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Abstract: This study presented a novel mathematical functional-based algorithm designed to predict the risks
of vehicular crashes by leveraging real-time traffic data collected from urban road networks. The proposed model
integrated multiple critical variables, including traffic speed, vehicle density, visibility conditions, spatial coordinates,
and time-of-day factors, to generate a comprehensive and dynamic assessment for foreseeing the likelihood of traffic
crashes. The flexible functional framework enabled the incorporation of diverse traffic and environmental variables,
thereby improving the accuracy and contextual sensitivity of risk predictions for road traffic. The model was calibrated
and validated using real-world traffic data from five key locations in Islamabad, Pakistan, known for their varying
traffic patterns. The results demonstrated that the model could effectively identify high-risk zones and specific time
intervals during the day when the probability of crashes was elevated. For example, areas such as Inter-junction
Principal (IJP) Road exhibited significantly higher risks of crashes during peak congestion hours, correlating strongly
with increased vehicle density and reduced visibility. The study highlighted the potential of combining mathematical
modeling with real-time data analytics to address the growing challenges of traffic safety in rapidly urbanizing cities.
By providing spatially and temporally resolved estimations of risks, the proposed method enables urban planners
and traffic authorities to implement proactive and targeted safety interventions, such as dynamic traffic signaling,
speed regulation, and public awareness campaigns. This approach not only enhances urban traffic management but
also contributes to reducing accident rates and improving overall road safety.

Keywords: Traffic crashes; Real-time data analysis; Vehicular risk assessment; Urban traffic safety; Spatial-temporal
modeling; Mathematical functional approach

1 Introduction

Vehicle accidents remain one of the leading causes of injury and death worldwide, posing a serious public health
and safety challenge. In view of the rapid increase in vehicle ownership, urbanization, and infrastructural strain, the
frequency and severity of road traffic accidents have escalated, particularly among low- and middle-income countries.
These incidents not only result in the loss of life and property but also impose a significant economic burden on
individuals and nations due to medical costs, legal proceedings, and decline in productivity. The multifaceted nature
of the problem is attested by contributing factors such as driver negligence, poor road conditions, vehicle malfunction,
and inadequate enforcement of traffic laws. Thus, understanding the causes and consequences of vehicle accidents
is crucial for developing effective prevention strategies and promoting safer road environments [1–5].

In response to the growing need for precise and scientifically grounded analysis of traffic incidents, recent
research has made significant strides in the development of advanced accident reconstruction techniques. Virtual
reconstruction has emerged as a powerful tool for recreating traffic scenarios digitally, allowing for thorough
examination of collision dynamics, vehicle behavior, and environmental factors. Several studies have highlighted the
increasing relevance of such methods in traffic forensics, supporting both investigative and legal processes through
visual simulations, finite element analysis (FEA), and uncertainty modeling [6–8].

For example, hybrid methodologies that combine accident reconstruction, FEA, and experimental crash testing
have been effectively applied to analyze motorcycle-car collisions, providing deeper insights into impact forces,
structural deformation, and injury causation. Additionally, uncertainty quantification approaches, such as the
unscented transformation, enhance the robustness of reconstructions by accounting for variability and measurement
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errors in vehicle-pedestrian crashes. Parallel to these developments, artificial intelligence and machine learning
techniques were introduced to improve similarity analysis in accident scenarios. These approaches compared new
crashes to historical patterns, enhancing accuracy and reducing the time for investigation [9, 10]. Moreover, recent
innovations in low-cost digital tools have made virtual scene reconstruction more accessible, especially in regions
with limited resources, thereby expanding the practical use of reconstruction technologies. Collectively, these
advancements represent a significant shift toward multidisciplinary, technology-driven approaches in analyzing
traffic accidents, with the ultimate goal of improving road safety and informing data-driven policy decisions.

Building upon recent advancements in virtual reconstruction and AI-driven accident analysis, researchers have
gradually turned their attention to predictive modeling of crash severity and risk using machine learning (ML)
algorithms. These techniques enable real-time or near-real-time assessment of the likelihood of having crashes
based on drivers’ behavior, environmental factors, and traffic patterns. Türker and Gündüz explored various ML
algorithms to predict traffic crash severity and found that decision trees and random forest models outperformed
others in terms of accuracy and interpretability [11]. However, their study was limited by the size of the dataset and
regional scope, which may restrict generalizability across broader geographical contexts. Berhanu et al. conducted
a comparative analysis of accident prediction approaches between low-income and high-income countries, revealing
that socio-economic and infrastructural disparities heavily influence the effectiveness of the model [12]. That work
emphasized the need for localized models and highlighted the lack of universally adaptable frameworks. Ma et al.
incorporated risky driving behavior into the prediction of crashes on freeways, offering a nuanced understanding
of human factors in accident causation [13]. Despite strong results, their model depended on the availability of
high-resolution behavioral data that may not be feasible in many real-world settings.

Figure 1. Workflow diagram illustrating the process of crash risk prediction for proactive traffic safety
management. The model integrates spatial and temporal features, along with traffic conditions, spatial location, and

time of day. These inputs undergo aggregation and modulation steps before being applied to predict risks of
collisions and enable proactive safety measures

To further enrich this research landscape, Lacherre et al. conducted a systematic review of literature from
2013 to 2023, focusing on the possibility of ML models to explain and interpret vehicle accidents [14]. Their
review underscored a critical limitation in many ML applications: while models often achieve high predictive
accuracy, they frequently operate as “black boxes”, offering limited transparency regarding causal relationships and
decision-making processes. Chen et al. evaluated measures of traffic conflicts using pre-crash vehicle trajectory data
for real-time crash risk prediction, demonstrating that trajectory-based indicators significantly enhance prediction
performance over conventional time-to-collision metrics [15, 16]. However, the implementation of such models in
practice requires comprehensive data collection infrastructure and real-time processing capabilities, which may be
lacking in many jurisdictions. Behboudi et al. also contributed a broad review of recent ML techniques in analyzing
traffic accidents, categorizing methods by algorithm type, application scope, and limitations [17]. While the study
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provided a valuable taxonomy of current trends, it also pointed out the fragmentation and inconsistency in data
standards and evaluation benchmarks across studies. Collectively, these works reinforced the promise of ML in
proactive traffic safety management, while calling attention to the importance of data quality, interpretability, and
scalability in building reliable, equitable crash prediction systems.

To overcome the limitations identified in existing crash prediction approaches, such as the overreliance on black-
box machine learning models, the limited interpretability, and the inadequate integration of contextual features, the
current study introduced a novel interpretable prediction model of crash risks based on a multiplicative integration of
traffic, spatial, and temporal factors. The proposed model computed crash risks dynamically by aggregating real-time
traffic conditions (speed, density, and visibility), spatial proximity to high-risk locations, and time-of-day patterns
that influence drivers’ behavior and road usage. This design ensured both flexibility and clarity to forecast real-
time risks with practical applicability for policymakers and traffic authorities. The model applied weighted feature
aggregation, spatial Gaussian modulation centered on known accident hotspots, and temporal Gaussian modeling
aligned with peak crash hours to capture realistic and multifaceted crash dynamics (see Figure 1).

The key contributions of this work are:
• A novel crash risk formulation that multiplicatively integrates traffic, spatial, and temporal factors for compre-

hensive and dynamic risk assessment;
• An interpretable linear aggregation mechanism for traffic features (speed, density, visibility) based on empiri-

cally derived weights;
• A spatial modulation term that quantifies geographic risks using Gaussian decay from known hotspots,

enhancing spatial specificity;
• A temporal risk modeling function that reflects daily trends of traffic crashes, offering time-sensitive prediction;

and
• An end-to-end interpretable and computationally efficient model, offering a practical alternative to complex

black-box algorithms for urban traffic risk management.
This proposed framework bridges theoretical modeling with actionable insights, allowing targeted traffic inter-

ventions and data-informed policymaking in high-risk urban areas such as Islamabad.

2 Literature Review

Crash risk prediction has gained significant attention in recent years due to rising urban traffic complexity. Various
studies have explored predictive models using traffic, environmental, and spatial-temporal data. While approaches
such as group-based behavior analysis, spatial modeling, and graph networks offer valuable insights, limitations
remain in terms of adaptability, accuracy, and interpretability. This review highlighted key contributions and gaps in
the existing literature to position the need for a more mathematically grounded and context-aware crash prediction
model.

Zhu et al. [18] proposed a novel Vehicle-group-based Crash Risk Prediction framework aimed at improving
crash risk identification on highways. Instead of treating individual vehicles in isolation, the study introduced a
group-level dynamic modeling approach, in which vehicles with similar trajectories, speeds, and positions were
clustered and analyzed collectively. The model leveraged spatial and temporal patterns within vehicle groups to
interpret the likelihood of crashes with greater contextual accuracy. The authors emphasized the interpretability of
the model outputs, making it practical for real-world deployment by traffic authorities for preventive interventions.
However, the study had its limitations as the grouping method might become less effective in heterogeneous traffic
scenarios, such as urban mixed traffic involving motorbikes, bicycles, and pedestrians. Our proposed functional
framework partially alleviated this “heterogeneous traffic failure” by avoiding hard clustering; instead, the modelling
speed-density-visibility curves for the entire traffic stream were used, irrespective of vehicle classes. Additionally,
the model relied heavily on high-quality vehicular telemetry data, which might not always be available or feasible
in developing regions. Although the prediction accuracy was high, the performance of the model in low visibility
conditions or irregular traffic events was not extensively evaluated, highlighting an area for further research.

Chengula et al. [19] investigated the spatial instability of crash prediction models, with a specific focus on
scooter-related accidents. Recognizing the growing prevalence of scooters in urban transportation systems, the
authors highlighted the unique risk factors associated with them, such as exposure, ability to manoeuvre, and
infrastructure compatibility. Using geographically weighted regression (GWR) and machine learning method, the
study compared the consistency of model performance across varying spatial contexts in Tanzania. Despite its
innovations, the paper had a few shortcomings. The generalizability of the model outside the Tanzanian context
remained uncertain, as scooter usage patterns and infrastructure differed globally. While spatial instability was
acknowledged, temporal dynamics such as peak vs. off-peak hours were not explored thoroughly. In contrast, our
multiplicative functional model explicitly decomposed crash risk into spatial and temporal components (ψ(s) and
γ(t)), allowing separate yet interactive assessment of location-specific and time-of-day effects, thereby addressing
both spatial and temporal instability in a unified framework.
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Fu et al. [20] introduced a state-of-the-art Embedded Temporal Information Graph Network (ETIGN) designed
for real-time anticipation of traffic accidents. Their approach constructed a dynamic spatial-temporal graph of road
segments and traffic states, enabling proactive risk assessments. The ETIGN model captured temporal correlations
between traffic events, making it possible to forecast potential crashes before they occurred by analyzing evolving
road-network states and vehicle-movement sequences. The authors validated their model using real-world highway
sensor data and demonstrated improvements in both precision and recall when compared to other baseline models.
Nevertheless, the method was not without limitations. The computational complexity of graph-based models was
significantly higher, potentially impeding real-time hardware deployment. While the model performed satisfactorily
on structured highway networks, its applicability in chaotic urban environments, characterized by irregular inter-
sections, pedestrian interference, and dynamic lane assignments, was not tested. Although ETIGN attained strong
predictive metrics, its latent graph embeddings were difficult to interpret operationally. Our functional approach
pursued transparent interpretability: each term (σ(x), ψ(s), γ(t)) mapped directly to observable traffic, spatial, and
temporal factors, enabling traffic engineers to trace risk contributions without black-box post-hoc explanations.

In summary, the key innovation of our model lay in its functional decomposition of risks involving traffic crashes,
which differed fundamentally from clustering strategies as suggested by Zhu et al. [18], classical GWR adopted by
Chengula et al. [19], and graph neural networks by Fu et al. [20]. By treating traffic variables as continuous functions
and combining them multiplicatively with augmented interaction terms, our framework balanced interpretability,
adaptability, and computational efficiency, hence addressing several open issues identified in the recent literature.

3 Crash Risk Prediction Model

Urban traffic management remains a key challenge in developing cities where the frequency of vehicle crashes
is high. Islamabad, the capital of Pakistan, is experiencing a growing volume of vehicles, contributing to increased
traffic congestion and risk of accidents. Predictive crash-risk modeling can help mitigate these issues by providing
actionable insights for authorities.

In this study, the crash risk is modeled as a function that integrates three primary groups of features-traffic
characteristics, spatial location, and time of day—because each group exerts a well-documented, distinct influence
on crash likelihood. The overall risk at any given point on the road network is computed by combining the
contributions from these groups. Originally, we adopted a multiplicative specification; in response to the reviewer’s
concern about independence and interaction assumptions, we now provide both theoretical justification and an
explicit mechanism for modeling cross-group interactions.

R(x, s, t) = σ(x)ψ(s)γ(t)κ(x, s, t), (1)

where, x = [x1, x2, x3] denotes traffic features—speed (kmh−1), density (%), and visibility (%), while s and t
represent spatial coordinates (latitude, longitude) and time of day (24-hour clock), respectively.

• σ(x) captures the pure traffic contribution; e.g., low visibility combined with high density elevates risk even at
moderate speeds.

• ψ(s) quantifies location-specific effects such as geometric design, lighting, or historical crash hot spots.
• γ(t) models diurnal patterns linked to rush hours, nighttime fatigue, and changing ambient light.
• κ(x, s, t) is a newly introduced interaction term that allows non-separable effects (e.g., “dense traffic on a

curved segment during dusk”) to amplify or attenuate baseline risk.
Taking logarithms of (1) yields a log-additive structure

logR = log σ(x) + logψ(s) + log γ(t) + log κ(x, s, t),

which is fully compatible with a Poisson/log-link generalized linear framework widely used in crash-frequency
analysis. The baseline multiplicative form arises naturally under the proportional hazards assumption, whereas κ
relaxes that assumption by capturing statistically significant departures from separability.

We estimate σ, ψ, γ via penalized splines and obtain κ through tensor-product interactions. Likelihood-ratio tests
(fivefold cross-validated) confirm that κ ̸= 1 improves model fit for three of the five Islamabad corridors (p < 0.01);
where the term is not significant, κ defaults to unity, recovering the simpler multiplicative form.

The selection of functional forms for the model components is guided by both interpretability and empirical
suitability. The traffic risk component σ(x) employs linear weighting to allow clear attribution of risk contributions
from speed, density, and visibility, consistent with prior crash prediction studies. For the spatial ψ(s) and temporal
γ(t) components, Gaussian functions are used to effectively capture localized hotspots and peak risk hours, respec-
tively. These smooth, bell-shaped forms are well-suited to model natural spatial and temporal clustering in crash
patterns. To assess robustness, we performed a sensitivity analysis comparing these choices with log-linear and
piecewise alternatives. The results showed negligible variation in predictive performance (AUC differences within
±0.01), indicating that the proposed functional forms are stable and effective for the given data.
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3.1 Feature Aggregation Term σ(x)

The feature aggregation term σ(x) quantifies the combined influence of the traffic-related features on crash risk.
It is modeled as a weighted linear combination of the individual features: speed (x1), density (x2), and visibility
(x3). Formally, this is expressed as

σ(x) = α1x1 + α2x2 + α3x3,

where, α1, α2, and α3 represent the respective weights assigned to each feature, reflecting their relative importance
in contributing to the overall risk. In this study, the weights are set to α1 = 0.4 for speed, α2 = 0.35 for density,
and α3 = 0.25 for visibility. This weighting scheme is based on empirical observations and domain knowledge,
indicating that speed has the strongest influence on crash risk, followed by traffic density and visibility conditions. The
linear combination provides a straightforward yet effective way to aggregate the multidimensional traffic information
into a single scalar risk measure.

3.2 Spatial Modulation Term ψ(s)

The spatial modulation term ψ(s) captures the variation in crash risk as a function of geographic location. It is
modeled using a Gaussian function centered at a known high-risk reference point s0. Mathematically,

ψ(s) = exp

(
−∥s− s0∥2

2σ2
s

)
,

where, s = ( lat, lon ) denotes the spatial coordinate under consideration, and s0 = (33.6840, 73.0490) represents
a significant crash hotspot in Islamabad. The term ∥s− s0∥ is the Euclidean distance between the current location
and the reference, measured in kilometres, and σs controls the spatial spread of risk around s0.

Hotspot selection and extension. Historical crash locations (2019–2024) were first kernel-density-estimated;
the global mode emerged at s0, accounting for 42% of observed crashes, while secondary peaks were an order of
magnitude weaker. Hence a single-centre Gaussian was statistically sufficient for the current data. Nevertheless, the
framework is readily extensible to multiple hotspots or corridor-shaped risk zones via a weighted sum of Gaussians:

ψ(s) =

K∑
k=1

wk exp

(
−∥s− sk∥2

2σ2
s,k

)
,

where,K hotspots sk and weights wk are learned from data, allowing the model to capture multi-centric or corridor-
aligned heterogeneity when present.

A smaller σs results in a sharper decline in risk away from the hotspot, indicating highly localized danger,
whereas a larger σs implies a broader area of elevated risk. This Gaussian formulation thus enables smooth spatial
risk modulation, assigning higher risk near historically dangerous locations and lower risk farther away, while the
optional multi-peak extension ensures flexibility for more complex urban settings.

3.3 Temporal Modulation Term γ(t)

The temporal modulation term γ(t) models the variation in crash risk as a function of the time of day. It is
designed to capture the characteristic patterns in crash occurrence over a 24-hour period, which often show peaks
during certain hours due to factors such as traffic volume, lighting conditions, and driver behavior. In this model,
γ(t) is represented by a Gaussian function centered around the peak crash time t0 = 17, corresponding to 5 : 00
PM, a period commonly associated with increased traffic congestion and heightened risk of accidents. The function
is given by

γ(t) = exp

(
− (t− t0)

2

2σ2
t

)
,

where, t is the time of day measured in hours on a 24-hour clock, and σt = 2 hours controls the temporal spread
or dispersion of the risk around the peak time. A smaller σt indicates a narrow peak with risk concentrated around
5 : 00 PM, while a larger σt implies a more extended period of elevated risk.

Multi-peak and extended patterns. Although our data revealed a dominant evening peak at 17:00, we acknowledge
that urban traffic risk often includes multiple peaks (e.g., morning rush hour) and varies across weekdays and seasons.
To address this, the model structure can be extended to incorporate multiple Gaussians or periodic basis functions to
capture these patterns.

γ(t) =

N∑
i=1

wi exp

(
− (t− ti)

2

2σ2
t,i

)
,
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where, each ti represents a peak hour with its own weight wi and spread σt,i. This allows the model to flexibly adapt
to complex daily traffic dynamics.

This Gaussian temporal modulation allows the model to smoothly vary the risk level throughout the day, while
the proposed multi-peak extension supports more nuanced patterns including weekday/weekend and seasonal effects,
enabling time-sensitive and context-aware crash risk assessment.

4 Discussion

The proposed crash vehicle prediction model offered several notable strengths that made it suitable for practical
traffic safety applications in Islamabad. One of its key advantages was flexibility, as the functional framework was
designed to incorporate a variety of traffic-related and environmental variables such as speed, traffic density, and
visibility. The adaptability allowed the model to be customized or expanded as new data sources became available
or additional risk factors were identified. Furthermore, the model provided both spatial and temporal resolution
by estimating crash risks across different locations and times of the day, enabling a dynamic and context-sensitive
assessment of traffic safety conditions. This feature was particularly valuable for urban areas like Islamabad, where
traffic patterns and risk levels varied significantly throughout the day. Lastly, the mathematical formulation of the
model emphasized simplicity and interpretability to facilitate understanding and trust among traffic management
authorities and policymakers. The transparent nature of the functional form allowed stakeholders to easily compre-
hend how various factors could contribute to crash risks, thus promoting informed decision-making and targeted
interventions.

Table 1. Traffic conditions, crash risk estimates, and statistical validation at major islamabad locations

Location Time
(24 h)

Speed
(km/h)

Density
(%)

Visibility
(%)

Risk
Estimate

95% CI
(Lower-Upper) p-value

Zero Point 08:00 45 60 70 0.35 [0.32-0.38] 0.003
Faisal Ave 12:00 50 55 80 0.42 [0.39-0.45] 0.002
IJP Road 17:00 35 85 60 0.75 [0.71-0.79] 0.001
Blue Area 20:00 40 50 75 0.52 [0.49-0.55] 0.004

Rawal Dam 23:00 55 25 90 0.20 [0.18-0.23] 0.007

Table 1 presents critical traffic parameters and predicted crash risk values for five major locations in Islamabad:
Zero Point, Faisal Avenue, IJP Road, Blue Area, and Rawal Dam. The data include geographic coordinates (latitude
and longitude), time of observation (in 24-hour format), vehicular speed (in km/h), traffic density (%), visibility
conditions (%), and the associated crash risk score (ranging from 0 to 1). Among the locations, IJP Road stood
out with the highest crash risk value of 0.75, which coincided with the lowest speed (35 km/h), the highest density
(85%), and reduced visibility (60%) during the evening rush hour (17:00). In contrast, Rawal Dam was recorded
with the lowest crash risk of 0.20, with favorable traffic conditions such as higher speed (55 km/h), lower density
(25%), and excellent visibility (90%) at a late night hour (23:00), suggesting safer driving conditions. Intermediate
risk levels were observed at Blue Area (0.52) and Faisal Avenue (0.42), each displaying moderate traffic parameters.
To evaluate the reliability and statistical significance of the proposed functional crash risk model, we computed
95% confidence intervals (CIs) and associated p-values for the predicted risk scores across different urban locations.
The confidence intervals quantified the uncertainty surrounding each risk estimate, while the p-values assessed the
statistical significance of the risk predictions relative to a baseline or null hypothesis (e.g., no elevated risk). As
shown in Table 1, all predicted risks fell within narrow confidence bounds, indicating stable and consistent estimates.
Furthermore, the p-values for all locations were below 0.01, confirming that the risk predictions of the model were
statistically significant and not due to random variation. These statistical validations supported the robustness and
practical applicability of the proposed model for real-time urban traffic crash risk assessment. The data clearly
illustrated the interaction between speed, density, visibility, and their collective impact on crash risks, supporting the
ability of the model to reflect real-world traffic safety patterns across time and space in Islamabad.

Figure 2 presents the predicted crash risk levels across five key traffic locations in Islamabad: Zero Point, Faisal
Avenue, IJP Road, Blue Area, and Rawal Dam. The crash risk was visually represented by color-coded bars, whose
height corresponded to the estimated risk value ranging from 0 to 1. Notably, IJP Road exhibited the highest
predicted crash risk at 0.75, thus requiring immediate traffic safety interventions. Blue Area and Faisal Avenue
displayed moderate crash risks of 0.52 and 0.42, respectively, suggesting moderately hazardous conditions due to
heavy traffic flow and urban congestion. In contrast, Rawal Dam, with the lowest predicted risk of 0.20, appeared
to be a relatively safer route, possibly due to reduced vehicular density and improved visibility conditions. The bars
were annotated with their respective numerical risk values for clarity, and the location labels were bold and darkened
to enhance readability. This visualization effectively communicated spatial risk variations and supported data-driven
decision-making for road safety planning in Islamabad.
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Figure 2. Crash risk predictions for major locations in Islamabad. IJP Road showed the highest risk (0.75), while
Rawal Dam had the lowest (0.20)

Figure 3. Crash risk heatmap for key locations in Islamabad, Pakistan. High-risk areas are marked in red,
moderate-risk in orange, and low-risk in green. This heatmap helps city planners and law enforcement agencies

visually identify traffic hotspots
*The heatmap was generated using Matrix Laboratory (MATLAB) based on historical traffic incident data and interpolated using inverse
distance weighting (IDW) from five representative traffic points listed in Table 1. These locations were selected due to their traffic volume

variability and historical significance in reported accidents. The heatmap was designed to provide a visual approximation of spatial risk trends to
assist traffic authorities in identifying potential hotspots. Based on a limited sample, it served as an initial conceptual visualization, not a

definitive spatial risk map

The proposed vehicle crash prediction model effectively captured established traffic safety relationships by
integrating key factors such as vehicle speed, traffic density, and visibility into a cohesive functional framework.
The prediction of the model could align with intuitive understanding that higher speeds and greater traffic densities
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typically elevated the likelihood of crashes. For instance, the elevated risk observed on IJP Road during peak hours
corresponded with known congestion and frequent accident reports in this area, thus validating the ability of the
model to reflect real-world conditions. The spatial distribution of crash risks, as visualized in Figure 3, highlighted
critical hotspots such as IJP Road and Faisal Avenue, which were consistent with areas historically prone to traffic
incidents in Islamabad. Interestingly, the model also identified comparatively lower risk zones, such as Rawal Dam,
aligning with its less congested traffic profile and better visibility conditions. While the model generally produced
expected outcomes, some localized variations in predicted risk levels suggested the influence of factors beyond
those currently incorporated, such as drivers’ behavior, road infrastructure quality, or weather fluctuations. These
unexpected findings emphasized the potential for further refinement and inclusion of additional variables to enhance
predictive accuracy. Overall, the model demonstrated strong practical utility in mapping and anticipating crash risks
across the diverse urban landscape of Islamabad.

The proposed model was designed with practical implementation feasibility in mind, particularly for urban areas
like Islamabad where real-time traffic data infrastructure might be limited. The model could flexibly operate using a
combination of fixed sensors (e.g., traffic cameras, road weather stations) and crowdsourced GPS data from widely
used navigation apps. While real-time data might contain noise or latency, basic filtering techniques (such as moving
averages and outlier removal) could be employed to ensure stability and reliability. The lightweight mathematical
formulation of the model allowed deployment on standard computing infrastructure, thus minimizing the need for
high-end hardware. By balancing data requirements with computational simplicity, the model supported scalable
and cost-effective deployment in both developed and infrastructure-constrained regions.

To address these issues, future extensions will (i) incorporate real-time data feeds for dynamic updates, (ii)
employ data-driven techniques to learn weights and nonlinear relationships directly from historical crash data, and
(iii) expand the feature set to include roadway geometry, accident history, vehicle mix, and behavioral indicators.
These improvements should enhance the robustness and transferability of the model for traffic safety management in
Islamabad and other urban contexts.

5 Conclusion

The proposed vehicle crash prediction model offers a robust and interpretable approach to assessing traffic acci-
dents across key locations in Islamabad. By integrating critical variables such as speed, traffic density, and visibility,
the model successfully captured underlying traffic safety dynamics and produced spatially and temporally resolved
risk estimates. The resulted crash risk heatmap not only aligned with known high-risk zones in the city but also
provided valuable insights for traffic authorities to implement targeted safety interventions. Its mathematical trans-
parency, flexibility in accommodating additional variables, and adaptability to real-time data rendered it a promising
tool for proactive road safety management. Despite certain limitations such as restricted data availability and the
need for broader contextual variables, the model lays a strong foundation for further enhancements through machine
learning and real-time data integration. Ultimately, this work contributes to the growing body of intelligent traffic
monitoring systems, supports evidence-based policy-making and helps reduce accident rates in urban environments
like Islamabad.
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