
https://doi.org/10.56578/ocs020402 

Opportunities and Challenges in Sustainability 
https://www.acadlore.com/journals/OCS 

Spatial and Seasonal Dynamics of Air Quality in the Beijing-Tianjin-

Hebei Region: An Analysis Using K-means Clustering and BP 

Neural Networks 

Yuanyuan Wang1 , Zhuang Wu1* , Wanshu Fu1 , Jiaqi Du1 , Yi Zhang2

1 School of Management and Engineering, Capital University of Economics and Business,  
100070 Beijing, China 
2 School of Environment, The University of Manchester, M13 9PL Greater Manchester, UK 

* Correspondence: Zhuang Wu (wuzhuang@cueb.edu.cn)

Received: 09-25-2023 Revised: 10-29-2023 Accepted: 11-17-2023 

Citation: Wang, Y. Y., Wu, Z., Fu, W. S., Du, J. Q., Zhang, Y. (2023). Spatial and seasonal dynamics of air 

quality in the Beijing-Tianjin-Hebei region: An analysis using K-means clustering and BP Neural Networks. 

Oppor Chall. Sustain., 2(4), 184-196. https://doi.org/10.56578/ocs020402. 

© 2023 by the author(s). Published by Acadlore Publishing Services Limited, Hong Kong. This article is available for free 
download and can be reused and cited, provided that the original published version is credited, under the CC BY 4.0 license. 

Abstract: In the context of rapid economic development, air pollution has emerged as a critical environmental 

issue, particularly in the Beijing-Tianjin-Hebei region. This study, through the application of Air Quality Index 

(AQI) data and K-means clustering, investigates the seasonal variations and spatial distribution of air quality in 

this region. It has been identified that air pollution in this area is not only subject to seasonal fluctuation but also 

exhibits distinct patterns of local spatial aggregation. Utilizing a Back Propagation (BP) Neural Network model, 

this research predicts AQI values, offering foresight into the development and transformation of haze weather 

conditions. The findings of this investigation are instrumental in enhancing the understanding of air pollution 

dynamics, facilitating the formulation of effective air control strategies. Such strategies are vital for the issuance 

of accurate pollution warnings and reminders, thereby contributing to the mitigation of severe pollution impacts. 

Keywords: Air Quality Index; K-means clustering; Local spatial aggregation; Back Propagation Neural Network 

model 

1. Introduction

The indispensability of clean air for human existence is juxtaposed starkly against the backdrop of

industrialization and the rapid pace of economic development, which have culminated in an overabundance of air 

pollutants. This saturation of pollutants has transformed haze from a natural phenomenon into a predominantly 

anthropogenic one, posing significant threats to public health, traffic safety, and the overall quality of life. Urban 

centers, in particular, are grappling with this hazard, and nowhere is this more evident than in China. The nexus 

of technological transformation and swift economic expansion has exacerbated air pollution, especially in 

economically pivotal regions such as the Beijing-Tianjin-Hebei and the Yangtze River Delta. Metropolitan hubs 

including Beijing, Tianjin, Shijiazhuang, Zhengzhou, and Nanjing are at the epicenter of this crisis, with pollution 

radiating to adjacent cities and precipitating concentrated episodes of contamination. The elucidation of the 

spatiotemporal dynamics of haze pollution in China in recent years emerges as an imperative for governmental 

intervention. Such an understanding is foundational for the development of efficacious haze control policies, the 

enhancement of regional collaborative prevention efforts, and the furtherance of China’s ecological civilization 

initiative.  

The ensuing sections of this study are organized as follows: Section 2 presents a review of the relevant literature; 

Section 3 delineates the research methodology and data sources employed; Section 4 offers an analysis of the 

results; and Section 5 encapsulates the conclusions drawn from this study. 

2. Literature Review

The multifaceted nature of haze formation, its influencing factors, and predictive methodologies has captivated
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scholarly attention globally. Li (2018) conducted an analysis utilizing cluster analysis to explore the genesis and 

control measures of haze, revealing a higher concentration of SO2 and inhalable particulate matter in northern 

Chinese cities compared to their southern counterparts, thus indicating regional disparities in urban pollutant 

concentration distribution. Van et al. (2022) provided a comprehensive summary of the characteristics, causative 

factors, and mechanisms behind haze formation in Southeast Asia. Their findings highlighted the varying trends 

in haze occurrence frequency and intensity across cities, attributing these differences not only to local pollution 

sources like biomass burning but also to meteorological factors and long-range transport. The role of secondary 

aerosols in haze formation was also underscored. Cai et al. (2023) examined the impact of both natural and socio-

economic factors on haze pollution in China. The study found positive correlations between haze pollution and 

variables such as temperature, atmospheric pressure, population density, and green coverage rate in built-up areas, 

whereas per capita GDP exhibited an inverse relationship. However, the extent of influence varied among these 

factors. 

Susilo & Putranto (2023) investigated various determinants affecting the provincial air quality index in 

Indonesia from 2012 to 2019. Their research highlighted that circular economy variables, including water resource 

efficiency, waste treatment, and waste production, significantly improved air quality. However, variables related 

to the population's contribution to coal and water use efficiency did not demonstrate a positive impact on 

Indonesia's air quality. Abdul-Rahman et al. (2024) synthesized information on the effects of air quality on 

cardiovascular health. The study underscored that air pollution poses a global health challenge, elevating the risk 

of cardiovascular diseases such as heart attacks, strokes, and arrhythmias, with particulate matter, especially PM2.5 

and ultrafine particles, being pivotal in the adverse effects of air pollution on cardiovascular health. Xu et al. (2023) 

explored whether the construction of low-carbon cities can reduce pollution, and the research results showed that 

the construction of low-carbon cities did not effectively reduce haze pollution in pilot cities. Further research has 

found that the failure of the emission reduction effect of haze pollution may lie in the failure of the technological 

innovation effect and population quality effect of low-carbon city construction, as well as regional heterogeneity. 

Supphapipat et al. (2023) delved into the effects of air pollution on post-organ transplant outcomes, asserting that 

air pollution creates a hazardous environment affecting not only global human health but also post-transplant 

outcomes.  

Ma & Cao (2021) investigated the impact of haze pollution on industrial structure, revealing a significant 

positive spatial correlation in haze pollution in China that remains relatively stable. The study suggested that the 

optimization and rationalization of industrial structure, technological progress, and trade opening are effective in 

reducing haze pollution, with market mechanisms proving more efficacious than governmental interventions. 

Wang & Xu (2022) studied the impact of digitalization on haze pollution and explored the mediating role of energy 

consumption. Empirical results showed that digitalization can effectively suppress haze pollution, and this 

inhibitory effect has significant heterogeneity. In addition, digitalization can indirectly suppress haze pollution by 

reducing energy consumption intensity and optimizing energy consumption structure. Jia & Yan (2022) studied 

the impact of haze pollution on the demand for commercial health insurance. The results showed that the 

relationship can show significant regional heterogeneity, with a significant positive correlation in the eastern 

region and a significant negative correlation in the central and western regions. Lv et al. (2022) explored the impact 

of government attention to the environment on haze pollution, and the results showed that local government 

environmental attention effectively reduced haze pollution. After considering robustness, the conclusion still holds. 

Liu et al. (2023a) studied how different types of industrial agglomeration contribute to haze pollution. The results 

show that there is an inverted U-shaped relationship between related variety and haze pollution, however, the 

overall variety aggravates haze pollution. Wu (2023) assessed the efficacy of joint prevention and control measures 

for air pollution in China, concluding that such measures significantly influence both the overall and individual 

pollutant emissions. Li et al. (2023) examined the interplay between market segmentation and haze pollution in 

the urban agglomerations of China's Yangtze River Delta, finding that cities with high market segmentation and 

haze pollution could potentially reduce pollution through future market integration. Many scholars have predicted 

AQI by constructing models, such as Liu & Guo (2022) predicting the Air Quality Index (AQI) based on LSTM 

model and SSA algorithm, Zhang et al. (2022) predicting AQI based on real-time images of deep learning, 

Duangsuwan et al. (2022) conducted AQI mapping and data evaluation based on real-time air pollution monitoring 

using low altitude drones. Liu et al. (2023b) developed an AQI prediction model based on a BP Neural Network, 

providing a reliable reference for governmental decision-making. Lastly, Ahmad & Ahmad (2023) studied an AQI 

prediction model based on a layer-recurrent neural network, demonstrating its utility for the Air Pollution Control 

Bureau in enhancing the accuracy of AQI predictions and pollution control measures. Si et al. (2023) studied a 

new algorithm for haze recognition based on FY3D/MERSI-II remote sensing data.  

While the existing body of research lays a solid scientific groundwork for the formulation of haze prevention 

and control strategies, it is not without its limitations. A prevalent issue observed is the focus on either socio-

economic or natural meteorological factors in isolation, leading to a fragmented understanding of haze formation 

mechanisms and treatment methodologies. Moreover, a majority of these studies have centered their analysis on 

PM2.5 and PM10 as primary haze pollution indicators, overlooking the fact that different cities may have varied 
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primary pollutants contributing to pollution. This reliance on singular indicators fails to accurately encapsulate the 

complete pollution scenario, often resulting in the underestimation of actual pollution levels in certain urban areas. 

In addressing these gaps, this study advocates for the utilization of AQI as a more comprehensive measure of 

air pollution. The AQI, a dimensionless index, quantitatively represents air quality by amalgamating six indicators: 

PM10, PM2.5, sulfur dioxide, nitrogen dioxide, ozone, and carbon monoxide. An escalated AQI value is indicative 

of deteriorating air quality and an increased risk to public health. Furthermore, this research incorporates visual 

software tools to analyze the mass concentration, as well as the spatial and temporal distribution of pollutants, 

placing emphasis on regional disparities and interdependencies. A BP Neural Network model, developed in Matlab, 

facilitates the prediction of AQI time series. This approach enables the systematic identification and quantification 

of both natural and anthropogenic factors influencing air quality, alongside their spatial spillover effects. The 

implications of this study are profound, addressing a pressing need for the formulation of globally coordinated 

development plans. It holds substantial scientific relevance for the establishment of regional and urban atmospheric 

environment prevention and control policies, thereby contributing to a holistic understanding and management of 

air pollution dynamics. 

 

3. Research Methodology 

 

In the contemporary era of vast data proliferation, the effective analysis and interpretation of this data is 

paramount, yet it often presents a challenge due to its sheer volume and complexity. To address this, data 

visualization technology has emerged as a pivotal tool. It facilitates the transformation of complex datasets into 

comprehensible visual formats such as charts, graphs, and other aids. This technology not only streamlines the 

data analysis process but also unravels underlying patterns and insights, thereby enhancing decision-making 

processes. 

In this study, GeoDa, a sophisticated geographic mapping software, was employed to process and evaluate air 

quality monitoring data from 13 cities in the North China Plain. The software generated a map that visually 

represented varying pollution levels across these cities using a color-coded scheme. Additionally, a tabular format 

was used to present the concentrations of various air factors in the Beijing-Tianjin-Hebei region. During the 

development of the BP Neural Network model, the data underwent a normalization process to ensure accuracy and 

consistency in the model's predictive capabilities. 

 

3.1 Air Quality Evaluation Method (AQI) 

 

AQI is utilized as a comprehensive measure for assessing air pollution levels and understanding their potential 

health impacts. Prior to the adoption of AQI, the Air Pollution Index (API), which included only three pollution 

indicators, was employed in China. In response to the evolving complexity of air pollution, China integrated 

foreign expertise and methodologies, tailored to its specific environmental context, to develop and adopt the AQI. 

This initiative has significantly enhanced China's capabilities in addressing the multifaceted challenges of air 

pollution. 

In this study, pollution is the primary focus, with an emphasis on analyzing the temporal variation characteristics 

of different pollutants and assessing their compliance with established standards. The AQI method is employed to 

perform an exhaustive evaluation of air quality. This approach effectively underscores the impact of individual 

pollutants on overall air quality. Specifically, the Individual Air Quality Index (IAQI), correlating to the 

concentration of a particular pollutant, is instrumental in determining air quality. The sub-index 𝐼𝑃 for air quality, 

associated with the mass concentration 𝐶𝑝 of a specific pollutant P, is calculated using the following Eq. (1): 
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−
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where, 𝐶𝑝ℎ and 𝐶𝑝𝑙 represent the highest and lowest values of the concentration limits for a similar pollutant, 

respectively, and 𝐼𝑝ℎ and 𝐼𝑝𝑙 correspond to the IAQI values for 𝐶𝑝ℎ and 𝐶𝑝𝑙. 

 

 1 2 3AQI max , , , nIAQI IAQI IAQI IAQI=   (2) 

 

The AQI value is instrumental in identifying the primary pollutant when the AQI exceeds 50, as it is the pollutant 

with the largest IAQI. The evaluation of air quality levels and categories is conducted based on the AQI values. 

Tables 1 and 2 in the study delineate the AQI index with corresponding pollutant concentration limits and the AQI 

classification, respectively. These tables provide a framework for understanding the correlation between pollutant 

concentrations and air quality categories, facilitating a comprehensive analysis of air quality. This analysis 

considers various factors, including pollutant concentration, exposure duration, and associated health risks, to 
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assess air quality and categorize it appropriately. 

 

Table 1. AQI index and pollutant concentration limits 

 

IAQI 

Concentration Limits for Pollutants 

SO2 

24-Hour 

Average 

(µg/m3) 

SO2 

1-Hour 

Average 

(µg/m3)
（1） 

NO2 

24-Hour 

Average 

(µg/m3) 

NO2 

1-Hour 

Average 

（µg/m3）
（1） 

PM10 

24-Hour 

Average 

(µg/m3) 

CO 

24-Hour 

Average 

(mg/m3) 

CO 

1-Hour 

Average 

(mg/m3)
（1） 

O3 

1-Hour 

Average 

(µg/m3) 

O3 

8-Hour 

Sliding 

Average 

(µg/m3) 

PM2.5 

24-Hour 

Average 

(µg/m3) 

0 0 0 0 0 0 0 0 0 0 0 

50 50 150 40 100 50 2 5 160 100 35 

100 150 500 80 200 150 4 10 200 160 75 

150 475 650 180 700 250 14 35 300 215 115 

200 800 800 280 1200 350 24 60 400 265 150 

300 1600 (2) 565 2340 420 36 90 800 800 250 

400 2100 (2) 750 3090 500 48 120 1000 (3) 350 

500 2620 (2) 940 3840 600 60 150 1200 (3) 500 

 

Table 2. AQI classification 

 

AQI AQI Level AQI Categories and Colors 

0-50 1 Optimal (green) 

51-100 2 Good (yellow) 

101-150 3 Slight pollution (orange) 

151-200 4 Moderate pollution (red) 

201-300 5 Heavy pollution (purple) 

>300 6 Severe pollution (maroon) 

 

The evaluation of air quality levels and categories is systematically conducted based on the AQI values. The 

AQI serves as a quantitative tool, facilitating the evaluation of ambient air quality through a comprehensive 

analysis. This analysis incorporates several critical factors, including the concentration of various pollutants in the 

air, the duration of exposure, and the potential health risks associated with such exposure. The AQI values are then 

utilized to categorize the air quality into distinct levels, ranging from "optimal" to "severe pollution." It is 

imperative for businesses and academic institutions to monitor air quality levels diligently, as poor air quality 

poses significant risks to both human health and the environment. 

 

3.2 BP Neural Network 

 

3.2.1 Neuron model 

In the BP Neural Network, each neuron functions by assigning a specific weight value to each incoming signal, 

determining the activation of the neuron. The collective weighted sum of these input signals is computed, 

ascertaining the neuron's activation status. These weights are indicative of the synaptic connection strength, a 

critical aspect of neural processing. Figure 1 illustrates the basic neuron model within this context. 

 

 
 

Figure 1. Neuron model 

 

Within the neural network, each neuron, serving as a computational element, assimilates input signals, each 

represented by distinct connection weights. This neuron conducts a comprehensive evaluation of the input signals, 

culminating in the network's output. The aggregation of these input values is executed for each neuron, collectively 

contributing to the overall network output. 

187



3.2.2 Basic principle of BP Neural Network 

The architecture of the BP Neural Network comprises an input layer, one or more hidden layers, and an output 

layer. Initially, the network calculates the error through a process of forward propagation. Following this, the 

weights and thresholds of both the hidden and output layers are adjusted via backpropagation. This adjustment 

aims to minimize the mean square error. Figure 2 displays the topology of a BP Neural Network, specifically 

highlighting a configuration with two hidden layers. 

 

 
 

Figure 2. Topology structure of BP Neural Network 

 

3.2.3 Propagation process of BP Neural Network 

Learning in a neural network encompasses two principal stages: forward propagation and error backpropagation. 

During forward propagation, the network assimilates the weight and threshold values. Should the network's output 

deviate from the expected result, it transitions to error backpropagation. In this phase, an error function gradient 

descent strategy is employed to adjust the network's weights and thresholds, based on the magnitude of the relative 

error. The backpropagation process proceeds in the reverse direction of forward propagation, continuing until the 

BP Neural Network's output data closely aligns with the anticipated output. Figure 3 shows the topology of a three-

layer neural network. 

 

 
 

Figure 3. Topology of a three-layer neural network 

 

(a) Forward propagation process of the signal 

Consider a three-layer BP network comprising 𝑛 input nodes, 𝑚 output nodes, and a hidden layer with 𝑞 

nodes. The weights between the input and hidden layers are denoted as 𝑣ⅈ𝑘, and those between the hidden and 

output layers as 𝑤𝑘𝑗 . The transfer functions for the hidden and output layers are 𝑓1 and 𝑓2, respectively. The 

output equations for these layers are expressed as follows: 

The output of the hidden layer node is calculated using Eq. (3): 

 
n

k 1 ik i

i 0

Z f V X 1,2,k q
=

 
= =  

 
  (3) 

 

The output of the output layer node is derived using Eq. (4): 

 
q

j 2 kj k

k 0

y f w z 1,2,j m
=

 
= =  

 
  (4) 
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(b) Backpropagation process of error 

Step 1: Error function definition 

For a set comprising 𝑃 samples, 𝑥1, 𝑥2,𝑥3, … 𝑥𝑝 is defined as the input data. Value of the output node yj
p
 

(𝑗 = 1,2, …𝑚) is obtained following the processing of the sample 𝑝 by the neural network. The squared error 

function 𝐸𝑃 for sample 𝑥𝑝 is defined in Eq. (5): 

 

( )
m

2
p p

P j j

j 1

1
E t y

2 =

= −  (5) 

 

where, 𝑡𝑗
𝑝
 is the desired output. The global error for this sample is then calculated using Eq. (6): 

 

( )
P m P

2
p p

j j P

P 1 j 1 P 1

1
E t y E

2 = = =

= − =   (6) 

 

Step 2: Weight adjustment of output layer 

The cumulative error is adjusted using the BP algorithm as per Eq. (7), with 𝜂 representing the learning rate.  

 

p p
P

jk P

p 1 p 1jk jk jk

EE
w E

w w w
  

= =

    
 = − = − = −         

   (7) 

 

The error signal is defined in Eq. (8), further detailed in items in Eqs. (9) and (10): 

 

jP P

j j j

yE E
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The partial differentiation of the transfer function for the output layer is given in Eq. (11): 

 

( ) ( )2

1

m
p p

yj j j j

j

t y f S 

=

= −  (11) 

 

Applying the chain theorem, Eq. (12) is derived, leading to the formulation of Eq. (13) for adjusting the weights 

of neurons in the output layer. 

 

( ) ( )
m

j p pP P
yj k j j 2 j k

j 1jk j jk

SE E
Z t y f S Z
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=
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1 1
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The weight adjustment for the hidden layer is executed using Eq. (14): 

 
p p

p

ki p

p 1 p 1ki ki ki

EE
v E

v v v
  

= =

    
 = − = − = −   

    
   (14) 

 

Repeating the aforementioned steps, Eq. (15) is obtained, facilitating the comprehensive weight adjustment 

process for the hidden layer. 
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( ) ( ) ( )2 1

1 1

p m
p p

ki j j j jk k i

p j

v t y f S w f S x  

= =

 = −  (15) 

 

3.3 K-means Cluster Analysis 

 

In this study, K-means cluster analysis was employed to categorize research objects based on their attributes. 

The essence of K-means lies in iteratively finding a partition scheme of K clusters that minimizes the associated 

cost function, which is defined as the sum of squared errors of the distances between each sample and its 

corresponding cluster center. Due to its scalability and near-linear computational complexity, K-means is 

particularly adept at handling large datasets. While the algorithm may converge to local optima, these are generally 

sufficient for clustering objectives. The application of K-means in this research was augmented with geographic 

information to delineate the spatial distribution of haze clusters. 

 

3.4 Data Sources 

 

The data for this research was compiled from various authoritative sources within China, encompassing the 

Atmospheric Administration, National Aeronautics and Space Administration (NASA), and the Tianjin Bureau of 

Environmental Statistics. The dataset spans from January 1, 2014, to December 31, 2017, and predominantly 

includes daily air pollution data from 13 cities in China. These cities are Baoding, Beijing, Cangzhou, Chengde, 

Handan, Hengshui, Langfang, Qinhuangdao, Shijiazhuang, Tangshan, Tianjin, Xingtai, and Zhangjiakou. The 

collected data comprises AQI, air quality levels, and concentrations of various pollutants including PM2.5, PM10, 

sulfur dioxide, nitrogen dioxide, carbon monoxide, and ozone. Table 3 provides a snapshot of the air quality data 

for Beijing in 2017, illustrating the AQI, air quality levels, and concentrations of PM2.5, PM10, SO2, NO2, CO, and 

O3 on select dates. 

 

Table 3. Partial air quality data for Beijing in 2017 

 

Date AQI Air Quality Level PM2.5 PM10 SO2 NO2 CO O3 

2017/1/1 454 Severe pollution 430 501 8 131 6.43 4 

2017/2/1 54 Good 30 49 12 24 0.6 56 

2017/3/1 44 Optimal 7 37 2 13 0.52 79 

2017/4/1 61 Good 28 73 5 50 0.58 48 

2017/5/1 82 Good 40 112 7 44 0.7 71 

2017/6/1 69 Good 22 56 3 27 0.6 113 

2017/7/1 137 Slight pollution 89 132 3 40 0.97 154 

2017/8/1 98 Good 67 86 2 29 0.96 92 

2017/9/1 177 Heavy pollution 134 149 2 38 1.39 71 

2017/10/1 111 Slight pollution 73 91 1 47 0.75 52 

2017/11/1 88 Good 63 99 2 76 1.01 12 

2017/12/1 91 Good 67 99 10 66 1.26 12 

 

4. Result Analysis 

 

4.1 AQI of Cities in the Beijing-Tianjin-Hebei Region 

 

The evaluation of air quality in the Beijing-Tianjin-Hebei region was conducted using AQI. An AQI value of 

100 or below is indicative of 'excellent' or 'good' air quality. Figure 4 illustrates a statistical chart that presents the 

frequency of days with good air quality and the number of polluted days in this region. 

Analysis of Figure 4 reveals that certain cities, including Zhangjiakou, Chengde, and Qinhuangdao, have 

maintained a 'good' air quality rate exceeding 80%. Conversely, other cities in the region exhibited lower 'good' 

air quality rates, falling below the 80% threshold. Notably, cities such as Shijiazhuang, Handan, Baoding, 

Hengshui, and Xingtai reported 'good' air quality rates below 60%. This data suggests that these cities endure 

substantial air pollution for nearly half of the year. 

The significance of air pollution on environmental and human health, especially in regions with suboptimal air 

quality, cannot be overstated. It is, therefore, vital to develop and implement effective strategies to mitigate air 

pollution and protect public health. 

Figure 5 provides an insightful visual representation of air quality levels across the Beijing-Tianjin-Hebei region 

for the year 2017. This graphical depiction offers a detailed overview of the regional air quality, facilitating the 

assessment of air quality status and the development of targeted air quality improvement policies. 

According to the air quality classification diagram, Chengde and Zhangjiakou cities exhibit the highest 

percentage of days classified as 'excellent' air quality, with 61% of days achieving 'good' levels. In contrast, cities 
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such as Baoding, Handan, Hengshui, Shijiazhuang, and Xingtai experience over 25% of days with light pollution, 

and a significant proportion of days exhibit moderate to heavy pollution. This pattern indicates a more severe 

pollution situation in these cities. It is evident that the 13 cities within the Beijing-Tianjin-Hebei region confront 

diverse pollution challenges that are persistent both temporally and spatially. 

 

 
 

Figure 4. Statistical chart of good air quality rates and pollution days in the Beijing-Tianjin-Hebei region 

 

 
 

Figure 5. Air quality class distribution in the Beijing-Tianjin-Hebei region 

 

4.2 Monthly Variation Rules of Air Quality 

 

In the Beijing-Tianjin-Hebei region, the highest AQI values are typically recorded from January to March and 

from October to December, with the peak period occurring in January, February, November, and December 

(Figure 6). During the summer months, characterized by low atmospheric pressure, the region experiences its 

highest temperatures, increased humidity, and more dynamic atmospheric conditions, which enhance the 

likelihood of precipitation and wind activity. In contrast, the winter season, governed by high atmospheric pressure, 

witnesses the lowest temperatures and more stable weather patterns, reducing the chances of precipitation and 

wind. Meteorological conditions have been identified as the primary influencers of the temporal distribution of 

smog in this region. 
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Figure 6. Trend of monthly mean AQI concentration in 2017 

4.3 AQI Spatial Distribution of Seasonal Variations 

The spatial distribution of haze pollution across the 13 cities in the Beijing-Tianjin-Hebei region was 

investigated using quarterly average AQI data from 2017. GeoDa software was employed to generate cluster 

distribution maps of AQI for each season, as depicted in Figure 7. 

The diagrams in Figure 7 indicate that an AQI value of 1 represents high pollution levels, whereas a value of 5 

signifies low pollution. Comparative analysis of AQI values across the four seasons reveals distinct seasonal 

variations in haze pollution. Summer is characterized by relatively good air quality, with an escalation in haze 

coverage commencing in autumn and peaking in winter. The clustering results suggest that cities in close proximity 

exhibit similar pollution levels, highlighting the presence of local spatial clustering in haze distribution. This 

finding underscores the necessity for collaborative efforts among neighboring cities to effectively address air 

pollution. 

Moreover, the pollution gradient tends to increase from northeast to southwest, with notable disparities between 

the northern and southern regions. Cities in the north consistently face heavy pollution throughout the year, posing 

significant health risks from prolonged exposure to polluted air. The southern cities, while experiencing heightened 

pollution levels in spring and autumn, witness exacerbated conditions in winter. This seasonal variation in 

pollution, especially the heightened levels in northern cities like Qinhuangdao, Chengde, and Langfang during 

winter, significantly influences the clustering patterns. Consequently, understanding the underlying causes of these 

seasonal changes is crucial for formulating effective air quality improvement strategies. 

4.4 Prediction of AQI 

Following the evaluation of the trained neural network, the results demonstrated an average accuracy rate of 

83.94% and an average mean squared error (MSE) of 0.0247. These results are detailed in Table 4. 

The findings are elucidated in Figure 8, which graphically represents the training results of the partial grid for 

the prediction model.  

A BP Neural Network model was developed to predict and analyze the haze data from 2017. The model's 

predicted AQI values were juxtaposed with the actual recorded values, as exemplified by the AQI prediction results 

for Beijing in 2017 shown in Figure 9. This comparison is critical in evaluating the model's effectiveness in 

forecasting AQI values. 

Inspection of Figure 9 reveals a close correlation between the predicted and actual AQI values. The congruence 

in the changing trend underscores the efficacy of the model. The primary objective of this analysis is to observe 

and provide alerts for sudden changes in AQI values. As indicated in Figure 9, the model successfully identified 

significant AQI increases, thereby proving its utility in offering predictive alerts for significant changes in air 

quality. 
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Figure 7. Seasonal distribution of AQI in the Beijing-Tianjin-Hebei region in 2017 

 

Table 4. Results on a partial test set 

 

Test Set MSE Accuracy 

1 0.0325 82.6% 

2 0.0213 86.0% 

3 0.0218 85.6% 

4 0.0223 85.5% 

5 0.0285 82.8% 

6 0.0218 85.6% 

7 0.0202 86.2% 

… … … 

3796 0.0204 86.1% 

Average 0.0247 83.94% 
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Figure 8. BP Neural Network training results 

 

 
 

Figure 9. Comparison of predicted and actual AQI values in Beijing for 2017 
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5. Conclusion 

 

The challenge of mitigating haze pollution holds significant implications for China's environmental 

sustainability and economic progress. This study, focusing on 13 prefecture-level cities within the Beijing-Tianjin-

Hebei region, provides a comprehensive analysis of air quality data to elucidate the spatial distribution patterns of 

haze pollution in China. The following conclusions are drawn: 

First, AQI serves as an effective direct measure of air quality. In this study, six principal influencing factors 

were selected as inputs for the BP Neural Network to forecast AQI values. 

Second, analysis using the K-means clustering method reveals that haze pollution in the Beijing-Tianjin-Hebei 

region exhibits local spatial aggregation with distinct seasonal variations. The study finds that air quality is most 

favorable in summer, with minimal pollution levels, while winter experiences heightened haze pollution across a 

broader area. Notably, the southern part of Hebei Province is identified as the most polluted area. These distribution 

patterns are intricately linked to the regional topography and socio-economic factors. 

Third, the BP Neural Network model's prediction of AQI demonstrates satisfactory accuracy, particularly in 

instances of significant AQI fluctuations. The model's predictive capabilities align closely with actual trends, 

offering valuable insights for issuing pollution alerts and reminders based on forecasted AQI values. 

In summation, this study explores the temporal distribution of AQI, analyzing daily, monthly, and quarterly 

variations. It employs K-means clustering analysis to study the seasonal spatial distribution of haze pollution, 

utilizing AQI as a multifaceted evaluation metric. Moreover, the study harnesses the predictive power of the BP 

Neural Network for AQI forecasting, providing critical information for public alerts on air quality fluctuations to 

facilitate safer travel and living conditions. 
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