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Abstract: The assessment of driving behavior, vital for ensuring passenger safety and optimizing resource 

utilization in transportation systems, faces challenges due to inherent unpredictability and complexity. This study 

addresses these challenges by introducing innovative methodologies for the extraction, classification, and 

prediction of diverse driving patterns, utilizing data from "On Board Diagnostics" (OBD) ports in modern vehicles. 

In this approach, a comprehensive suite of advanced Machine Learning (ML) and Deep Learning (DL) stechniques, 

including Convolutional Neural Networks (CNNs), Optimized Spectral Neural Classification (OSNCA), and 

Fuzzy Logical Feature Selection (FLFS), are employed. These techniques are instrumental in overcoming 

limitations of previous models, enhancing accuracy in driving behavior evaluation. The utilization of FLFS in 

conjunction with OSNCA represents a novel method in driver behavior analysis. By applying these techniques, 

driver characteristics and behaviors are systematically categorized into distinct classes, facilitating a nuanced 

understanding of driving dynamics. The integration of these advanced methodologies not only furthers the analysis 

of driver behavior but also significantly improves classification and prediction capabilities. This research 

contributes to the development of safer, more efficient transportation networks by offering a refined approach to 

the analysis, categorization, and prediction of driver behavior, thereby advancing the field of driving behavior 

analysis. 

Keywords: Driving behavior analysis; Machine Learning (ML); Deep Learning (DL); On Board Diagnostics 
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1. Introduction

The propensity of young drivers towards risky driving behaviors has been extensively studied. However, the

intersection between driving competence, temporal orientation, and driving behavior remains under-explored, 

despite the significant role of time perspective as a predictor of various risky behaviors. Time perspective 

encompasses a comprehensive concept involving attitudes related to the past, present, and future. Specifically, (a) 

the past time perspective relates to the recollection of reconstructed past experiences; (b) the present time 

perspective involves attention to immediate and salient stimuli; and (c) the future time perspective pertains to the 

anticipation and projection of future occurrences. 

1.1 Analysis of Driver Behavior 

In the realms of behavioral modeling, auto insurance, and government-managed public transportation systems, 

understanding driver behavior is crucial. This understanding is of paramount importance to the automobile and 

intelligent transportation sectors, which seek innovative solutions for enhancing task performance. In this context, 

various technologies are being employed to analyze driver behavior, including assessment of driving skills, 

monitoring the physical state of drivers through facial recognition and physiological feature tracking, and 

leveraging in-vehicle telematics for real-time data collection and analysis (Zinebi et al., 2018). 
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1.2 Techniques in Driving Monitoring Systems 

 

The classification of driver behavior, acknowledged as a complex subject, involves multiple factors 

encompassing driving and traffic conditions. It is recognized that variable traffic conditions such as road 

environments, vehicle motion, and driver conduct are intertwined. These variables are instrumental in the 

development of fuzzy sets, which enhance the understanding of diverse driving styles and conditions. Accordingly, 

it is imperative to integrate operations and tactics (Shi et al., 2015) to accurately assess driver behavior. 

As depicted in Figure 1, the initial module of the driving monitoring system primarily focuses on the driver's 

background information. This module considers various attributes, such as gender, age, driving experience, 

educational background, employment status, income level, average annual mileage, instances of traffic law 

violations, and accident history in the previous year. Utilizing statistical learning models, these data points are 

analyzed to establish correlations between the driver's background and the probability of accident involvement. 

By applying these models, predictions regarding a driver's likelihood of causing a traffic accident can be 

formulated. The background data is systematically evaluated against specific criteria, resulting in a comprehensive 

driver risk assessment score (Xing et al., 2017). 

 

 
 

Figure 1. Driving monitoring system 

 

In the endeavor to ascertain driver identity and driving style, a multifaceted array of factors must be evaluated. 

These encompass vehicle and road conditions, the driver's biological and physiological state, incident classification 

and identification, along with environmental influences. Despite the complexity, recent advancements in 

commercial and research-based systems over the past decade have significantly contributed to the analysis of 

driving behavior. The current paradigm in these systems focuses on assessing driving performance and offering 

driver assistance, sharing a unified infrastructure to monitor diverse driving systems (Alluhaibi et al., 2018). 

The objective of this study is to enhance the analysis of driver behavioral data by implementing a novel 

classification and prediction framework. This methodology is designed to enable precise categorization of data 

into distinct classes, thereby markedly improving the accuracy in predicting driver behavior patterns. Employing 

fuzzy logic for feature selection, this approach refines the analysis of driver behavioral characteristics, yielding 

superior classification precision. Furthermore, the methodology utilizes relative closeness data in its intentional 

pattern prediction, thereby augmenting the precision of behavioral pattern predictions. This is achieved by 

conducting an exhaustive analysis of driver data, which underpins the enhanced prediction accuracy. 

 

2. Literature Review 

 

The analysis of driving behavior is acknowledged as a multifaceted concept, typically characterized by the 

adaptation of vehicle control to external conditions and the driving environment. Research has consistently shown 

that a majority of vehicular accidents are attributable to improper driving behaviors, thereby underscoring the 

critical need for accurate accident prevention characterization (Wang et al., 2015). In the realm of big data, 

algorithms designed to analyze vehicle motion have gained prominence. These algorithms play a pivotal role, as 

the driving styles they discern are instrumental in providing insights that can significantly reduce traffic accident 

risks (Hssayeni et al., 2017; Peng et al., 2021). 
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Studies investigating the causative factors of traffic accidents have revealed that human error is predominantly 

responsible. Drivers, as the primary operators of vehicles, are often implicated in these incidents. Consequently, 

there is an imperative need to scrutinize the elements influencing driver behavior and to develop targeted corrective 

strategies for mitigating negative driving behaviors. This approach is particularly vital in the interim phase leading 

up to the full implementation of autonomous driving. Moreover, this line of inquiry provides foundational support 

for the study of humanoid behaviors in the context of autonomous driving technologies. 

It has been established through various studies (Hua & Cheng, 1999; Kroenung & Eckhardt, 2015; Mayhew et 

al., 2003) that on-road experience is a crucial factor in enhancing hazard mitigation skills and reducing instances 

of distracted driving (Reason et al., 1990). Evidence suggests that experienced drivers, in contrast to their novice 

counterparts, exhibit a lower risk of crashes (Martinussen et al., 2013), attributed to their ability to efficiently 

allocate attentional resources for hazard recognition (Tao et al., 2017). Novice drivers, lacking in maturity and 

experience, are more prone to be involved in traffic accidents (Guo et al., 2019). 

Despite structured driving exercises during the learning phase, Pnina et al. (Özkan et al., 2006) highlighted the 

high incidence of errors during early license holding periods. Limited experience is a contributing factor to a 

driver’s reduced ability to recognize potential road hazards, leading to increased risks of rear-end collisions and 

impaired driving incidents (Curry et al., 2017). Experienced drivers display greater proactivity and superior 

situational awareness when encountering on-road challenges (Huang et al., 2006; Van Gelderen et al., 2008). 

The deviation from standard driving behaviors is considered an indicator of potential danger, leading to the use 

of driving performance metrics to study the impact of drivers’ behavioral traits on their driving quality 

(Caponecchia & Williamson, 2018; Choudhary & Velaga, 2019). Anomalies such as frequent critical braking or 

rapid acceleration are often linked with risky driving behaviors (Alrassy et al., 2023). This study focuses on 

employing driving performance metrics derived from continuous driving profiles gathered from field data, aiming 

to enhance the detection of risky driving patterns. The significant contribution of this research lies in identifying 

unsafe driving behaviors through the analysis of continuous driving profiles collected via in-car data recording 

devices. 

In summary, inexperienced drivers present a considerable risk to themselves, other road users, and passengers. 

A driver’s experience is intricately linked with psychological attributes such as awareness, confidence, and attitude, 

as well as emergency response capabilities and peripheral monitoring skills. 

 

3. Dataset and Description 

 

The acquisition of live vehicle data constituted a critical component of this research, with a dataset obtained in 

a CSV format for comprehensive analysis. The dataset comprised data collected from the IGNIS Soul vehicle, 

operated by twenty diverse drivers during a consistent road trip spanning 150 km (round-trip) and encompassing 

approximately 40 hours of driving. 

It is pertinent to highlight that the dataset encapsulated driving conditions across varied road types, such as 

urban, rural, and highway terrains. This variety in road settings is crucial, given its potential influence on driver 

behavior. 

Parameters included in the dataset were extensive, covering aspects crucial to the study such as fuel consumption, 

vehicle dynamics, road conditions, and maintenance indicators. Engine-related parameters like engine speed, 

torque, and coolant temperature were also incorporated. Furthermore, the dataset was enriched with features 

encompassing accelerator pedal percentage, throttle position, and various metrics of the electrical system. 

For the purpose of data analysis, visual inspection techniques, including scatter plots and box plots, were utilized 

to examine variable distributions and identify anomalies. Additionally, a rigorous outlier detection procedure, 

grounded in established statistical methodologies, was implemented to address aberrant data points, thereby 

safeguarding the dataset's integrity. 

This detailed and varied dataset forms the bedrock of the research, enabling an in-depth examination of vehicle 

performance and driver behavior under different driving conditions. 

 

4. Materials and Methods 
 

In the realm of driver behavior analysis, the methodology adopted in this study is a systematic approach aimed 

at enhancing the precision and comprehension of various driving patterns. The process is divided into distinct 

stages, each contributing to the overall accuracy of the analysis. 

 

(a) Data division and intent classification 

 Data segmentation: Initially, driver behavioral data are segmented to differentiate various classes, utilizing a 

novel classification and prediction intent approach. 

 Fuzzy logical conditions: The application of fuzzy logical conditions aids in feature selection, thereby 

refining the analysis and augmenting the accuracy in predicting driver behavior patterns. 
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 Pattern prediction enhancement: The classification, based on intent, facilitates the forecasting of values, 

improving the accuracy of behavioral pattern predictions through the analysis of relative closeness data. 

 

(b) Multilayer social spider optimization technique 

 Feature selection optimization: The multilayer social spider optimization technique is employed for the 

optimization of marginal feature selection, enhancing the classification process. 

 Refined pattern predictions: This technique ensures prioritization of the most influential features, leading to 

more precise pattern predictions based on behavioral data points. 

 

(c) Optimized spectral neural classification 

 Behavioral pattern categorization: The integration of optimized spectral neural classification into the research 

framework is critical for the finalization of behavioral pattern categorization. 

 Enhanced understanding of driver behavior: This advanced classification technique plays a pivotal role in 

deepening the understanding of driving conditions and optimizing driver behavior analysis. 

 

(d) Active dimensional reduction and adaptation process 

 Mitigation of adverse effects: An active dimensional reduction approach is implemented to address adverse 

effects, noise, and defective data within the dataset. 

 Swift adaptation to evolving driver styles: The system incorporates a swift adaptation process to 

accommodate changes in driver styles, especially those influenced by the advent of new vehicle technologies. 

 Optimal feature recommendations: This adaptation process is guided by optimal feature recommendations, 

ensuring the system's agility and responsiveness to evolving driving dynamics. 

 

 
 

Figure 2. Architecture diagram of the proposed FLFS-OSNCA 

 

The architecture diagram, as depicted in Figure 2, visually illustrates the systematic progression of the 

methodology. It encompasses steps from data segmentation and intent classification to the finalization of 

behavioral pattern categorization. This diagram underscores the integral role of feature selection, optimization 

techniques, and adaptation processes in the pursuit of enhanced accuracy and understanding of driver behavior. 

 

Algorithm 

 

The algorithm employed in this study is designed to normalize cluster point variations in k-means clustering 

and generate fuzzy rule predictions based on maximization of upper and lower bound limit values to predict 

marginal weightage values. The procedure is as follows: 

 

Algorithm: Evaluation of fuzzy logical subsets 

Input: Data collection X, fuzzy margin Nn 

Output: Diminished data collection Rx 

Initialization: 
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Step 1: Data collection X and fuzzy margin Nn are read. 

Step 2: Neural networks are established with a predetermined number of layers and attributes. The function 

InitializeNeuralNetworks() is invoked. 

Step 3: Fuzzy rule theory is applied for feature selection.  

For each feature f in the dataset: 

a. Mid-layer margin is applied to separate upper and lower weight margin features through 

ApplyMidLayerMargin(fuzzyMargin). 

b. Maximum weight and minimum features for each layer are determined using 

FindMaxWeightAndMinFeatures(f). 

c. Features are identified based on selection weight via IdentifyFeaturesBySelectionWeight(f, maxWeight, 

minFeatures). 

d. Identified features are added to the reduced dataset with AddToReducedDataSet(identifiedFeatures). 

Step 4: Redundant features Ts are retrieved with GetRedundantFeatures(). 

 

5. Result and Discussion 

 

The performance of drivers, monitored over various time frames, is established based on a driver performance 

pattern. This pattern is predicated on parameters such as signal state, fuel consumption, speed, acceleration, and 

traffic assumptions. The approach generates various methods for class performance evaluation based on the 

features supplied. Similarly, the system quantifies neuronal activation using the Performance Aspect Ratio (PAR), 

rated in several class formats. The PAR value is instrumental in determining the driver class, with recurrent neural 

activation applied across all training features in the hidden layer for classification. 

For comprehensive assessment, the FLFS-OSNC approach's baseline technique selection is crucial for 

comparative analysis. Each baseline technique, including Support Vector Machine (SVM), Principal Component 

Analysis (PCA), Hierarchical Dirichlet Process (HDP), and Genetic Algorithm-based Fuzzy C-Means (GA-FCM), 

is carefully chosen for its applicability to driver behavior analysis. Previously, these methods were utilized in 

predicting driving behaviors, highlighting areas for enhancement. The IGNIS dataset serves as a trial model set to 

establish the efficacy of FLFS-OSNC. The results presented in this study provide a foundation for broader 

spectrum analysis in future research. SVM is employed as a standard benchmark to evaluate the performance of 

FLFS-OSNC. PCA is used to compare how FLFS-OSNC captures feature significance against a dimensionality 

reduction-centered method. HDP's inclusion addresses the temporal dependencies in driver behavior analysis, 

offering insights into sequential data modeling. GA-FCM provides a benchmark against methods that leverage 

evolutionary algorithms and fuzzy clustering. This study ensures a thorough evaluation of the dataset, allowing 

for comparisons against traditional, contemporary, and specialized approaches. The rationale for each selection 

underscores the necessity to comprehend FLFS-OSNC's effectiveness and uniqueness in predicting driver behavior 

patterns. The capabilities of FLFS-OSNC not only enhance current systems but also offer tailored interventions 

attuned to specific contexts. Moreover, the predictive and context-aware capabilities of FLFS-OSNC have 

potential applications beyond driving behavior analysis, including sectors like finance, retail, manufacturing, 

education, security, and customer service. 

In the context of driver behavior analysis, the proposed personalized web search method utilizes feature 

selection and spectral classification to infer relevant categories based on the retrieval history of driver behavior 

searches. This approach has demonstrated efficacy in context clustering, with hybrid data patterning (HDP) 

showing improved performance over previous methodologies. 

 

Table 1. Dataset specifics 

 
Parameter Value 

Number of drivers 20 

Features 15 

Datasets used IGNIS car 

Tool Python Anaconda framework 

 

Table 1 provides an exhaustive overview of the dataset employed to evaluate the effectiveness of the proposed 

strategy, which is based on the multi-attribute opinion rate support measure. The evaluation of FLFS-OSNCA 

incorporates metrics such as clustering accuracy (cs), precision, recall, and time complexity. 

 

Clustering accuracy (𝑐𝑠)  = ∑×

𝑘=𝑛

𝑘=0

Retrived number of interest terms cluster (𝐶𝑑𝑠) predictedlinks

Total related datsets (𝑇𝑟) from search links
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Figure 3. Comparison of the accuracy of pattern predictions 

 

Figure 3 depicts the prediction accuracy of two systems. The comparison reveals that the GA-FCM method, as 

part of the proposed strategy, yielded higher clustering accuracy than the comparative system. 

 

Table 2. Comparison of pattern prediction accuracy 

 

 Impact of Pattern Prediction Accuracy (%) 

Methods/Number of Records SVM CS-PCA HDP GA-FCM FLFS-OSNCA 

10 drivers 82.2 87.3 91.1 96.1 97 

20 drivers 85.4 89.5 93.2 97.5 98.9 

 

The data indicate in Table 2 that the prediction accuracy for 10 drivers is 97% and for 20 drivers is 98.9%, 

demonstrating that the proposed FLFS-OSNCA approach yields higher clustering accuracy compared to the PCA 

neural network. 

 

5.1 Analysis of Precision 

 

Precision (Pr) is defined as the ratio of the total number of accurately predicted patterns to the total number of 

driver behavior relations. This metric is calculated using the relevant pattern (R) derived from the confusion matrix. 

 

Precision (𝑃𝑟)  =  
Relevant links (𝑅)

Total number of retrieved Links (𝐴)
 ×  100 

 

 
 

Figure 4. Comparison of precision 
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Figure 4 illustrates the comparison of precision achieved by different methods. It is observed that the proposed 

FLFS-OSNCA method outperforms other methodologies in terms of precision. 

 

Table 3. Comparison of precision 

 
 Impact of Precision (%) 

Methods/Number of Drivers SVM CS-PCA HDP GA-FCM FLFS-OSNCA 

10 drivers 68.2 71.2 76.3 87.3 89.4 

20 drivers 76.4 69.4 74.8 84.6 88.3 

 

The precision of 89.4% for 10 drivers and 88.3% for 20 drivers, as indicated in Table 3, demonstrate that the 

FLFS-OSNCA approach outperforms other methods in precision. 

 

5.2 Recall Analysis 

 

Recall (Rc) represents the percentage of accurately retrieved driver behavior patterns with relevant positive 

values. 

 

Recall (𝑅𝑐)  =  
total retrieved from relevant links (𝑅𝐴)

relevant links(𝑅)
 ×  100 

 

 
 

Figure 5. Comparison of recall 

 

Figure 5 illustrates the comparative analysis of false recall generated by various methods. The FLFS-OSNCA 

method is observed to surpass other techniques in performance. 

 

Table 4. Comparison of recall 

 
 Impact of Recall (%) 

Methods/Number of Records SVM CS-PCA HDP GA-FCM FLFS-OSNCA 

10 drivers 68.2 71.2 76.3 87.3 92 

20 drivers 67.4 69.4 74.8 84.6 93.9 

 

Table 4 compares the recall from pattern analysis, where FLFS-OSNCA is shown to achieve superior 

performance compared to alternative methods. 

 

5.3 Analysis of Time Complexity 

 

Time complexity (𝑇𝑐)  = ∑×

𝑘=𝑛

𝑘=0

prediction of clustering Accuracy (𝑐𝑠) + false classification (𝐹𝑐𝑟)

Time taken (𝑇𝑠)
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Figure 6. Comparison of time complexity 

 

Figure 6 presents a comparison of the time complexity generated by various methods, indicating that the 

proposed FLFS-OSNCA methodology exhibits lower time complexity compared to other approaches. 

 

Table 5. Comparison of time complexity 

 
 Impact of Time Complexity (ms) 

Methods/Number of Records SVM CS-PCA HDP GA-FCM FLFS-OSNCA 

10 drivers 11.6 9.1 6.3 5.3 4.6 

20 drivers 14.4 13.4 8.8 6.6 5.8 

 

Table 5 demonstrates that the FLFS-OSNCA method achieved a time complexity of 4.6 milliseconds for 10 

drivers and 5.8 milliseconds for 20 drivers, thus validating the efficiency of the proposed approach. 

The FLFS-OSNC method, specifically designed for driver behavior analysis, opens promising avenues for 

future research and applications in various domains. Future directions include adapting the methodology for real-

time applications in advanced driver assistance systems, addressing limitations in predicting behavior during 

hazardous scenarios, and integrating multimodal data sources for comprehensive analysis. The method's potential 

extension to other transportation modes, contribution to health and wellness monitoring within vehicles, and 

application in human-computer interaction are noteworthy. Exploratory research involving variations with 

advanced ML models, cross-domain applications, and robustness against security considerations are essential. 

Collaboration with industry partners is encouraged to facilitate the integration of FLFS-OSNC into emerging 

technologies, contributing significantly to the development of intelligent and context-aware transportation systems. 

The method exhibits versatility and holds potential for significant advancements in fields beyond driver behavior 

analysis. 

 

6. Conclusion 

 

The implementation of the FLFS-OSNC method in this research has demonstrated its efficacy in predicting 

driver behavioral patterns and providing optimal recommendations to enhance driving behaviors. A robust system 

for driver behavior analysis has been established through the integration of feature selection and classification 

approaches within the proposed methodology. 

In comparison with advanced techniques such as SVM, PCA, Hierarchical Dirichlet Process (HDL), and GA-

FCM, the FLFS-OSNC approach has exhibited superior performance. It achieved an accuracy of 98.9%, a 

precision of 88.3%, and a recall of 93.9%. These metrics underscore the method's ability to minimize classification 

errors and reduce time complexity, especially in the context of large-dimensional datasets. 

However, it is imperative to acknowledge that the current iteration of the method is limited in providing driving 

patterns during risky situations. Future research efforts will be directed towards expanding the methodology to 

include real-time driving behavior features and analyzing trends during hazardous scenarios. This research thus 

sets a strong foundation for furthering the field of driver behavior prediction and analysis. 

The integration of the FLFS-OSNC method with existing driver assistance systems has the potential to facilitate 

the swift processing of real-time data, effectively addressing communication delays and ensuring synchronization 

with current components. This integration, however, introduces complexities in the management of riskier driving 
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patterns. These complexities encompass challenges in defining and identifying risks, navigating ethical 

considerations, garnering driver acceptance, and adhering to the dynamic legal and regulatory frameworks. The 

successful implementation of FLFS-OSNC has demonstrated its proficiency in predicting driving behaviors, 

thereby enabling improvements in various aspects such as vehicle dynamics, fuel consumption, and maintenance 

of key components like clutches and brake shoes. This contributes to an overall enhancement in engine and vehicle 

performance. 

Nevertheless, integrating the FLFS-OSNC approach with driver assistance systems presents both potential 

benefits and challenges. Key challenges may arise in terms of data processing speed and latency, necessitating a 

careful evaluation of system responsiveness. It is imperative to balance these aspects to ensure successful 

integration, which could significantly augment the efficacy of driver assistance systems and contribute to 

advancements in road safety. 
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and procedures of this research have been approved by the appropriate ethics committee. Participants were 

informed of their rights, including the right to withdraw from the study at any time. All collected data is used solely 

for the purpose of this research and is stored and processed in a secure and confidential manner. 

 

Data Availability 

 

The data used to support the research findings are available from the corresponding author upon request. 

 

Conflicts of Interest 

 

The authors declare no conflict of interest. 

 

References 

 

Alluhaibi, S. K., Al-Din, M. S. N., & Moyaid, A. (2018). Driver behavior detection techniques: A survey. Int. J. 

Appl. Eng. Res, 13(11), 8856-8861. 

Alrassy, P., Smyth, A. W., & Jang, J. (2023). Driver behavior indices from large-scale fleet telematics data as 

surrogate safety measures. Accid. Anal. Prev., 179, 106879. https://doi.org/10.1016/j.aap.2022.106879. 

Caponecchia, C. & Williamson, A. (2018). Drowsiness and driving performance on commuter trips. J. Saf. Res., 

66, 179-186. https://doi.org/10.1016/j.jsr.2018.07.003. 

Choudhary, P. & Velaga, N. R. (2019). Effects of phone use on driving performance: A comparative analysis of 

young and professional drivers. Saf. Sci., 111, 179-187. https://doi.org/10.1016/j.ssci.2018.07.009. 

Curry, A. E., Metzger, K. B., Williams, A. F., & Tefft, B. C. (2017). Comparison of older and younger novice 

driver crash rates: Informing the need for extended Graduated Driver Licensing restrictions. Accid. Anal. 

Prev., 108, 66-73. https://doi.org/10.1016/j.aap.2017.08.015. 

Guo, B., Jin, L., Sun, D., Shi, J., & Wang, F. (2019). Establishment of the characteristic evaluation index system 

of secondary task driving and analyzing its importance. Transp. Res. Part F Traffic Psychol. Behav., 64, 308-

317. https://doi.org/10.1016/j.trf.2019.05.013. 

Hssayeni, M. D., Saxena, S., Ptucha, R., & Savakis, A. (2017). Distracted driver detection: Deep learning vs 

handcrafted features. Electron. Imaging., 29, 20-26. https://doi.org/10.2352/ISSN.2470-

1173.2017.10.IMAWM-162. 

Hua, K. T. & Cheng, Z. J. (1999). Application and analytical strategies of structural equation modelling. Explor. 

Psychol., 19(69), 54-59. 

Huang, Y. H., Zhang, W., Roetting, M., & Melton, D. (2006). Experiences from dual-country drivers: Driving 

safely in China and the US. Saf. Sci., 44(9), 785-795. https://doi.org/10.1016/j.ssci.2006.05.002. 

Kroenung, J. & Eckhardt, A. (2015). The attitude cube—A three-dimensional model of situational factors in IS 

adoption and their impact on the attitude–behavior relationship. Inf. Manag., 52(6), 611-627. 

https://doi.org/10.1016/j.im.2015.05.002. 

Martinussen, L. M., Hakamies-Blomqvist, L., Møller, M., Özkan, T., & Lajunen, T. (2013). Age, gender, mileage 

and the DBQ: The validity of the Driver Behavior Questionnaire in different driver groups. Accid. Anal. Prev., 

52, 228-236. https://doi.org/10.1016/j.aap.2012.12.036. 

Mayhew, D. R., Simpson, H. M., & Pak, A. (2003). Changes in collision rates among novice drivers during the 

first months of driving. Accid. Anal. Prev., 35(5), 683-691. https://doi.org/10.1016/S0001-4575(02)00047-7. 

Özkan, T., Lajunen, T., Chliaoutakis, J. E., Parker, D., & Summala, H. (2006). Cross-cultural differences in driving 

9



behaviours: A comparison of six countries. Transp. Res. Part F Traffic Psychol. Behav, 9(3), 227-242. 

https://doi.org/10.1016/j.trf.2006.01.002. 

Peng, Y., Cheng, L., Jiang, Y., & Zhu, S. (2021). Examining Bayesian network modeling in identification of 

dangerous driving behavior. PLoS ONE, 16(8), e0252484. https://doi.org/10.1371/journal.pone.0252484. 

Reason, J., Manstead, A., Stradling, S., Baxter, J., & Campbell, K. (1990). Errors and violations on the roads: A 

real distinction? Ergonomics, 33(10-11), 1315-1332. https://doi.org/10.1080/00140139008925335. 

Shi, B., Xu, L., Hu, J., Tang, Y., Jiang, H., Meng, W., & Liu, H. (2015). Evaluating driving styles by normalizing 

driving behavior based on personalized driver modeling. IEEE Trans. Syst. Man Cybern. Syst., 45(12), 1502-

1508. https://doi.org/10.1109/TSMC.2015.2417837. 

Tao, D., Zhang, R., & Qu, X. (2017). The role of personality traits and driving experience in self-reported risky 

driving behaviors and accident risk among Chinese drivers. Accid. Anal. Prev., 99, 228-235. 

https://doi.org/10.1016/j.aap.2016.12.009. 

Van Gelderen, M., Brand, M., Van Praag, M., Bodewes, W., Poutsma, E., & Van Gils, A. (2008). Explaining 

entrepreneurial intentions by means of the theory of planned behaviour. Career Dev. Int., 13(6), 538-559. 

https://doi.org/10.1108/13620430810901688. 

Wang, J., Wang, Q. N., Zeng, X. H., Wang, P. Y., & Wang, J. N. (2015). Driving cycle recognition neural network 

algorithm based on the sliding time window for hybrid electric vehicles. Int. J. Automot. Technol., 16, 685-

695. https://doi.org/10.1007/s12239-015-0069-3.

Xing, Y., Lv, C., Zhang, Z., Wang, H., Na, X., Cao, D., Velenis, E., & Wang, F. Y. (2017). Identification and 

analysis of driver postures for in-vehicle driving activities and secondary tasks recognition. IEEE Trans. 

Comput. Soc. Syst., 5(1), 95-108. https://doi.org/10.1109/TCSS.2017.2766884. 

Zinebi, K., Souissi, N., & Tikito, K. (2018). Driver behavior analysis methods: Applications oriented study. In 

Proceedings of the 3rd International Conference on Big Data, Cloud and Applications-BDCA. Kenitra, 

Morocco, April 4-5, 2018. 

10


	5



