learning (ML). These intelligent systems, especially when combined with image processing techniques, offer efficient,
reliable, and cost-effective solutions for real-time dent detection and classification in automotive applications [1–5].

Various approaches have been employed to tackle the problem of car dent detection, primarily leveraging deep
learning and image processing techniques [6, 7]. For example, Parihar et al. [7] proposed a machine intelligence-
based model that integrates deep learning algorithms for the detection of dents and scratches on car surfaces. Their
approach employs convolutional neural networks (CNNs) trained on annotated datasets, allowing the system to
automatically identify and classify surface damages with high accuracy. The study demonstrated that AI-driven
approaches significantly outperform traditional manual inspection methods, making them more efficient for large-
scale automotive applications. Park et al. [8] introduced a region-based convolutional neural network (R-CNN)
for precise dent localization. Their model utilizes selective search to generate region proposals, which are then
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processed by a CNN to classify and refine the dent boundaries. The R-CNN approach significantly improves
detection accuracy over conventional image processing techniques by learning hierarchical features from raw image
data. This model proved particularly effective in handling complex surface variations and identifying small dents
that are often overlooked by traditional methods.

Martis et al. [9] advanced car dent detection by developing a car damage assessment recommendation system
using neural networks. The system leverages neural networks for feature extraction and classification, enabling more
accurate detection and assessment of car dents. This model improves performance, especially in cases where the
contrast between the dent and the undamaged surface is minimal, and enhances robustness across varying lighting
conditions and surface textures. Qaddour and Siddiqa [10] proposed a novel approach to vehicle damage estimation
using an enhanced deep learning algorithm. The authors focused on improving the accuracy and efficiency of vehicle
damage assessment by combining CNNs with a novel attention mechanism. This approach allowed the model to
focus on critical areas of damage within the vehicle images, enhancing its ability to detect even subtle damage
features. The proposed model demonstrated promising results, with a notable improvement in both the detection and
classification of vehicle damage compared to traditional methods. Additionally, the study highlighted the ability of
the model to estimate the extent of the damage, making it highly suitable for insurance claim processing and repair
cost estimation.

Furthermore, Sikun et al. [11] introduced an image measurement system aimed at detecting dents and scratches
on used car body parts. Their approach combines high-resolution imaging with AI-based classification, ensuring
reliable defect assessment even for worn-out surfaces. The system was tested on a dataset of used vehicles and
demonstrated improved precision in distinguishing between genuine dents and superficial scratches. This advance-
ment is particularly useful for the used car industry, where accurate damage assessment is crucial for valuation and
resale purposes. Banerjee [12] explored the integration of CNN and support vector machine (SVM) techniques to
enhance dent classification. This model leverages CNNs for feature extraction, followed by SVM-based classifica-
tion to improve robustness against noisy image artifacts. By this methodology, the system achieves higher detection
accuracy while maintaining computational efficiency. Pérez-Zarate et al. [13] presented an automated car damage
assessment system utilizing computer vision for an insurance company use case. Their approach employs advanced
image processing techniques to identify and evaluate car damage, reducing the reliance on manual inspection. The
system uses a combination of object detection algorithms and deep learning models to accurately detect damage such
as dents, scratches, and other deformations. By automating the assessment process, the model enhances efficiency
and consistency in damage evaluation. The proposed system demonstrates significant potential in improving the
accuracy and speed of claims processing within the insurance industry.

Despite advancements in car dent detection, several challenges persist in developing highly reliable and gen-
eralized models. One of the primary obstacles is the sensitivity to environmental variations, including lighting
conditions, viewing angles, and surface reflections, which can cause significant discrepancies in detection accuracy.
These environmental factors often lead to false positives or missed detections, especially in real-world scenarios
where the lighting may vary between daylight and low-light conditions or when the vehicle is viewed from different
angles. Furthermore, existing models are often limited by surface texture complexity, as dents on certain materials or
vehicle types can be difficult to distinguish from surface irregularities, resulting in inconsistent performance across
diverse vehicle models. The use of real-time object detection models, such as YOLOv7 [10], has enhanced pro-
cessing speed, but further optimization is needed to address the accuracy challenges posed by these environmental
and textural variations. Additionally, many models are trained on specific datasets that may not generalize well
across different vehicle makes or surface textures, highlighting the need for more robust training methods. Recent
approaches have introduced novel methodologies to overcome these challenges.

He et al. [14] proposed AEGLR-Net, which integrates global and local features through an attention mechanism to
better detect car body defects. While this approach significantly improves detection under challenging conditions, it
requires large amounts of labeled data and substantial computational resources, which limits its real-time applicability.
Hasan et al. [15] developed GroundingCarDD, a multimodal framework combining natural language processing
(NLP) with visual data. While this enhances interpretability and aids in tasks like insurance claims processing, the
reliance on high-quality textual annotations and domain-specific models introduces inconsistencies across linguistic
variations and datasets. Similarly, Mohammed et al. [16] explored the use of deep learning techniques for classifying
vehicle damage and estimating repair costs. The authors employ a Mask Region-based Convolutional Neural
Network (Mask R-CNN) to identify and classify different types of car damage from images. Their model not only
detects damage accurately but also provides a cost estimation for repairs, making it highly relevant for insurance
and automotive industries. The study achieves an impressive classification accuracy of 98.5% in detecting damage
areas, showcasing the effectiveness of deep learning in automating car damage assessment. However, the study has
certain limitations. One major limitation is the reliance on high-quality, well-labeled training data, which may not
always be available in real-world scenarios. Additionally, the model may struggle with classifying damage in cases
of severe distortion or when damage is not clearly visible, such as in areas with low contrast.
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In this paper, we propose an advanced dent detection framework that integrates multiple complementary features
for robust and accurate surface deformation assessment. By combining color deviation analysis, which captures
alterations in hue, saturation, and intensity, with fuzzy classification, which provides adaptive confidence levels
based on deviation severity, the model effectively distinguishes dents from minor surface variations. Additionally,
the SSI enhances detection reliability by quantifying local texture distortions. The final dent confidence score is
computed through a weighted fusion of these features, ensuring a balanced trade-off between texture-based and
intensity-based dent detection. The model’s decision rule categorizes detected regions into no dent, possible dent, or
confirmed dent, enabling an automated and precise classification process. This comprehensive approach minimizes
false positives caused by lighting variations and improves dent localization accuracy, making it highly suitable for
practical automotive surface inspection applications.

1.1 Novelty and Contributions

The proposed dent detection framework introduces a novel fusion of color deviation analysis, fuzzy classification,
and SSI to enhance dent detection accuracy. The key novelties and contributions of the proposed model are
summarized as follows:

•We introduce an adaptive bounding box formation method that refines dent localization by incorporating
morphological operations, ensuring accurate contour-based region extraction.

•A robust color deviation analysis is formulated in the HSV color space, where a novel CDM quantifies dent-
induced variations, improving sensitivity to subtle deformations.

•A hybrid classification scheme is proposed by integrating a step-function-based classification and a fuzzy
membership function. This ensures a smooth transition between dent severity levels, minimizing abrupt decision
boundaries.

•The SSI is incorporated to validate structural integrity, distinguishing genuine dents from minor surface irregu-
larities or lighting artifacts.

•A novel dent confidence score is designed as a weighted combination of step-function classification, fuzzy
confidence, and SSI, leading to an optimized trade-off between sensitivity and specificity.

•The proposed decision rule classifies detected dents into three categories: No Dent, Possible Dent, and Confirmed
Dent, ensuring an interpretable and reliable assessment.

•Extensive evaluation on real-world datasets demonstrates the superiority of the proposed model over conventional
methods, achieving higher robustness in challenging scenarios involving lighting variations and surface texture
complexities.

Overall, the proposed approach enhances the precision and reliability of dent detection by leveraging fuzzy logic
and structural validation, paving the way for more accurate and automated defect identification in industrial and
automotive applications.

2 Literature Review

The task of vehicle dent and damage detection has witnessed significant advancements through the integration of
computer vision, image processing, and ML techniques. As the demand for accurate, fast, and automated inspection
systems increases in automotive manufacturing, maintenance, and insurance assessments, researchers have proposed
a variety of approaches tailored to different use cases and operational constraints. This section reviews recent notable
contributions in the field, highlighting the strengths and limitations of each method.

Setyawan et al. [17] performed a comprehensive performance analysis of one-stage and two-stage object detection
models for car damage detection. Specifically, they evaluated You Only Look Once (YOLO) as a representative of
one-stage detectors and Faster R-CNN for the two-stage category. Their study demonstrated that YOLO is significantly
faster in terms of inference time, making it highly suitable for real-time applications where low latency is essential.
In contrast, Faster R-CNN achieved higher detection accuracy, particularly for complex and less distinguishable
damages. The key achievement of this work lies in its side-by-side benchmarking of speed versus accuracy, offering
valuable insights for developers in choosing the appropriate model for their specific needs. However, the study’s
performance evaluation was based on a limited dataset, which may not encompass the full variability found in
real-world automotive damage scenarios. Moreover, the models occasionally underperformed when dealing with
reflective surfaces or in low-light conditions.

Hoang et al. [18] proposed a significant advancement in vehicle damage detection using deep learning methods.
The authors introduced the VeHIDE (Vehicle Damage Identification and Estimation) dataset, which contains a large
number of high-resolution images annotated across various damage categories. They applied various deep learning
techniques, including Mask R-CNN and Salient Object Detection (SOD), to enhance the accuracy and robustness
of car damage detection systems. The study demonstrated that these methods could effectively identify and localize
vehicle damage with high precision, achieving impressive performance metrics in terms of both detection accuracy
and damage classification. However, the study also acknowledges several limitations. One significant limitation is the
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dataset’s reliance on a specific set of conditions and the diversity of vehicle types, which could affect generalization in
real-world scenarios. Additionally, the proposed approach may face challenges in detecting subtle or small damages,
especially those with minimal visual differences from the surrounding areas. Finally, the computational complexity
of the model and the requirement for high-quality images may pose limitations in practical applications where image
quality can vary.

Ramazhan et al. [19] proposed an enhanced YOLO-based framework coupled with image preprocessing tech-
niques for smart car damage assessment. Their model incorporated image enhancement techniques such as histogram
equalization and Gaussian filtering to improve image clarity and reduce noise before feeding the data into the YOLO
detector. As a result, the modified YOLO architecture demonstrated superior performance in detecting a wide range
of car damages, including dents, cracks, and surface scratches, under varying lighting and background conditions.
The main achievement of this work is its robustness in real-world environments and its ability to maintain high
detection accuracy in challenging visual conditions. The model also demonstrated strong potential for real-time
applications due to its fast processing speed. Nonetheless, limitations include potential difficulty in handling over-
lapping or occluded damages, and its performance might degrade when exposed to highly textured or cluttered
backgrounds that resemble defects.

Yang et al. [20] developed a ML-based framework for detecting and classifying automotive body surface defects
using traditional image processing methods. Their workflow involved preprocessing techniques like edge detection
(e.g., Canny) and morphological operations to segment candidate defect regions, followed by feature extraction
(e.g., shape, texture) and classification using supervised learning algorithms such as k-NN and decision trees. This
approach showed promising results in distinguishing between defect types such as rust, dents, and paint peeling.
One notable achievement of this study is its low computational complexity, which makes it suitable for low-power
or embedded systems in inspection environments. Additionally, the approach offers better interpretability compared
to deep learning-based models. However, its reliance on handcrafted features limits adaptability to complex and
unseen damage patterns. It may also suffer from reduced accuracy in noisy environments or when surface defects
are subtle and do not exhibit clear edges or morphological features.

Based on the advancements discussed in the literature, we propose a novel dent detection framework that
integrates multiple complementary features for robust and precise surface deformation assessment. By combining
color deviation analysis, which captures changes in hue, saturation, and intensity, with fuzzy classification techniques
that provide adaptive confidence levels based on the severity of the deviation, our model effectively differentiates
between dents and minor surface imperfections. Furthermore, the incorporation of the SSI enhances the reliability
of the detection process by quantifying local texture distortions. The final dent confidence score is obtained through
a weighted fusion of these features, ensuring an optimal balance between texture-based and intensity-based dent
detection. The decision-making rule categorizes detected regions into no dent, possible dent, or confirmed dent,
offering an automated and accurate classification mechanism. This integrated approach significantly reduces false
positives caused by lighting changes and improves dent localization accuracy, making it highly applicable for
real-world automotive surface inspection.

3 Methodology

The proposed approach for car dent detection consists of three main steps: Bounding Box Formation, Color
Deviation Analysis, and Fuzzy Classification with a Step Function.

First, in Bounding Box Formation, the system identifies the Region of Interest (ROI) using edge detection
and contour analysis. This isolates potential dents and encloses them within bounding boxes for further analysis.
Next, Color Deviation Analysis is performed in the HSV color space, which better represents perceptual differences
in shading and reflection. A CDM is computed by comparing the mean color values of the dented region with
the surrounding car surface. Higher CDM values indicate stronger deviations caused by dents. Finally, Fuzzy
Classification with a Step Function is applied to classify the region. A step function with two thresholds (T1 and
T2) determines whether a region is smooth, possibly dented, or dented. A fuzzy membership function refines this
decision, ensuring smooth classification. Additionally, a SSI measures texture and intensity variations, improving
accuracy. The system integrates these metrics to produce a dent confidence score, confirming dent presence when it
exceeds a set threshold. This approach provides an efficient and robust dent detection method under varying lighting
and surface conditions.

3.1 Bounding Box Formation

Let the input grayscale image be I(x, y), where x and y represent the spatial coordinates of the image. To identify
the potential dent region, an edge detection method such as the Canny or Sobel operator is applied to extract the
significant boundaries of the object. After edge extraction, contour analysis is performed to detect closed boundary
regions corresponding to possible dents. Oncethecontours are detected, the system encloses eachpotential dent with
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abounding box B, defined as:

B = {(x, y) | xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax} (1)

where, (xmix,ymin) and (xmax,ymax) represent the spatial limits of the detected dent region. These boundary values
are computed as:

xmin = min (xi) , xmax = max (xi) (2)

ymin = min (yi) , ymax = max (yi) (3)

where, (xi, yi) are the pixel coordinates belonging to the detected contour. The bounding box effectively isolates the
dent region, allowing further analysis of its color and texture properties. Torefinethe bounding box, amorphological
dilationoperation is applied to ensure that small gaps in the detected edges do not affect the bounding region. This
is represented as:

B′ = B ⊕ S (4)

where, S is a structuring element used for dilation, and B′ represents the refined bounding box. The detected
bounding box is then used in subsequent stages for color deviation analysis and fuzzy classification to determine
the severity and confidence of the detected dent. This approach ensures accurate localization of the dent while
minimizing false detections caused by lighting variations or reflections.

3.2 Color Deviation Analysis

Car dents cause local distortions in the surface texture and color, which can be effectively analyzed in the HSV
color space. Unlike RGB, the HSV color representation separates chromatic information (hue) from intensityvaria-
tions (value), making it more robust for detecting subtle changes caused by dents.

To quantify color deviations, two key color representations are defined:
Reference car surface mean color: The mean HSV color of anundamaged area near the detected bounding box,

denoted as:

Cref = (Href , Sref , Vref) (5)

where, Href , Sref and Vref represent the mean hue, saturation, and value of the reference surface.
Boundingboxmean color: The meanHSV color computed withinthe detected bounding box B, given by:

CB = (HB , SB , VB) (6)

where, HB , SB , and VB correspond to the mean HSV values of the dented region.
To measure the degree of deviation between the dented and undamaged surfaces, a CDM is defined as:

Dcolor =

√
(HB −Href)

2
+ (SB − Sref)

2
+ (VB − Vref)

2 (7)

where, a higher Dcolor value indicates a significant deviation incolor characteristics, which is often associated with
dents due to light scattering, shadowing, or deformation.

By applying a threshold-based classification to Dcolor, the dent confidence level is further analyzed using a fuzzy
step function.

3.3 Fuzzy Step Function for Dent Classification

The detection of dents involves identifying subtle variations in the car’s surface, particularly color deviations
that may be influenced by lighting, viewing angle, and surface texture. Traditional classification methods based on
hard thresholds can be overly rigid, potentially misclassifying areas with slight imperfections as dents or vice versa.
Toovercome this limitation, the proposed approach utilizes a fuzzy step function to classify color deviations into dent
categories.

The step function S(x) is designed to provide a discrete classification of the detected color deviations, where
different ranges correspond to different dent categories:

S (Dcolor) =


0, Dcolor < T1 (No dent)
0.5, T1 ≤ Dcolor < T2 (Possible dent)
1, Dcolor ≥ T2 (Confirmed dent)

(8)
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In this formulation, T1 and T2 represent thresholds empirically determined to delineate the three categories:
“No Dent”, “Possible Dent”, and “Confirmed Dent”. While effective for basic classification, this step function
can introduce abrupt boundaries between categories, which can be problematic in cases where color variations are
subtle or influenced by external factors, such as lighting conditions or surface irregularities. Initially, T1 is set to
capture minimal color deviations, while T2 represents significant dent indicators. These thresholds are refined using
data-driven techniques such as grid search or particle swarm optimization, with cross-validation to ensure robust
performance across various conditions. This approach allows for dynamic adaptation to environmental variations,
ensuring accuracy in diverse scenarios.

To address this issue, we introduce a fuzzy membership function, µdent (Dcolor), to provide a smoother, continuous
transition between categories:

µdent (Dcolor) =


0, Dcolor < T1
Dcolor−T1

T2−T1
, T1 ≤ Dcolor < T2

1, Dcolor ≥ T2

(9)

The fuzzy membership function enhances the model’s ability to handle uncertainty and imprecision in color
deviation measurements, ensuring that the dent classification adapts more naturally to variations in surface texture,
lighting, and subtle imperfections. This smooth transition reduces the likelihood of false positives or negatives, as it
accounts for the gradual nature of color changes and their impact on dent detection. The resulting dent confidence
score—a weighted combination of fuzzy membership and step-function classification—ensures that the system can
make more reliable, context-sensitive decisions.

The rationale for using fuzzy logic lies in its ability to handle ambiguity and gradual transitions between
categories. In dent detection, where surface deformations may be slight and influenced by various external factors,
fuzzy logic provides a robust framework for classifying these variations with greater accuracy. By leveraging fuzzy
membership functions, the system can better distinguish between genuine dents and minor imperfections, even in
challenging real-world conditions.

3.4 SSI

Detecting dents also involves assessing structural distortions on the car surface, which can be subtle and vary in
severity. These distortions are often not immediately apparent through color deviation alone, as reflections, lighting
variations, and surface texture may obscure them. To address this challenge, we incorporate the SSI, a powerful
metric that evaluates the similarity between a dented region and its surrounding undamaged surface.

The SSI measures structural similarities by considering luminance, contrast, and texture between the dented
region and an undamaged reference region. It is mathematically defined as:

SSI =
2µAµB + C1

µ2
A + µ2

B + C1
(10)

where, µA is the mean intensity of pixels inside the detected bounding box B (representing the dented region), and
µB is the mean intensity of pixels in a corresponding undamaged reference region. C1 is a small constant to prevent
division by zero, typically set as C1 = (0.01L)2, where L is the dynamic range of pixel values.

The primary advantage of using SSI is its ability to differentiate between genuine dents and other surface
irregularities that may cause similar color deviations but lack the structural distortion associated with dents. SSI
is less sensitive to changes in illumination and more focused on underlying texture and structural changes, making
it a highly effective tool for dent detection in varying environmental conditions. As the severity of the dent
increases, the structural differences between the dented and undamaged regions become more pronounced, resulting
in lower SSI values. Therefore, SSI serves as a reliable indicator for distinguishing dents from other superficial
anomalies. Incorporating SSI into the dent detection framework enhances the model’s sensitivity to subtle structural
deformations, ensuring that dents are accurately detected even in complex scenarios where color deviation alone
may not suffice. This combination of color deviation analysis and structural similarity provides a comprehensive
approach that improves the robustness and reliability of the dent detection system.

The integration of fuzzy logic and the SSI is particularly effective for car dent detection due to the challenges
posed by real-world conditions, such as varying lighting, surface textures, and minor deformations. Fuzzy logic
offers a smooth, continuous transition between dent categories, which is crucial in handling the inherent uncertainty
and gradual variations in surface deformations. By incorporating fuzzy membership functions, the model is able to
adapt to subtle color changes, minimizing misclassifications and improving the robustness of the system. On the other
hand, SSI provides an effective way to capture structural distortions that are characteristic of dents, distinguishing
them from superficial surface imperfections. By combining these two techniques, the proposed model achieves a
high level of accuracy and robustness, ensuring reliable dent detection across a wide range of conditions. The use
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of fuzzy logic and SSI together addresses the complexities of dent detection in a manner that is both adaptive and
precise, making them ideal choices for the task at hand.

3.5 Final Dent Score Computation

To achieve robust dent detection, we propose a weighted fusion model that integrates three key components. First,
color deviation analysis captures the shift in color properties caused by dent-induced surface variations, allowing
for the identification of irregularities in the car’s paint or texture. Second, fuzzy classification provides an adaptive
confidence level based on the measured color deviation, ensuring a flexible and accurate assessment of potential
dents. Finally, the SSI evaluates the degree of local structural distortion, distinguishing dents from normal surface
variations. By combining these three components, the proposed model enhances the accuracy and reliability of dent
detection.

The final dent confidence score is computed as:

Score = w1S (Dcolor) + w2µdent (Dcolor) + w3(1− SSI) (11)

where, S (Dcolor) is the step function-based classification score, capturing sharp deviations. µdent (Dcolor) is the
fuzzy membership function, providing a gradual confidence transition. (1-SSI) ensures that structural distortions
are accounted for, where a lower SSI results in a higher dent confidence score. The weight parameters w1, w2, w3

are empirically determined based on dataset characteristics and performance optimization. These weights reflect the
relative importance of each feature in the final decision. w1 emphasizes color deviation, which plays a significant
role in detecting obvious dents. w2 adjusts for the confidence in the fuzzy classification, balancing the sensitivity to
slight color deviations. w3 accounts for structural distortions through SSI, with a higher weight given when texture
alterations are critical for distinguishing genuine dents. The weights are fine-tuned using cross-validation techniques
to optimize the model’s overall performance across varying environmental conditions and vehicle types.

By integrating these three features, the model achieves a balanced trade-off between texture-based and intensity-
based dent detection, minimizing false positives caused by lighting variations.

3.6 Decision Rule for Dent Classification

Using the computed dent score, the final classification is determined based on the following case-based decision
rule:

Decision =


No Dent, if Score < 0.3

Possible Dent, if 0.3 ≤ Score < 0.7

Confirmed Dent, if Score ≥ 0.7

(12)

The decision rule is based on the computed dent score, which integrates color deviation, fuzzy classification,
and SSI. If the score is below 0.3, it indicates minimal deviation, suggesting that the surface is likely intact with
no significant irregularities. A score between 0.3 and 0.7 represents a possible dent, where the variation in surface
properties is moderate, requiring further verification to confirm the presence of a dent. Finally, a score equal to
or greater than 0.7 signifies a confirmed dent, as the deviation is substantial, leading to a high confidence level in
the presence of a dent. This structured classification ensures a reliable and adaptive approach for dent detection,
balancing sensitivity and specificity effectively.

3.7 Integration with Fuzzy Model

The proposed fusion framework leverages the strengths of both step-function-based classification and fuzzy logic:
•The step function S (Dcollos) provides a discrete initial classification, which is refined by the fuzzy membership

function.
•The fuzzy function µdent (Dcoler) ensures smooth transitions in classification confidence.
•The SSI component introduces structural validation, reducing misclassification due to minor surface imperfec-

tions or varying lighting conditions.
By combining color deviation analysis, fuzzy logic, and structural similarity evaluation, this approach ensures a

reliable and adaptable dent detection framework, making it well-suited for real-world applications.

4 Experimental Results

This section outlines the experimental setup, dataset description, and results analysis used to evaluate the
proposed dent detection model. The effectiveness of the model is assessed using the Car Dent Dataset (e.g.,
DentedCar-2024), which contains a diverse collection of car images with real-world dented surfaces captured
under various environmental conditions. This dataset includes high-resolution images of vehicles from different
manufacturers, representing a variety of car colors, dent types, and surface textures. The images are captured

55



under varying lighting conditions, including daylight and low-light environments, to ensure the model’s robustness
across different illumination settings. In addition, the dataset contains images taken from multiple viewing angles,
ensuring variability in perspectives, which is critical for assessing the model’s ability to generalize. The experiments
are conducted using MATLAB 2018, a powerful computational software, to implement the proposed dent detection
model. MATLAB’s advanced image processing toolbox, combined with its ML capabilities, facilitates the integration
of color deviation analysis, fuzzy classification techniques, and the SSI. The model is designed and evaluated in
MATLAB 2018, ensuring efficient handling of large image datasets and facilitating the customization of feature
extraction and classification algorithms.

In the experimental setup, the proposed model is applied to segment and classify dented regions by combining
bounding box formation, color deviation analysis, and fuzzy classification techniques. The model’s decision-making
process integrates the SSI to quantify texture distortions and a fuzzy step function to refine confidence scores based
on detected deformation severity. To quantify the segmentation performance, we employ standard evaluation metrics,
including IoU, Dice Coefficient, Precision, Recall, and F1-Score. Specifically, we analyze the IoU under daylight
and low-light conditions to assess the model’s adaptability to different lighting environments. Furthermore, the
Dice Coefficient is computed separately for white and black cars, ensuring the model’s effectiveness across vehicles
with varying reflectivity and surface contrast. The classification performance is further analyzed using F1-Scores
for different viewing angles, including front view, tilted view, and side view, to examine the model’s robustness in
handling perspective variations. The results demonstrate that the proposed model accurately localizes and classifies
dents, achieving superior performance compared to traditional edge-based and thresholding approaches.

The effectiveness of the proposed car dent detection model depends on carefully chosen parameter values for
accurate classification. The edge detection step utilizes the Canny operator with lower and upper threshold values
set at 50 and 150 , respectively, to ensure robust contour detection while minimizing false edges. For bounding
box refinement, a 3 × 3 structuring element is used in the morphological dilation operation. In the color deviation
analysis, the thresholds for the step function are empirically set as T1=10, and T2=10, ensuring that minor surface
variations are not misclassified as dents. The fuzzy membership function provides a smooth transition between
dent categories, with values between T1 and T2 defining the possible dent region. The SSI is computed using a
reference window size of 11× 11 pixels to capture localized distortions effectively. The final dent confidence score
integrates weighted contributions from step classification, fuzzy classification, and structural similarity analysis,
with empirically chosen weight values of w1=0.4, w2=0.4 and w3=0.2, prioritizing color-based deviation while
considering structural distortions. These parameter values are optimized based on a dataset of car images under
varying lighting and surface conditions, ensuring robust and adaptive dent detection.

Figure 1 presents a set of test images used for evaluating the proposed dent detection and segmentation model.
The dataset includes a variety of dented cars with different colors, angles, and lighting conditions to ensure a
comprehensive assessment of the model,s robustness. The images encompass diverse scenarios such as front, side,
and tilted views, along with varying levels of damage severity. This variation allows for a thorough evaluation of
the model’s performance in terms of segmentation accuracy, IoU, Dice Coefficient, Precision, Recall, and F1-Score
across different conditions.

Figure 1. Sample test images used in the proposed model

Figure 2 illustrates the proposed dent detection framework, which consists of three main stages: input image
acquisition, pre-processing and classification, and final result generation. Subgraph (a) of Figure 2 shows a given
image of a car with visible dents, which serves as the input for the model. In subgraph (b) of Figure 2, the image
undergoes multiple preprocessing steps, including noise reduction, contrast enhancement, and edge detection, to
enhance the visibility of dents. The stacked layers in the figure represent different feature extraction techniques
applied to the image. These extracted features are then passed to a classification module labeled “Dent Score
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Classification”, which determines the severity of the detected dents. Subgraph (c) of Figure 2 presents the result,
where the model successfully detects and highlights the damaged area with a red bounding box. This figure effectively
demonstrates the workflow of the proposed method, from input processing to final dent localization.

Figure 2. The proposed dent detection framework. (a) The given input image of a dented car, (b) The
pre-processing steps and proposed model techniques, including dent score classification, and (c) The final result

highlighting the detected damaged area

Figure 3 further validates the performance of the proposed dent detection model by presenting a comparison
between input images and model-generated results. The first row consists of original images of dented cars,
showcasing various types and severities of damage. The second row displays the corresponding outputs generated by
the model, where the detected dents are marked with red bounding boxes. Each pair of images in the first and second
rows allows for a direct comparison, illustrating the model’s ability to accurately localize different types of damage.
The successful identification of dents in different scenarios demonstrates the reliability of the proposed approach in
real-world applications, such as automated vehicle damage assessment and insurance claim processing.

Figure 3. Detection results: Original dented car images (top row) and model-identified damage areas (bottom row)

Table 1 presents a performance analysis of the proposed dent car detection model based on key segmentation
metrics across four experiments. The evaluation considers five essential performance measures: IoU, Dice Coeffi-
cient, Precision, Recall, and F1-Score, which collectively assess the model’s accuracy in detecting car dents. The
IoU values range from 0.90 to 0.93, indicating a high degree of overlap between the predicted and actual dent regions.
Similarly, the Dice Coefficient varies from 0.92 to 0.95, confirming strong segmentation consistency.

The Precision values remain consistently high (0.94) across all experiments, indicating that most of the detected
dents are actual dents, minimizing false positives. However, the Recall values are slightly lower (≥ 0.91), suggesting
that while the model is highly precise, it may occasionally miss some dented areas. The F1-Score, which balances
Precision and Recall, ranges from 0.92 to 0.95, demonstrating the model’s robustness in segmentation tasks. Among
all experiments, Experiment 3 shows the best performance with an IoU of 0.93, a Dice Coefficient of 0.95, and a
Precision of 0.97, making it the most effective scenario for dent detection. Experiment 4 has the lowest performance,
but its metrics are still above 90%, ensuring reliability. Overall, the results show that the proposed approach achieves
high precision in dent detection, effectively distinguishing between significant dents and minor surface variations.
Moreover, the use of the SSI and fuzzy classification significantly reduces false positives, especially under challenging
lighting conditions. The model’s performance is also validated across different car colors and viewing angles,
demonstrating its robustness and generalizability. This comprehensive evaluation confirms the model’s suitability
for real-world automotive surface inspection applications, offering a reliable solution for automatic dent detection in
diverse conditions.
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Table 1. Performance evaluation of the proposed dent car detection model across different experimental scenarios

Experiment IoU Dice Coefficient Precision Recall F1-Score
Exp 1 0.92 0.94 0.96 0.93 0.94
Exp 2 0.91 0.93 0.95 0.92 0.93
Exp 3 0.93 0.95 0.97 0.94 0.95
Exp 4 0.90 0.92 0.94 0.91 0.92

The last two tables present the performance evaluation of the proposed dent detection model for cars under
varying conditions, focusing on lighting variations and different viewing angles. Table 2 assesses the model’s
robustness across different lighting environments and car colors using IoU and Dice coefficient as evaluation metrics.
The results indicate that the model performs consistently well in both daylight and low-light conditions, with IoU
values ranging from 0.90 to 0.94. This demonstrates the model’s ability to detect dents reliably despite changes
in illumination. Similarly, the Dice coefficient results for white and black cars show a high similarity between the
predicted dent masks and ground truth, with values ranging from 0.92 to 0.95. While there is a slight drop in
performance under low-light conditions, the impact is minimal, highlighting the model’s resilience to illumination
changes and car color variations.

Table 2. Evaluation of the proposed dent car detection model under different lighting conditions and car colors

Daylight (IoU) Low Light (IoU) White Car (Dice) Black Car (Dice)
0.93 0.91 0.94 0.93
0.92 0.90 0.93 0.92
0.94 0.92 0.95 0.94

While Table 3 evaluates the model’s accuracy across different viewpoints—front, tilted, and side—using the
F1-score as the performance measure. The results indicate that the model achieves high detection accuracy in all
three views, with F1-scores ranging from 0.90 to 0.96. The front and side views show slightly better performance
(0.93–0.96) compared to the tilted view (0.90–0.92), which may be due to distortions or occlusions affecting dent
visibility at angled perspectives. Despite this minor variation, the model demonstrates strong detection capabilities
from multiple viewpoints, ensuring its applicability in real-world scenarios where vehicles are rarely positioned in a
perfectly frontal or side-aligned manner.

Table 3. F1-score analysis of the proposed dent car detection model under various viewing angles

Front View (F1-Score) Tilted View (F1-Score) Side View (F1-Score)
0.95 0.91 0.93
0.94 0.90 0.92
0.96 0.92 0.94

Overall, the findings suggest that the proposed dent detection model is highly effective in diverse conditions.
It maintains strong performance across different lighting environments, car colors, and viewing angles, making it
a robust solution for automated dent detection in real-world applications. The minimal drop in performance under
challenging conditions further reinforces its reliability, making it suitable for practical deployment in automotive
inspection systems.

The performance evaluation of the proposed dent detection model, based on the experiments conducted under
varying conditions, reveals promising results. In terms of IoU, the model achieved values ranging from 0.90 to 0.94
across different experiments, indicating a high degree of overlap between predicted dent masks and ground truth.
The Dice coefficient, which further corroborates the accuracy of segmentation, ranged from 0.92 to 0.95, showing
strong consistency across different car colors and lighting conditions. The model demonstrated robustness even in
low-light conditions, where the IoU and Dice coefficient only dropped slightly, from 0.93 to 0.91 and 0.94 to 0.92,
respectively. For different viewing angles, the F1-Score varied from 0.90 to 0.96, with the tilted view showing the
lowest score, suggesting that the model faces challenges when detecting dents from non-frontal perspectives.

In the error analysis, the performance degradation under low-light conditions and non-frontal views highlights
areas where the model could be improved. While the model maintains high accuracy under daylight and front-facing
views, slight errors occur due to reduced contrast in low-light scenarios and surface distortion in tilted angles.
These issues point to the model’s reliance on visible surface details and its struggle with varying illumination and
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perspectives. Although the model performs consistently well across different car colors, slight discrepancies in
the detection of dents on dark-colored cars (black) might be attributed to lower contrast in such surfaces. Future
improvements could involve incorporating more diverse lighting conditions and viewing angles in the training dataset,
as well as exploring image enhancement techniques for better performance under challenging lighting conditions.

5 Conclusion

In this study, we proposed an advanced dent detection and segmentation model tailored for analyzing car dent
images under diverse conditions. By integrating structural similarity measures, fuzzy classification, and adaptive
segmentation, our model effectively detects dented regions with high precision and robustness. The experimental
results demonstrate superior performance across different lighting conditions, car colors, and viewing angles, as
evidenced by high IoU, Dice Coefficient, Precision, Recall, and F1Scores. The model’s ability to accurately localize
dents and minimize false positives makes it a promising approach for automated vehicle damage assessment in
real-world scenarios.

Despite its effectiveness, the proposed model has certain limitations. First, its performance slightly declines
in highly reflective or glossy surfaces, where lighting variations may introduce segmentation noise. Second, the
model’s accuracy is affected when analyzing extremely low-resolution images, as fine dent details become less
distinguishable. Third, while the model performs well across different viewpoints, highly occluded or shadowed
areas may still pose challenges for accurate dent detection.

To address these limitations, future research will focus on enhancing the model’s robustness to reflection and
glare by integrating adaptive illumination correction techniques. Additionally, incorporating deep learning-based
feature extraction can further refine the segmentation of complex dent structures. Another promising direction is
the development of a multi-view fusion framework to improve dent detection in occluded or shadowed regions by
leveraging multiple camera perspectives. Furthermore, real-time implementation using edge computing or mobile-
based applications could extend the model’s usability for practical automotive inspection and insurance claim
processing.
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