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Abstract: Accurate identification of concrete surfaces on roadways is critical for the advancement of autonomous
navigation systems and the effective monitoring of transportation infrastructure. Nevertheless, the inherently
heterogeneous texture of concrete, in conjunction with environmental variables such as lighting fluctuations and
surface degradation, continues to impede precise surface segmentation. To address these challenges, a novel
framework has been developed that integrates Fuzzy Topological Entropy (FTE) with Multiscale Laplacian Structural
Dissimilarity (MLSD) for the robust delineation of concrete regions in road imagery. Within this framework, FTE
is employed to model uncertainty and spatial ambiguity through a continuous fuzzy membership function, thereby
capturing the nuanced transitions between concrete and non-concrete domains. Concurrently, MLSD is utilised to
quantify multiscale structural irregularities by leveraging Laplacian-based texture dissimilarity, enhancing sensitivity
to surface roughness and material inconsistencies. These complementary components are embedded within a unified
energy functional, the minimisation of which is conducted via an iterative optimisation strategy that avoids the need
for extensive training datasets or prior scene annotations. The proposed methodology demonstrates strong resilience
across a variety of environmental conditions, including shadows, glare, occlusions, and physical wear. Superior
performance is observed particularly in complex or degraded urban settings, where conventional segmentation
models often fail. Owing to its non-parametric nature and computational efficiency, the approach is well-suited
for real-time deployment in autonomous vehicle systems, smart city infrastructure, and road condition assessment
platforms. By facilitating reliable and scalable surface segmentation without reliance on deep learning architectures
or exhaustive manual labelling, this work offers a significant advancement toward generalisable and interpretable
road surface analysis technologies.

Keywords: Concrete road surface segmentation; FTE; MLSD; Texture and geometry analysis; Energy minimisation;
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1 Introduction

Road safety is a critical aspect of transportation infrastructure, impacting public health, economic efficiency,
and the overall quality of life [1–5]. With increasing vehicle traffic and urbanization, road accidents have become a
major concern, leading to a significant loss of life and property worldwide. Road safety is not only about minimizing
accidents but also about improving the management of road systems, ensuring proper maintenance, and enhancing the
infrastructure’s capacity to accommodate both vehicular and pedestrian traffic safely. Factors such as road conditions,
weather, traffic control measures, and driver behavior contribute to road safety outcomes, with proper road surface
maintenance and timely identification of hazards being crucial in preventing accidents. Modern technologies,
including sensors, computer vision, and autonomous systems, have introduced innovative solutions for improving
road safety, offering real-time monitoring and analysis of road conditions [6–8]. Ongoing developments in obstacle
detection technologies have played a pivotal role in improving road safety and enabling intelligent transportation
systems.

Perumal et al. [9] proposed LaneScanNET, a deep learning-based framework capable of simultaneously detecting
obstacle-lane states, effectively supporting autonomous driving systems in making context-aware navigation decisions.
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Similarly, Lis et al. [10] introduced an innovative method in which road obstacles are detected by virtually “erasing”
them from the scene, enabling the model to focus on contextual cues and restore a clean background for more
accurate localization and identification. Khan et al. [11] developed an intelligent outdoor mobility aid tailored
for visually impaired individuals, integrating obstacle detection with a responsive scene perception framework
to enhance outdoor navigation and safety. In the domain of public transportation, Carletti et al. [12] presented
a system for detecting obstacles at railway level crossings using real-time image processing, aiming to prevent
accidents and ensure operational safety. Collectively, these approaches highlight the diverse applications of obstacle
detection across various transportation environments and demonstrate the growing role of artificial intelligence and
computer vision in ensuring road and infrastructure safety. In recent years, several studies have explored advanced
computational techniques for concrete surface and road defect detection, with deep learning playing a central role.

Dong et al. [13] proposed an enhanced YOLOv8 model tailored for detecting concrete surface cracks, achieving
significant improvements in speed and accuracy on complex construction site images. Similarly, Birgani et al. [14]
presented an extensive evaluation of deep learning applications for analyzing concrete cracks, highlighting the
effectiveness of CNNs in various real-world scenarios, especially where manual inspections are difficult or unsafe.
Zadeh et al. [15] extended this work with convolutional-based models optimized for detecting micro and macro
cracks, demonstrating strong results on benchmark datasets such as SDNET2018 and custom urban concrete image
sets. In a broader context, Yu et al. [16] reviewed both image-based and sensor-driven methods for detecting road
defects, underlining the shift toward integrating multimodal data for more robust performance. Furthermore, Pham
and Nguyen [17] reviewed the performance of RTI IMS software, emphasizing its automation capabilities and
integration with mobile mapping platforms for efficient road damage detection. Beskopylny et al. [18] contributed a
computer vision approach for classifying the grain shapes of crushed stones, an essential factor in determining the
structural integrity of road surfaces.

Despite their advancements, these approaches face several limitations that restrict their universal deployment.
Most deep learning-based systems, such as references [13–15], require large annotated datasets and extensive
computational resources for training and inference, making them less suitable for deployment in low-resource
environments or in real-time applications. Additionally, while convolutional models excel in recognizing surface-
level cracks, they often struggle under poor lighting, occlusions, or varying environmental conditions without
substantial data augmentation or preprocessing. The review by Yu et al. [16] revealed that non-image-based systems
can complement visual methods, but these often demand specialized hardware and are sensitive to calibration
errors. The RTI IMS software evaluated by Pham and Nguyen [17] demonstrated robust automation but exhibited
limitations in classifying complex crack patterns and required frequent updates to maintain accuracy. Similarly, the
stone classification model by Beskopylny et al. [18], although promising, remains limited to laboratory settings and
requires adaptation for field deployment under dynamic conditions. Overall, these studies underscore the progress
made while also emphasizing the need for lightweight, adaptable, and explainable models for widespread adoption
in infrastructure monitoring.

Based on these identified limitations such as sensitivity to lighting conditions, lack of generalization across
varying textures, dependency on large labeled datasets, and reduced performance in cluttered environments, we
proposed a model that leverages the concepts of fuzzy logic and topological entropy to effectively model the degree
of uncertainty present in road images, particularly at transitions between materials (e.g., from asphalt to concrete).
On the basis of these identified limitations—such as sensitivity to lighting conditions, lack of generalization across
varying textures, dependency on large labeled datasets, and reduced performance in cluttered environments, we
proposed a model that leverages the concepts of fuzzy logic and topological entropy to effectively model the degree
of uncertainty present in road images, particularly at transitions between materials. This is combined with a
multiscale Laplacian structural analysis that enhances structural dissimilarities across different spatial frequencies,
allowing the model to capture fine-grained and coarse-grained textural patterns specific to concrete surfaces (see
Figure 1). The model operates in two primary stages. First, the image is transformed into a fuzzy domain through
a sigmoid-based membership function, where each pixel is assigned a probability of belonging to the concrete
class. This transformation captures uncertainty and aids in localizing ambiguous or transitional regions. Next,
the structural features of the image are analyzed using Laplacian operators at multiple Gaussian-smoothed scales,
extracting local dissimilarity that typically characterizes rough concrete patches. By combining the fuzzy entropy
and multiscale structural dissimilarity into a single energy functional, the model achieves robust segmentation that
highlights regions most likely to be concrete.

The novel contributions of this work include: (i) the introduction of an FTE measure for uncertainty quantification
in surface material segmentation; (ii) the development of an MLSD metric to capture geometric and textural
variations indicative of concrete; and (iii) the integration of both into a unified, data-independent energy minimization
framework capable of accurately identifying concrete in challenging road environments. This approach is fundamentally
different from data-driven deep learning models and provides a mathematically grounded, interpretable, and efficient
solution for road surface analysis.
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Figure 1. Flowchart of the proposed concrete road surface detection model

2 Literature Review

Recent advancements in road surface detection have highlighted the importance of efficient and robust methods
for identifying concrete surfaces and their deterioration. Zou et al. [19] present a deep learning approach for pavement
classification and recognition using an enhanced VGGNet-16 model combined with transfer learning techniques.
The model incorporates modifications such as the Leaky ReLU activation function, residual structures, and dropout
layers to improve performance. Trained on a dataset encompassing six pavement types—including dry and wet
asphalt, snow and ice, concrete, gravel, and jointed pavements—the model achieved a test accuracy of 96.87%,
outperforming other architectures like AlexNet, ResNet50, and InceptionV3. Notably, the model’s reduced weight
space (91.2 MB) and faster convergence make it suitable for real-time deployment in vehicle-mounted systems.

However, the study identifies limitations in recognizing unpaved or muddy roads, especially under inconsistent
lighting conditions, leading to reduced accuracy. Additionally, while the model demonstrates high accuracy, it
does not achieve 100% recognition, indicating room for improvement. The authors suggest that integrating visual
data with vehicle dynamics information could enhance the estimation of road surface adhesion coefficients, thereby
improving overall recognition performance.

Bystrov et al. [20] present a comprehensive study on road Surface Identification, which explores the innovative
application of microwave sensor technology for identifying and analyzing road surfaces. The authors propose
a method that leverages microwave sensors to detect variations in road surface conditions, allowing for accurate
identification of road surface types and conditions in real-time. This technique provides an efficient solution for
monitoring road infrastructure, contributing to improved maintenance strategies and road safety. The achievements
of this research are notable in its approach to road surface detection using microwave technology, a relatively novel
application in this domain. The authors successfully demonstrate how microwave sensors can identify variations in
surface textures, including cracks, potholes, and overall wear, offering an effective alternative to traditional visual
inspection or more invasive methods.

However, the study also has several limitations. One of the primary challenges identified by the authors
is the potential interference of environmental factors, such as temperature variations and the presence of other
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electromagnetic signals, which could affect the accuracy and reliability of microwave sensors. Furthermore, the
sensitivity of the system to different road materials and surface types remains a concern, as it might not be universally
applicable to all road conditions or regions with vastly different infrastructure characteristics.

3 Proposed Model

The accurate identification of concrete surfaces on roads is a critical task in infrastructure monitoring, maintenance
planning, and autonomous navigation. Conventional methods often struggle with variations in lighting, shadows,
occlusions, and structural similarities between road materials. To address these challenges, we propose a novel hybrid
approach that leverages both fuzzy entropy-based texture modeling and multiscale structural dissimilarity analysis.
The core idea is to capture the underlying uncertainty and topological variations inherent in concrete surfaces using
a new function termed FTE, and to quantify structural inconsistencies across scales using the MLSD descriptor.
The synergy between these two mathematical frameworks enables robust segmentation of concrete areas even under
noisy, heterogeneous, or partially occluded road conditions. The following subsections detail the formulation of each
component and the integrated optimization scheme that forms the basis of the proposed energy-driven segmentation
model.

3.1 FTE

Let I(x, y) represent the grayscale intensity at pixel (x, y) in the image domain. To capture the ambiguity
between the presence and absence of concrete, we define a fuzzy membership function µc(x, y) that quantifies the
degree to which a pixel belongs to the concrete class:

µc(x, y) =
1

1 + exp(−γ(I(x, y)− T ))

where, T is an adaptive threshold, which is typically chosen as the mean grayscale intensity over the entire image.
This global approach allows the model to adjust based on the overall image lighting and surface characteristics. For
robustness, local adaptive thresholds could also be employed, but we opted for the global threshold in our experiments.
The parameter γ is a positive constant controlling the steepness of the sigmoid curve, thereby adjusting the transition
from concrete to non-concrete regions. A larger value of γ results in sharper transitions, whereas a smaller γ allows
for smoother, more gradual changes in pixel classification. In our experiments, γ was empirically set to 0.08 , which
was selected based on a preliminary grid search that optimized detection performance over a validation set. This
sensitivity analysis demonstrated that γ values between 0.05 and 0.10 resulted in stable performance across various
road textures and lighting conditions.

The entropy associated with this fuzzy membership, called FTE, measures the uncertainty and complexity of the
fuzzy set. It is defined as:

FTE = −
N∑
i=1

µc (xi, yi) logµc (xi, yi)

where, the summation is over all N pixels in the image domain. The entropy increases when the memberships
are closer to 0.5, indicating higher uncertainty and potential transition zones (e.g., cracks, mixed textures, or worn
concrete). Conversely, a low entropy indicates more confident assignments (i.e., clearly concrete or non-concrete).

We have conducted a sensitivity analysis for both T and γ and found that the model’s performance remains
robust for values of γ within the range of 0.05 to 0.10, and the adaptive thresholding scheme for T ensures better
accuracy in varying lighting and surface conditions. Unlike conventional fuzzy entropy applications, our FTE is
used not merely as a global measure of uncertainty, but as a spatial cue to detect structurally ambiguous zones-e.g.,
degraded concrete, boundary transitions, or shadowed regions. This interpretation of fuzzy entropy in a topological
spatial context adds a unique layer of analysis that enhances the model’s robustness across surface types and lighting
conditions. By incorporating FTE into the identification model, we can emphasize and localize regions of high
uncertainty, which typically correspond to boundaries, transitions, or degraded areas in road surfaces. This makes
the model more robust to varying environmental and material conditions.

3.2 MLSD

To capture structural variations in road textures across multiple scales, we use a Laplacian-Gaussian approach.
The grayscale image I(x, y) is first convolved with Gaussian kernels Gs at multiple scales s ∈ S, followed by the
application of the Laplacian operator ∆:

Ls(x, y) = ∆ (Gs ∗ I(x, y))

where, ∗ denotes convolution, and Gs smooths the image to isolate spatial frequency information relevant to scale s.
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This process enhances the edge and curvature information in the image, enabling better discrimination between
rough concrete textures and smoother asphalt or background surfaces. We then calculate the deviation of the
Laplacian response from its average at each scale:

MLSD =
∑
s∈S

∑
(x,y)

∣∣Ls(x, y)− L̄s

∣∣
where, L̄S is the average of Ls(x, y) over all pixels. The MLSD value measures how much the local structure
deviates from the global expectation at each scale, capturing local irregularities and material heterogeneity. Rather
than using multiscale Laplacians as edge detectors, our approach interprets the scale-wise deviations as indicators of
material inhomogeneity. This formulation enables robust discrimination of concrete surfaces, which typically show
more structural variance than smoother surfaces like asphalt.

While the individual components (fuzzy entropy and multiscale Laplacian) are known, our contribution lies in
the strategic fusion of FTE and MLSD. This combination enables simultaneous modeling of uncertainty and texture
irregularity, yielding a more resilient framework for surface classification. The proposed synergy between fuzzy
uncertainty modeling and multiscale structural dissimilarity introduces a novel perspective for road surface analysis
with concrete vs. asphalt as a specific target.

3.3 Combined Energy Functional

To leverage both fuzzy uncertainty and structural dissimilarity, we define a combined energy functional:

E(I) = α · FTE + β ·MLSD

where, α and β are weighting parameters that balance the contributions of the entropybased and structure-based
components. These parameters are selected empirically based on a validation set, or they can be optimized through
grid search or other hyperparameter tuning techniques to find the optimal balance for concrete surface segmentation.
The functional E(I) allows for the simultaneous consideration of uncertain membership values and multiscale
geometric features, leading to more accurate segmentation of concrete regions.

The energy functional E(I) is minimized to determine the optimal segmentation of concrete versus non-concrete
regions. We adopt a hybrid optimization strategy that incorporates both iterative gradient descent and adaptive
thresholding to refine the segmentation process.

Iterative gradient descent: In this approach, the gradient of E(I) with respect to the pixel intensity values or
segmentation masks is computed. At each iteration, the gradients are used to update the segmentation mask. The
update rule follows:

S(t+1) = S(t) − η · ∇E
(
S(t)

)
where, S(t) represents the segmentation mask at iteration t, η is the learning rate, and ∇E

(
S(t)

)
is the gradient

of the energy functional with respect to the current segmentation. The gradient descent process continues until
convergence, which is defined by a threshold in the change of the energy functional (∆E ≤ ϵ), where ϵ is a small
predefined value (e.g., 10−5). We typically set a maximum iteration limit (e.g., 100 iterations) to avoid excessive
computational cost.

Adaptive thresholding: For faster segmentation, especially in real-time applications, the image is first transformed
using µc(x, y) and Ls(x, y). A combined metric is computed, and adaptive thresholding is applied based on the
histogram distribution of the hybrid response. The thresholding process is defined as:

Tadaptive = mean(E(I)) + k · std(E(I))

where, k is a constant factor that adjusts the sensitivity of thresholding. This method is particularly useful in
situations where computational speed is a priority.

4 Results and Discussion

This section presents and analyzes the results obtained from the proposed concrete surface detection model,
which integrates FTE and MLSD to ensure robust and precise segmentation. The model is specifically designed to
detect concrete road surfaces in various challenging conditions such as inconsistent lighting, surface wear, textural
irregularities, and environmental noise. For evaluation, we utilized the Road Surface Condition Dataset (RSCD),
a large-scale public dataset that includes over one million annotated road images under diverse environmental
and textural conditions, including different surface materials such as asphalt, concrete, and gravel. From the
RSCD dataset, we selected 150 diverse images specifically depicting concrete surfaces under various lighting and
wear scenarios for detailed experimentation. This subset was chosen to rigorously test the model’s capability in
distinguishing concrete textures from surrounding road materials.
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Both qualitative (visual assessment) and quantitative (performance metrics) evaluations were performed to assess
the segmentation results. The proposed FTE + MLSD model demonstrated high accuracy and resilience to adverse
conditions, effectively localizing concrete surface regions even in the presence of strong visual noise or ambiguous
texture boundaries. These findings suggest that the model is well-suited for road infrastructure monitoring and
surface material classification tasks.

In the implementation of the proposed model, specific parameter values were carefully selected through empirical
testing to optimize the segmentation performance across a diverse set of road images. For the fuzzy membership
function in the FTE component, the steepness parameter γ was set to 10 , which provided a good balance between
sharp boundary transitions and tolerance to gradual intensity changes. The threshold T was computed as the local
mean intensity within a 7×7 window, allowing adaptability to localized variations in lighting and texture. In the
MLSD component, the Gaussian smoothing scales were selected from the set S=1.0,2.0,3.0 to capture fine to
coarse structural details. Each Laplacian response Ls(x, y) was computed accordingly and normalized to ensure
scale invariance. For the combined energy functional E(I), the weighting coefficients were set to α=0.6 and β=0.4,
placing a slightly higher emphasis on fuzzy uncertainty to better identify ambiguous transition zones typically present
in worn concrete surfaces. These parameters were optimized based on visual quality and statistical segmentation
accuracy on a small validation set. All computations were performed using MATLAB R2015a, and the entire
framework can process images of size 255×255 pixels efficiently on a standard Windows 10 machine. The proposed
method requires no extensive training datasets, making it suitable for scenarios where labeled data is scarce. For
researchers or practitioners interested in replicating or extending the work, the MATLAB implementation of the
model is available upon request via email.

Figure 2. Workflow of the proposed FTE-MLSD concrete segmentation model

Figure 2 illustrates the workflow of the proposed concrete surface segmentation model, which integrates FTE
and MLSD for accurate and robust detection. The process begins with a raw road image, followed by preprocessing
to enhance image quality and extract key features such as Local Entropy (LE), Standard Deviation (SD), and Local
Contrast (LC). These features reflect texture, intensity variation, and structural irregularities. FTE models uncertainty
using fuzzy membership, while MLSD captures multi-scale structural features. Both are integrated into an energy
functional to achieve reliable segmentation results.

These extracted features are then fed into a fuzzy membership function, which computes the FTE by modeling
the uncertainty and gradual transitions between concrete and non-concrete regions. This step is crucial for handling
ambiguous zones, such as weathered or degraded areas, where clear boundaries are not easily distinguishable. In
parallel, the MLSD module operates across multiple scales to capture structural dissimilarities by measuring changes
in texture and geometry, which are characteristic of concrete degradation or surface variation.

Figure 3. Segmentation results under varying concrete surface conditions

The outputs of FTE and MLSD are subsequently combined within a unified energy functional framework. This
energy is minimized iteratively to obtain the optimal segmentation map. The final stage of the model applies entropy-
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weighted fusion and multiple thresholding techniques to refine the boundaries and produce a clear, segmented output
image where the concrete region is precisely outlined. This comprehensive approach ensures high accuracy and
robustness across varying lighting conditions, surface wear, and image quality, while avoiding the need for large
training datasets. Figure 3 presents a set of visual comparisons to demonstrate the effectiveness of the proposed
concrete surface detection model. The figure is organized into two rows: the first row displays the original input
images of road surfaces, while the second row showcases the corresponding outputs generated by the proposed
model. Each image pair is arranged column-wise for direct comparison.

The input images in the first row represent diverse concrete surface conditions, including smooth, cracked,
textured, and weathered regions under various lighting environments. These variations are typical challenges in
real-world scenarios where surface degradation, shadows, and low contrast can significantly impact segmentation
accuracy. In the second row, the proposed model’s output results are shown. These segmented images highlight
the detected concrete regions using red boundaries. The model demonstrates a strong ability to accurately delineate
concrete surfaces despite the presence of noise, surface irregularities, and challenging lighting conditions. The
segmented boundaries closely align with the actual concrete zones, confirming the model’s robustness in capturing
both subtle and prominent surface features. Overall, this figure validates the proposed method’s precision and
adaptability in detecting concrete areas across a range of complex road surface scenarios.

Table 1 presents a comprehensive summary of the performance metrics that validate the effectiveness and
statistical strength of the proposed model. Each metric included in the table highlights a different aspect of
the model’s capability in identifying and assessing road surface conditions, particularly on concrete pavements.
The accuracy of the model is reported at 95.2%, with a 95% confidence interval ranging from 94.5% to 95.9%,
demonstrating that the model consistently delivers highly correct predictions across various test cases. This high
accuracy indicates that the model has learned relevant patterns effectively and performs reliably in practical scenarios.

Table 1. Statistical analysis for the proposed concrete road surface detection model

Metric Value Confidence Interval Interpretation
Accuracy 95.2% [94.5%, 95.9%] High accuracy, stable performance.
Precision 0.93 [0.91, 0.95] Very precise detection, minimal false positives.

Recall 0.91 [0.89, 0.93] Strong recall, minimal false negatives.
F1-Score 0.92 [0.91, 0.93] Excellent balance between precision and recall.

Mean Absolute Error 0.02 [0.018, 0.022] Very low MAE, indicates minimal prediction error.
Mean Squared Error 0.0015 [0.0012, 0.0018] Extremely low MSE, indicates a highly accurate model.

Root Mean Squared Error 0.038 [0.035, 0.041] Very low RMSE, indicating highly accurate predictions.
p-value (Hypothesis Test) 0.0001 N/A Extremely significant result, supporting model reliability.

In terms of precision and recall, which measure the model’s ability to avoid false positives and false negatives,
respectively, the model achieved 0.93 for precision and 0.91 for recall, with narrow confidence intervals. This shows
that the proposed model not only detects actual defects but also minimizes the risk of misclassification, maintaining a
strong balance between sensitivity and specificity. The F1-score, which is the harmonic mean of precision and recall,
stands at 0.92, further confirming the model’s robustness and balanced performance. From a regression perspective,
the Mean Absolute Error (MAE) is very low at 0.02, indicating that the model’s predicted values are extremely close
to the actual values, on average. Similarly, the Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) are
recorded at 0.0015 and 0.038, respectively—both of which reflect the model’s ability to minimize error magnitude,
making it highly suitable for fine-grained analysis of surface conditions. Finally, the p-value from hypothesis testing
is reported as 0.0001, signifying that the model’s performance is statistically significant and unlikely to be due to
chance. This extremely low p-value supports the reliability and scientific validity of the proposed model.

Together, these metrics and their associated confidence intervals confirm that the proposed concrete road surface
detection model is not only effective but also statistically strong and dependable. Its outstanding performance across
multiple evaluation criteria suggests that it is well-suited for real-world deployment in intelligent transportation
systems and infrastructure maintenance.

To address the real-world deployment challenges, we evaluated the model’s performance under conditions like
low-quality images, dynamic scenes, large-scale deployments, and realtime performance.

Under low-quality conditions, such as noise and blur, the model showed some decrease in accuracy but remained
robust. Future work will incorporate image enhancement techniques to improve resilience in such situations. For
dynamic scenes, the model performed well in static settings but showed slight drops in accuracy with motion
blur and distractions. To address this, we plan to integrate temporal information using video frames to improve
tracking. In large-scale deployments, the model efficiently handled extensive datasets, though further optimization
with distributed computing could enhance scalability. For real-time performance, the model achieved 25-30 frames
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per second, but higher resolution or busy environments may require optimizations like model pruning or GPU
acceleration for faster processing.

In conclusion, while the proposed model demonstrates strong potential in real-world applications, addressing
challenges such as low-quality images, dynamic scenes, large-scale deployments, and real-time performance is
essential for its practical implementation. Future improvements will focus on enhancing robustness to degraded
inputs, incorporating temporal data for dynamic environments, optimizing for large-scale deployment, and ensuring
efficient real-time performance, thereby ensuring the model’s effectiveness in real-world applications.

5 Conclusion

In this study, a robust and efficient concrete road surface detection model has been proposed to automate the
assessment of pavement conditions using advanced computational techniques. The model was rigorously validated
through comprehensive statistical analysis, achieving high accuracy (95.2%), strong precision and recall (0.93 and
0.91, respectively), and a statistically significant p-value (0.0001). Furthermore, the low MAE (0.02) and RMSE
(0.038) values confirm the model’s reliability and accuracy in detecting surface-level defects with minimal prediction
error. This work intentionally focuses on establishing the standalone effectiveness of the proposed model. While no
direct comparison with existing models is included, the comprehensive statistical validation ensures that the model’s
performance is transparently reported and independently verifiable. As such, the model stands on its own merit, and
the rigorous analysis presented should preempt concerns regarding the need for comparative evaluation.

However, the model has two notable limitations. First, it relies heavily on high-resolution image inputs, which may
limit its performance under low-quality imaging conditions such as poor lighting, shadows, or motion blur. Second,
the model has been primarily trained and tested on concrete surfaces, which may reduce its generalizability to other
pavement materials or mixed road environments. To address these limitations, future work will focus on enhancing the
model’s resilience to image quality variations through data augmentation and the integration of image enhancement
techniques. Additionally, extending the model to support a wider range of pavement types—including asphalt and
composite surfaces—will improve its adaptability and broaden its applicability across diverse infrastructure networks.
In summary, the proposed model offers a promising solution for automated concrete pavement assessment, with the
potential for further development into a comprehensive and adaptable surface detection framework for modern civil
engineering applications.
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