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Abstract: Accurate detection of road surface potholes remains a persistent challenge due to environmental
variability, inconsistent illumination, noise interference, and the complexity of road textures. Conventional detection
methods frequently suffer from reduced performance when exposed to low-quality or noisy imagery, resulting
in unreliable or delayed identification. To address these limitations, a robust and optimized image processing
framework has been developed for real-time pothole detection under uncertain environmental conditions. The
proposed approach employs a combination of advanced contrast enhancement techniques and adaptive convolutional
processing to strengthen feature discrimination across heterogeneous road surfaces. To further improve detection
reliability, a self-adaptive fuzzy refinement mechanism has been introduced, effectively delineating ambiguous or
degraded regions often overlooked by deterministic methods. An energy-based functional is applied to model
spatial and intensity gradients, enabling more precise localization of structural discontinuities indicative of pothole
boundaries. The framework also incorporates computational optimization strategies to enhance processing speed
without compromising accuracy, rendering it suitable for deployment in real-time autonomous or semi-autonomous
road inspection systems. Thresholding and mask extraction operations have been systematically integrated to
achieve accurate segmentation of pothole regions, even in the presence of substantial visual noise or occlusions.
Experimental validations on benchmark datasets and real-world road imagery have demonstrated that the proposed
method consistently outperforms existing state-of-the-art techniques with regard to detection accuracy, robustness to
environmental disturbances, and computational efficiency. This approach presents a scalable and practical solution
for intelligent transportation systems and automated infrastructure monitoring, contributing to improved road safety,
timely maintenance, and cost-effective asset management.

Keywords: Road pothole detection; Image processing; Fuzzy logic; Optimization techniques; Mathematical
modeling

1 Introduction

Road safety remains a critical concern worldwide, necessitating continuous advancements in modeling, detection,
and simulation to reduce road accidents and enhance transportation systems. Mathematical models have been
widely applied as practical tools for forecasting road fatalities and planning effective interventions [1–5]. Recent
developments focus not only on predicting accident risks but also on addressing uncertainties in road construction
and maintenance, implementing adaptive crack detection technologies, and integrating transport infrastructure into
broader environmental sustainability projects. Moreover, advancements in traffic simulation techniques offer new
avenues for designing safer road networks, optimizing traffic flow, and minimizing collision rates. Collectively, these
efforts highlight the essential role of mathematical and technological innovations in promoting safer, smarter, and
more sustainable transportation systems.

Image processing techniques are essential for extracting meaningful information from visual data in various
applications [6–8]. These techniques provide the foundation for developing sophisticated algorithms capable of
recognizing, classifying, and analyzing different features within an environment. Building upon this foundation,
various road obstacle detection models have been designed to enhance road safety by accurately identifying
potential hazards that could compromise the driving experience. Recent advancements include cost-sensitive
detection approaches for low-cost autonomous vehicles, deep learning-based frameworks for detecting road signage
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and dynamic obstacles, and intelligent road segmentation methods specifically tailored for autonomous railway
systems [9–11]. These models utilize powerful feature extraction, pattern recognition, and classification strategies to
process visual information in real time, enabling rapid and reliable identification of critical obstacles. By minimizing
the response time and improving the accuracy of detection under various environmental conditions, such as low light,
rain, or cluttered scenes, these systems significantly reduce the likelihood of accidents. Furthermore, integrating these
advanced obstacle detection methods into modern navigation systems not only enhances the safety of autonomous
vehicles but also contributes to safer infrastructure design and smarter road management. Therefore, continuous
improvement in image processing and obstacle detection models remains vital for achieving higher standards of road
safety and operational efficiency.

Recent advancements in road pothole detection have been significantly driven by deep learning and image
processing innovations, aimed at automating and enhancing road maintenance systems. Transfer learning models,
as utilized by Thakkar et al. [12], have shown efficiency in detecting potholes with limited training data and minimal
manual labeling. Similarly, Karukayil et al. [13] have integrated vision and LiDAR data to improve feature extraction
and detection accuracy across diverse road conditions. Additionally, Gorro et al. [14] employed YOLOv8 with
image augmentation techniques for high-speed, real-time detection, and Jenefa et al. [15] demonstrated the use of
the EfficientDet architecture to balance accuracy with computational efficiency. Patawar et al. [16] proposed an
ensemble approach, combining multiple models to enhance reliability and reduce false positives, while Safyari et
al. [17] provided a comprehensive review of various vision-based and machine learning-driven methods, emphasizing
their effectiveness.

Despite these technological strides, challenges remain in deploying these models broadly. Issues include the
difficulty in generalizing transfer learning models to diverse road textures, high costs and complexity of integrating
LiDAR systems, occasional misses of smaller or partially occluded potholes by YOLOv8 models, and slight
compromises in detection sensitivity under challenging lighting or weather conditions by EfficientDet systems.
Furthermore, ensemble models, although more accurate, demand greater computational resources which could
hinder their deployment on low-resource platforms.

Overall, while these advancements are promising, achieving a fully reliable, cost-effective, and generalizable
pothole detection system continues to be a critical area of research.

Figure 1. Pothole detection model workflow

To address the limitations observed in existing pothole detection models, the proposed framework integrates
a multi-stage image processing pipeline that ensures robust and precise anomaly detection across varying road
conditions. Initially, preprocessing steps such as contrast enhancement and entropy mapping are employed to improve
the visibility and distinguishability of potholes from the background. In parallel, an adaptive average convolution
is applied to further suppress noise and highlight relevant features. These two streams are fused through a self-
generated fuzzy step, which introduces uncertainty handling and adaptively enhances the boundaries of potential
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potholes, thereby overcoming issues related to weak edges and irregular shapes. Subsequently, an energy functional
is constructed to represent the localized structural information more effectively, while a dedicated optimization step
refines the delineation of pothole regions. Finally, a thresholding and mask extraction phase accurately isolates the
detected regions for post-processing and analysis. The entire workflow is designed to be computationally efficient and
suitable for real-time deployment (see Figure 1). By combining advanced preprocessing, fuzzy logic, energy-driven
modeling, and optimization, the proposed model not only mitigates the shortcomings of prior approaches such as
noise sensitivity, or generalization under variable lighting, and incomplete segmentation, but also delivers enhanced
detection accuracy, robustness, and operational efficiency. The key notations and their respective definitions used
throughout the proposed pothole detection model are summarized in Table 1.

Table 1. Summary of symbols used in the proposed model

Symbol Description
u Optimized image or the output of the segmentation model
I Input road image containing potential potholes
Ipre Preprocessed image after contrast enhancement

H(x, y) Local entropy value at pixel (x, y)
Ar Adaptive convolution operator

wij(x, y) Weight for the pixel (x+ i, y + j) in the convolution
Z(x, y) Normalization factor for the adaptive convolution

σr Standard deviation parameter for weight function
α Weight for smoothness regularization
β Weight for fidelity to preprocessed image
γ Weight for edge detection based on fuzzy entropy
∆u Laplacian of the image, representing image curvature
T Threshold for generating the binary pothole mask
δ Parameter for the fuzzy step function
σ Parameter controlling the width of the fuzzy step function
Ω Image domain or region of interest

2 Related Work

Recent advancements in pothole detection models have increasingly focused on leveraging image processing,
segmentation techniques, and deep learning architectures to enhance the accuracy, robustness, and real-time
applicability of road damage assessment systems.

Swathika et al. [18] proposed a pothole detection and road damage assessment system that leverages classical
image processing techniques to identify road anomalies. Their model emphasized preprocessing steps such as noise
reduction, edge detection, and morphological operations to enhance the quality of pothole detection, especially
in noisy or cluttered environments. One of the notable achievements of their work is the system’s lightweight
design, which allows easy deployment on mobile and embedded platforms without requiring high-end GPUs. The
method also demonstrated a respectable detection rate on various types of road surfaces with minimal training data
dependency. However, a major limitation of their approach lies in its sensitivity to environmental variations, such as
heavy shadows, varying lighting conditions, and worn-out road markings, which often lead to false positives or missed
detections. Furthermore, classical image processing techniques, while computationally light, generally struggle
when potholes have irregular shapes or blend into the surrounding textures, limiting the model’s generalizability in
real-world, highly dynamic environments.

Baroudi et al. [19] introduced an innovative model aimed at enhancing pothole detection and characterization
through the integration of segmentation and depth estimation techniques. Their model’s key achievement lies in
its ability to not only detect the presence of potholes but also to assess their depth and severity, offering a more
comprehensive solution for road maintenance planning. By combining segmentation methods with depth information
extracted from stereo vision setups, their system achieved higher accuracy in differentiating between shallow road
cracks and hazardous deep potholes. This approach significantly improves the prioritization of maintenance tasks.
However, the model’s reliance on depth information introduces challenges, particularly in environments with poor
stereo matching conditions such as low-light settings, reflective road surfaces, or heavy rain. Additionally, the
system demands substantial computational resources, making it less practical for real-time deployment on resource
constrained devices such as smartphones or basic vehicular systems.

Bhavana et al. [20] presented POT-YOLO, a real-time pothole detection model based on an edge segmentation-
enhanced YOLOv8 network. Their work stands out due to the integration of edge-based segmentation modules
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into the traditional YOLOv8 framework, resulting in superior localization of potholes with complex boundaries and
fragmented edges. The POT-YOLO model achieved remarkable detection speed and precision, even on embedded
systems and mobile platforms, making it highly suitable for real-time smart city applications. Moreover, their
method demonstrated robustness across diverse lighting conditions, weather variations, and road surface textures.
Despite these achievements, POT-YOLO still encounters certain limitations, particularly in cases where the potholes
are partially occluded by debris or water puddles, which can cause detection errors. Additionally, while the model
significantly boosts precision, it marginally increases the inference time compared to standard YOLOv8 models,
which might affect ultra-real-time applications requiring millisecond-level decision-making.

Building upon these advancements and addressing their limitations, this study proposes a novel image-based
pothole detection framework that aims to enhance detection robustness, accuracy, and computational efficiency under
diverse road conditions.

3 Methodology

This section outlines the detailed framework of the proposed pothole detection model. The approach is structured
into multiple key stages, beginning with preprocessing to enhance contrast and generate entropy maps, followed by
adaptive average convolution for feature smoothing. A self-generated fuzzy step is then applied to strengthen uncertain
regions, leading into the construction of an energy functional that captures spatial and intensity variations. Finally,
optimization and thresholding techniques are employed to accurately extract pothole masks. Each component
is carefully designed to address the limitations of existing methods and enhance the robustness, precision, and
computational efficiency of the detection process.

3.1 Preprocessing

Let I : Ω ⊂ R2 → [0,255] denote the input image of the road surface potentially containing potholes. In order
to enhance the visibility of weak edges and improve the segmentation quality, two critical preprocessing steps are
applied: contrast enhancement and local entropy estimation.
3.1.1 Contrast enhancement

To improve local contrast and suppress uniform background intensity, the input image I is first transformed into
an enhanced version Ipre using a contrast stretching or histogram equalization technique:

Ipre = ContrastEnhance (I) (1)

In our implementation, this can be achieved using an adaptive histogram equalization method, which locally
adjusts the contrast of small image regions. This operation improves the differentiation between the pothole regions
(dark, irregular textures) and the intact road surface (smoother, brighter regions).
3.1.2 Local entropy estimation

To capture texture irregularities that are characteristic of potholes, the local entropy is calculated over a
neighborhood window centered at each pixel. The local entropy at each pixel (x, y) is defined as:

H(x, y) = −
255∑
k=0

pk(x, y) log pk(x, y) (2)

where, pk(x, y) denotes the probability of gray level k occurring within the local neighborhood Nr(x, y) of radius
r centered at pixel (x, y):

Nr(x, y) = {(i, j) ∈ Ω | ∥(i− x, j − y)∥2 ≤ r} (3)

The local histogram is normalized to obtain the probability distribution:

pk(x, y) =
1

|Nr(x, y)|
∑

(i,j)∈Nr(x,y)

δ(I(i, j) = k) (4)

where, δ(·) is the Kronecker delta function.
Interpretation: A high entropy value indicates a high degree of intensity variation (i.e., texture complexity),

which typically corresponds to damaged or rough surfaces such as potholes. Conversely, low entropy values are
observed on smoother and more uniform regions.
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Output: The preprocessed image Ipre and the local entropy map H(x, y) serve as crucial inputs to the energy
minimization stage of the proposed segmentation framework, enabling better localization of potholes under varying
lighting and surface conditions.

3.2 Adaptive Average Convolution Function

To achieve effective smoothing while preserving the essential structural boundaries of potholes, we introduce
an adaptive average convolution operator. Unlike standard uniform filters, which assign equal importance to all
neighboring pixels, the proposed operator dynamically adjusts the weights based on local intensity similarities,
resulting in edge-aware filtering.

Let u(x, y) denote the grayscale input image defined on the domain Ω ⊂ R2. The adaptive convolution Ar(u)
at a pixel (x, y) is computed as a normalized weighted sum over a square neighborhood Nr(x, y) of radius r.
Mathematically, it is expressed as:

Ar(u)(x, y) =
1

Z(x, y)

∑
(i,j)∈Nr

wij(x, y) · u(x+ i, y + j) (5)

where, Z(x, y) =
∑

(i,j)∈Nr
wij(x, y) is the normalization factor, and the weights wij(x, y) are determined by a

Gaussian-like function:

wij(x, y) = exp

(
− (u(x, y)− u(x+ i, y + j))2

2σ2
r

)
(6)

This weighting strategy ensures that pixels whose intensities are similar to the center pixel contribute more
significantly to the average, whereas dissimilar pixels (such as those across a pothole boundary or edge) have
exponentially smaller influence. The parameter σr governs the sensitivity to intensity variation and can be tuned to
emphasize finer or broader details.

The key advantage of this adaptive filtering lies in its ability to preserve edge structures while simultaneously
reducing noise. Unlike traditional filters which blur across edges, the adaptive mechanism protects intensity
discontinuities-an important characteristic in detecting the distinct texture of potholes. Furthermore, the operator
suppresses local intensity fluctuations in smoother regions of the road, thus stabilizing the segmentation process and
enhancing the reliability of gradient- or entropy-based cues.

The output Ar(u) serves as a smoothed version of the original image and is used later in the model’s data fidelity
term. By analyzing the pixel-wise difference (u− Ar(u))

2, the model can effectively detect deviations from the
expected local context, which often correspond to surface damage or potholes. Therefore, this adaptive convolution
function plays a central role in refining the segmentation accuracy of the proposed detection framework.

3.3 Self-Generated Fuzzy Step Function

To further refine the pothole detection model, we incorporate a self-generated fuzzy step function grounded in
fuzzy set theory. This function is designed to enhance the sensitivity and robustness of pothole segmentation by
enabling a smooth yet decisive transition between the pothole and non-pothole regions, even under conditions of
noise, blur, and intensity variability.

The fuzzy membership function µ(u; δ, σ) captures the degree to which a pixel with intensity u belongs to a
potential pothole region. It is modeled using a Gaussian function:

µ(u; δ, σ) = exp

(
− (u− δ)2

2σ2

)
(7)

where, u is the pixel intensity, δ is the reference intensity-typically associated with the center of the pothole-and σ is
the standard deviation that controls the spread of the membership function. In our implementation, δ is dynamically
estimated using a local entropy-weighted mean of the pixel intensities within a neighborhood window, focusing on
regions exhibiting high local variance or low uniformity, which are characteristic of potholes. The parameter σ is
also adaptively adjusted based on local image statistics. Specifically, it is computed as the standard deviation within
the same neighborhood, scaled by a factor κ, empirically set (e.g., κ = 1.0), to tune the sensitivity of the membership
curve. As u approaches δ, the membership µ(u; δ, σ) increases and reaches its maximum value of 1 when u = δ,
while decreasing rapidly as the intensity diverges from δ.

The non-membership function v(u) complements the membership function and reflects the degree to which a
pixel does not belong to the pothole region. It is defined as:
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v(u) = 1− µ(u) (8)

where, v(u) approaches 1 as u becomes significantly different from δ, indicating a strong likelihood of a non-pothole
region.

To model the transition between these two fuzzy states, we define the Pythagorean fuzzy step functionSPF(u; δ, σ)
as:

SPF(u; δ, σ) = 2µ2(u; δ, σ)− 1 (9)

This formulation enhances the distinction between pothole and background regions. When u is close to δ, the
function approaches 1, indicating strong membership; when u is far from δ, the function approaches -1, indicating
strong non-membership. The squared term sharpens the transition and improves edge sensitivity. This function is
implemented as a pixel-wise transformation on the preprocessed grayscale image. Before applying the function, the
image is smoothed using a Gaussian filter and normalized to the [0,1] range to standardize intensity levels.

To ensure that parameter selection is fully data-driven and adaptive, both δ and σ are computed for each pixel
location based on its surrounding neighborhood. Mathematically, δ(x, y) is calculated as a weighted average:

δ(x, y) =

∑
(i,j)∈N (x,y) wijI(i, j)∑

(i,j)∈N (x,y) wij
(10)

where, I(i, j) is the intensity at pixel (i, j),N (x, y) denotes a local window around pixel (x, y), and wij are weights
derived from local entropy values. The standard deviation σ(x, y) is computed as:

σ(x, y) = κ ·

√√√√ 1

|N (x, y)|
∑

(i,j)∈N (x,y)

(I(i, j)− δ(x, y))2 (11)

The computed step function mapSPF is subsequently integrated into the overall energy functional of the detection
model. It acts as a guiding prior that accentuates transitions and suppresses noise. This enhances the performance
of the contour evolution process, allowing the model to more accurately delineate pothole boundaries.

In summary, the self-generated fuzzy step function provides a smooth and context-sensitive mechanism to capture
pothole edges. By automatically estimating the function’s parameters from local image statistics, we eliminate the
need for manual thresholding, ensuring adaptability across varying road textures and lighting conditions. This makes
it a critical and practical component of our energy-based segmentation framework.

3.4 Energy Functional

The energy functional E(u) is a central component in the pothole detection model, as it integrates multiple terms
that control the smoothness, fidelity to local structure, and edge detection. The goal of the energy functional is to
balance the preservation of relevant road features (such as potholes) while smoothing irrelevant noise and texture
variations. It is defined as:

E(u) =

∫
Ω

[
α|∇u|2 + β (u− A r (Ipre))

2
+ γH(x, y) · SPF(u; δ, σ)

]
dxdy (12)

In this expression, u represents the image under consideration, which is being optimized. The first term, α|∇u|2,
is a smoothness regularization term that penalizes sharp gradients in the image. The parameterα controls the strength
of this regularization; higher values of α result in greater smoothing, which is crucial to reduce high-frequency noise
that may interfere with pothole detection.

The second term, β (u− A r (Ipre))
2, enforces fidelity to the preprocessed image Ipre. This term ensures that

the final image u closely matches the contrast-enhanced version of the input image, A r (Ipre ), and helps preserve
the underlying road structure. The parameter β governs the trade-off between fidelity to the original image and
smoothness. Larger values of β push the solution to be closer to the preprocessed image, which is particularly useful
for maintaining road features during the optimization.

The third term, γH(x, y) ·SPF(u; δ, σ), is an edge-aware regularization component designed to enhance pothole
boundary detection. Here, H(x, y) is a local fuzzy entropy function that measures the uncertainty or randomness in

97



the pixel neighborhood, with higher entropy values indicating likely edge regions such as pothole boundaries. The
function SPF(u; δ, σ) is a self-generated fuzzy step function defined over the intensity values of the evolving image
u. It adaptively models transitions between pothole and non-pothole regions by assigning fuzzy membership values
based on a parametric sigmoid function. Parameters δ and σ control the position and steepness of the transition,
respectively, enabling the function to automatically emphasize uncertain boundaries in a data-driven manner.

Overall, the energy functional E(u) incorporates three complementary components: (i) a smoothness term to
suppress noise, (ii) a fidelity term to maintain contrast-enhanced structures, and (iii) a fuzzy-entropy-based edge
term to detect irregular features such as pothole borders. This unified framework facilitates robust segmentation by
preserving meaningful features while filtering out irrelevant variations.

3.5 Gradient Descent Optimization

The energy functional E(u) is minimized using gradient descent optimization. This iterative process allows us to
adjust the image u to find the configuration that minimizes the energy, effectively detecting potholes and smoothing
out irrelevant features. The gradient descent equation is given by:

∂u

∂t
= α∆u− β(u− A r( Ipre ))− γH(x, y) · ∂SPF(u)

∂u
(13)

where, ∂u
∂t represents the time derivative of the image, where t is the iteration index. The term α∆u corresponds to

the diffusion term, which smooths the image by minimizing the gradient of u. This ensures that smooth areas of the
road are maintained while reducing noise and unnecessary details. The Laplacian operator ∆u emphasizes areas of
high curvature, helping to preserve key features such as potholes. The second term, −β ( u−A r (Ipre)), drives the
image u toward the preprocessed image, ensuring that the detected features match the initial structure and contrast.
The weight β balances this fidelity term against the smoothness regularization. The third term, −γH(x, y) · ∂SPF(u)

∂u ,
incorporates the fuzzy step function’s gradient with respect to the image. This term is responsible for enhancing
edges, particularly at pothole boundaries. The gradient of SPF(u) with respect to u is given by:

∂SPF(u)

∂u
=

4(u− δ)

σ2
· µ(u) · (1− µ(u)) (14)

where, µ(u) is the fuzzy membership function. This term captures the changes in the fuzzy step function as the image
evolves and applies an edge-preserving force that sharpens transitions between pothole and non-pothole regions.

By iteratively updating the image based on these terms, the model converges to an optimal solution where
potholes are accurately segmented while preserving road features and boundaries.

3.6 Final Binary Pothole Mask

After the optimization process has converged, we generate a binary pothole mask M(x, y) that represents the
locations of potholes on the road surface. This mask is created by thresholding the optimized image u based on a
predefined threshold T . The thresholding process is defined as:

M(x, y) =

{
1, u(x, y) < T

0, otherwise
(15)

where, M(x, y) = 1 indicates the presence of a pothole and M(x, y) = 0 indicates a nonpothole region. The
threshold T is determined using Otsu’s method or a fuzzy entropy-based adaptive thresholding approach. Otsu’s
method is a widely used technique for automatically selecting the optimal threshold by maximizing the between-class
variance, which helps to distinguish potholes from the road surface.

Alternatively, fuzzy entropy-based adaptive thresholding takes into account the uncertainty and fuzziness inherent
in the image. This method adapts the threshold based on local entropy values, ensuring that the thresholding is
robust to variations in lighting and road texture. The binary pothole mask M(x, y) obtained through this process
is used for the final segmentation of potholes, enabling accurate identification and localization of road surface
damage. The proposed fuzzy-convolutional energy-based framework effectively detects potholes by combining
adaptive smoothing, fuzzy reasoning, and entropy-based guidance. This robust mathematical foundation makes it
suitable for real-world, noisy road surface imagery from satellite or drone sources.

The proposed pothole detection model leverages fuzzy logic and energy-based optimization techniques to
effectively handle the inherent uncertainty, noise, and variability in road surface images. Fuzzy logic provides
a powerful framework to model the ambiguous boundaries and gradual transitions typically found in pothole
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regions, where sharp binary classification fails due to illumination changes, texture irregularities, and sensor noise.
Specifically, the self-generated fuzzy step function introduces a smooth, continuous membership representation that
captures the degree of belonging of each pixel to pothole or non-pothole classes. This fuzzy membership function
is dynamically adapted using local image statistics, enabling context-sensitive thresholding that enhances robustness
against intensity fluctuations and texture complexity. On the other hand, the energy functional formulation integrates
this fuzzy representation with classical variational optimization principles, balancing data fidelity, smoothness, and
edge preservation through carefully designed terms. The adaptive average convolution operator further refines
the model by performing edge-aware smoothing, preserving structural features crucial for pothole delineation. By
minimizing the energy functional, the model optimally segments potholes by finding an image representation that
simultaneously respects local texture variations (modeled by entropy and fuzzy membership) and global smoothness
constraints. This combination exploits the theoretical strengths of fuzzy logic for uncertainty modeling and variational
methods for global optimization, resulting in a robust, adaptive, and accurate pothole detection framework that
outperforms conventional crisp thresholding and filtering approaches.

4 Experimental Work

The experimental results for the proposed pothole detection model are presented in this section, highlighting its
performance in comparison to existing methods. The experiments were conducted using a diverse set of road images
obtained from the publicly available Road Damage Detection Dataset (RDD), which includes images captured under
various lighting conditions, road surface characteristics, and varying resolutions. The RDD dataset used in this
study consists of a total of 2,000 annotated images, each manually labeled to indicate pothole regions. These images
include multiple environmental settings such as urban, suburban, and rural roads, and represent real-world challenges
like shadow effects, motion blur, and occlusion. The dataset was randomly divided into training (70%), validation
(15%), and testing (15%) sets, and all experiments were repeated five times to ensure statistical reliability. The
average results across repetitions are reported to minimize the impact of randomness, and standard deviations are
provided in the result tables to reflect statistical variability. The proposed model incorporates several key components,
including contrast enhancement, adaptive average convolution, and a self-generated fuzzy step, which contribute to
its robustness and accuracy.

To evaluate the effectiveness of the model, several performance metrics were used, such as precision, recall,
F1-score, accuracy, and IoU (Intersection over Union). Additionally, computational efficiency was measured in
terms of processing time (in seconds per image) and memory usage (in MB). The model’s ability to handle different
levels of noise and image distortions was also assessed using Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index (SSIM), providing insights into its practical applicability for real-time road maintenance systems.
The results demonstrate the superiority of the proposed model in terms of both accuracy and efficiency, particularly
when compared to conventional pothole detection techniques.

Table 2. Parameter configuration for the proposed pothole detection model

Parameter Description Optimal Value
α Smoothness regularization weight 0.5
β Fidelity to preprocessed image weight 1.2
γ Weight for fuzzy-entropy-based edge term 0.8
σr Standard deviation for adaptive convolution 2.0
δ Parameter for fuzzy step function 0.6
σ Width parameter for fuzzy step function 0.3
T Threshold for binary pothole mask 0.45

umax Maximum number of iterations for gradient descent 100

The parameter setup for the optimal pothole detection model plays a crucial role in ensuring the accuracy and
efficiency of the system. Table 2 outlines the key parameters along with their descriptions and optimal values,
which have been carefully selected to balance detection performance and computational efficiency. The smoothness
regularization weight, α, is set at 0.5 to prevent overfitting and maintain smoothness in the final output. The weight
for fidelity to the preprocessed image, β, is set to 1.2, ensuring a balanced influence of the preprocessed image while
minimizing noise. The weight for the fuzzy-entropy-based edge term, γ, is set to 0.8, helping to accurately detect
pothole boundaries. The standard deviation for adaptive convolution, σr, is optimized to 2.0, effectively smoothing
the image while retaining important edge details. The parameters for the fuzzy step function, δ and σ, are set
to 0.6 and 0.3, respectively, to ensure smooth transitions in feature detection. The threshold value for the binary
pothole mask, T , is set to 0.45, optimizing the binarization process for accurate segmentation. Finally, the maximum
number of iterations for gradient descent, umax, is set at 500, allowing sufficient iterations for convergence without
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excessive computation time. These optimal parameter values ensure the effectiveness of the pothole detection model,
enhancing its accuracy while maintaining computational efficiency.

Figure 2 presents a comparative visualization between the original input images (top row) and the initial contour
predictions generated by the proposed model (bottom row). The input images depict the raw data or scenes under
analysis, which may include objects, textures, or regions of interest. Below them, the initial contours outline the
model’s first-step segmentation, capturing the approximate boundaries of key features before any refinement. These
preliminary contours demonstrate the model’s ability to detect and localize relevant structures, serving as a foundation
for subsequent processing steps such as fine-tuning, noise reduction, or accuracy enhancement. The side-by-side
comparison highlights the model’s initial performance, providing insight into its strengths and areas for improvement
in shape detection or edge preservation tasks.

Figure 2. Original images and initial contours from the proposed model

Figure 3. Comparative evaluation of pothole detection methods across four stages

Figure 3 presents a detailed comparative analysis of pothole detection techniques, illustrating the progression from
raw input imagery to increasingly advanced segmentation results. The top row displays the original input images,
each capturing real-world road scenes with visible potholes of varying shapes, depths, and surface textures. These
images represent a diverse set of environmental conditions, including inconsistent lighting, shadow interference,
worn asphalt, and occlusions - all of which pose significant challenges for automated detection systems. Serving
as the visual ground truth, these inputs are essential for assessing the capabilities and limitations of each evaluated
model.

The second row features the segmentation results produced by the method of Baroudi et al. [19], representing an
earlier approach in pothole detection. While their technique is able to detect large, well-defined potholes, it suffers
from critical weaknesses that limit its practical application. One key issue is inconsistent edge detection, where the
boundaries of the potholes appear coarse, jagged, or incomplete. This imprecision often leads to over-segmentation
in textured regions or under-segmentation in low-contrast scenarios. Moreover, the model exhibits high sensitivity
to environmental noise, such as shadows, road markings, and surface cracks, often misclassifying them as potholes.
This results in a significant number of false positives, thereby reducing the system’s reliability. Additionally, the
model tends to miss small or shallow potholes, especially when they are partially obscured by debris or situated in
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uneven lighting, making it insufficient for comprehensive and accurate road surface assessment.
In contrast, the third row shows the output of POT-YOLO [20], a more recent and sophisticated deep learning-

based detection model. This method demonstrates notable improvements in object localization and significantly
reduces the number of false positives seen in earlier approaches. It offers better general accuracy in detecting potholes
of various sizes and positions within the image. However, it still suffers from blurred or irregular segmentation
edges, particularly in areas with poor contrast or where potholes merge with the surrounding road surface. Although
it demonstrates greater resilience than the methods proposed by Baroudi et al. [19] and POT-YOLO [19], its
generalization capability remains limited. Performance significantly degrades under challenging conditions such as
wet or reflective roads, heavy occlusions, or severely deteriorated surfaces. Additionally, the high computational
cost of its complex network architecture hinders deployment on resource-constrained devices, posing challenges for
real-time processing in embedded systems and mobile platforms.

The bottom row presents the segmentation results of the proposed model, which significantly outperforms the
previous methods in both visual quality and quantitative accuracy. This model integrates advanced feature extraction,
fuzzy logic-based refinement, and context-aware segmentation strategies to achieve precise edge delineation, even
for irregularly shaped or partially obscured potholes. Its robustness to environmental variations - including shadows,
uneven lighting, wet surfaces, and complex asphalt textures - enables it to deliver highly reliable results with a low false
positive rate. Importantly, the proposed method exhibits high sensitivity, effectively detecting even small and shallow
potholes that were previously missed. In addition to accuracy, the model is designed with computational efficiency in
mind, incorporating optimization techniques that enable real-time performance without sacrificing detection quality.
This balance between precision and speed makes it well-suited for deployment in autonomous road inspection
systems, intelligent transportation infrastructure, and mobile-based road condition monitoring applications.

Overall, the figure underscores the evolution of pothole detection technologies, revealing how each successive
model addresses prior shortcomings. The proposed model emerges as a superior solution, setting a new standard for
automated pothole detection through its combination of edge accuracy, environmental robustness, and operational
efficiency. These capabilities position it as a promising candidate for real-world implementation in modern intelligent
transportation systems.

Table 3. Segmentation accuracy metrics for pothole detection (mean ± standard deviation)

Metric Baroudi’s Model POT-YOLO Proposed Model
Precision (%) 78.2 ± 1.4 85.6 ± 1.1 92.7 ± 0.8

Recall (%) 74.5 ± 1.6 83.1 ± 1.3 91.3 ± 0.9
F1-Score (%) 76.3 ± 1.5 84.3 ± 1.2 92.0 ± 0.8
Accuracy (%) 81.1 ± 1.2 87.9 ± 1.0 94.2 ± 0.7

IoU (%) 68.7 ± 1.8 75.8 ± 1.5 89.5 ± 1.0

The results presented in Table 3 offer a detailed comparison of segmentation accuracy metrics among three
models: Baroudi’s model, POT-YOLO, and the proposed model. Across all metrics - precision, recall, F1-score,
accuracy, and IoU - the proposed model demonstrates superior performance.

Specifically, the proposed model achieves a precision of 92.7% ± 0.8%, outperforming Baroudi et al. (78.2%
± 1.4%) and POT-YOLO (85.6% ± 1.1%), indicating its higher capability to correctly identify true pothole pixels
while minimizing false positives. Similarly, the recall of the proposed method is 91.3% ± 0.9%, which is notably
higher than that of Baroudi et al. (74.5% ± 1.6%) and POT-YOLO (83.1% ± 1.3%), showing its effectiveness in
detecting a larger proportion of actual potholes.

Furthermore, the F1-score, a harmonic mean of precision and recall, reaches 92.0% ± 0.8% for the proposed
model, compared to 76.3% ± 1.5% and 84.3% ± 1.2% for Baroudi’s model and POT-YOLO, respectively. This
reflects a balanced improvement in both sensitivity and specificity. In terms of overall classification accuracy, the
proposed method achieves 94.2% ± 0.7%, which is significantly better than the 81.1% ± 1.2% and 87.9% ± 1.0%
recorded in Baroudi’s model and POT-YOLO. Additionally, the Intersection over Union (IoU) metric, which evaluates
the overlap between predicted and ground truth regions, is highest for the proposed model at 89.5% ± 1.0%, again
surpassing the other models. These results collectively highlight the robustness and reliability of the proposed model
in accurately segmenting potholes under various conditions, establishing it as a more effective and precise tool for
automated road surface analysis.

Table 4 highlights the comparative performance of the three models - Baroudi’s model, POT-YOLO, and the
proposed model - based on efficiency and robustness metrics, including processing time, memory usage, PSNR, and
SSIM. The proposed model exhibits significant improvements in computational efficiency, with an average processing
time of just 1.64 seconds per image, compared to 6.72 seconds for Baroudi’s model and 5.05 seconds for POT-YOLO.
This reduction in runtime makes the proposed approach highly suitable for real-time deployment in embedded or
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Table 4. Efficiency and robustness metrics for pothole detection

Metric Baroudi’s model POT-YOLO Proposed Model
Processing Time (sec/img) 6.72 5.05 1.64

Memory Usage (MB) 214 180 142
PSNR (dB) 24.8 28.2 33.5

SSIM 0.81 0.89 0.96

low-power systems. Additionally, the model demonstrates lower memory consumption at 142 MB, substantially
outperforming Baroudi’s model (214 MB) and POT-YOLO (180 MB), which is crucial for resource-constrained
environments.

In terms of robustness to noise and image quality degradation, the proposed model achieves a PSNR of 33.5 dB,
indicating better preservation of image fidelity during processing. This is a marked improvement over Baroudi’s
model (24.8 dB) and POT-YOLO (28.2 dB). The SSIM, which quantifies perceived image quality by evaluating
luminance, contrast, and structure, further validates this improvement. The proposed model records an SSIM of
0.96, surpassing POT-YOLO (0.89) and Baroudi’s model (0.81). These results demonstrate that the proposed method
not only delivers precise segmentation but also maintains high image quality and efficient resource usage, making it
a robust and practical solution for automated pothole detection in diverse real-world scenarios.

To ensure the practical applicability of the proposed pothole detection model, its generalization ability across
diverse road environments is of critical importance. Real-world roads exhibit significant variability due to differing
lighting conditions (e.g., daylight, nighttime, shadows), weather effects (e.g., rain, fog, snow), and surface types
(e.g., asphalt, concrete, gravel). While the current evaluation demonstrates strong performance on the test dataset,
further investigation is necessary to assess the model’s robustness under such varying conditions. Preliminary results
suggest that the model maintains stable detection accuracy under moderate changes in illumination and weather;
however, extreme conditions such as heavy rain or low-light scenarios may require additional preprocessing or model
adaptation. Future work will focus on expanding the training dataset to include a wider range of environmental
conditions and road surfaces, thereby enhancing the model’s stability and accuracy in real-world applications. This
will ensure reliable pothole detection across diverse operational scenarios, ultimately contributing to safer and more
efficient road maintenance.

5 Conclusion

This paper presented a novel pothole detection model that effectively addresses the key limitations of existing
methods, including imprecise edge segmentation, sensitivity to noise and shadows, and poor detection of small
or shallow potholes. By integrating advanced feature extraction, precise boundary refinement, and an optimized
computational framework, the proposed model demonstrated superior performance across a wide range of evaluation
metrics. Quantitative comparisons revealed that our model consistently outperforms benchmark methods in terms
of precision, recall, F1-score, accuracy, and IoU. Moreover, the model exhibited strong robustness to real-world
variations such as lighting changes, occlusions, and low-quality images, as confirmed by higher PSNR and SSIM
scores. Its computational efficiency - evidenced by reduced processing time and lower memory usage - further
highlights its suitability for real-time road condition monitoring applications.

Despite the demonstrated improvements in detection accuracy, robustness, and computational efficiency, the
proposed model has several limitations. First, while contrast enhancement and adaptive convolution improve feature
extraction, their effectiveness can diminish in extremely poor lighting conditions or highly cluttered road scenes
where the contrast between potholes and the surrounding surface is minimal. Additionally, the self-generated fuzzy
step, although beneficial in refining uncertain regions, may introduce ambiguity when multiple similar textures exist,
potentially leading to false positives in areas with complex road textures or heavy shadow patterns.

To overcome the limitations of the proposed model, future work will focus on several key improvements. First,
integrating multi-spectral or depth-sensing data will enhance feature extraction under low-contrast or cluttered
conditions. Additionally, context-aware fuzzy logic will be introduced to reduce false positives in complex road
textures and shadows. These improvements will enhance the model’s reliability, efficiency, and applicability in
real-world road monitoring systems.
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