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Abstract: Efficient management of railway infrastructure is recognized as a cornerstone for the sustainable 

development of the transport sector, as it plays a critical role in reducing congestion, mitigating environmental 

pollution, and enhancing mobility. The modernization and optimization of railway systems are essential for the 

optimal utilization of resources and the advancement of a more competitive and environmentally sustainable sector. 

Railway infrastructure managers (RIMs) are entrusted with the responsibility of ensuring efficient infrastructure 

management, maintenance, and modernization, thereby guaranteeing the safety, reliability, and sustainability of 

railway systems. In this study, a methodological framework was proposed for evaluating the efficiency of RIMs 

by integrating Pearson’s correlation and the Data Envelopment Analysis (DEA) method. The efficiency evaluation 

was conducted based on key performance indicators (KPIs) associated with railway infrastructure management. 

Pearson’s correlation was employed to analyze the relationships among 35 KPIs, while the DEA method was 

utilized to identify efficient managers. The developed framework offers a novel approach for creating analytical 

tools tailored to RIMs, providing regulatory bodies and decision-makers with a valuable toolset to implement best 

practices and enhance competitiveness. The findings of this study have practical implications, enabling 

performance comparisons, the development of management strategies, and the formulation of policies aimed at 

fostering a more sustainable and efficient railway industry. 

Keywords: Pearson's correlation; Data envelopment analysis method; Key performance indicators; Evaluation; 

Railway infrastructure managers 

1. Introduction

Efficient management of railway infrastructure is the foundation for the optimal functioning of the railway

system, which occupies a central role in the transport network of every country. As one of the most efficient and 

environmentally friendly modes of transport, railways play a significant role in achieving sustainable development 

goals and transitioning to a greener economy. The European Union, through strategic documents such as the White 

Paper on Transport, clearly emphasizes the need to shift freight and passenger traffic from road to rail to reduce 

environmental impacts, increase energy efficiency, and ensure sustainable mobility (European Communities-

Commission, 1992). Additionally, railways play a key role in achieving the goals of the European Green Deal, 

which aims to reduce CO₂ emissions by at least 90% by 2050 (Fetting, 2020). Ensuring efficient and sustainable 

railway infrastructure management enables the growth of this sector, increases its attractiveness, and contributes 

to achieving broader modal shifts, which is one of the primary prerequisites for a more sustainable transport system. 

RIMs bear the crucial responsibility for the safety, reliability, and efficiency of railway operations. They must 

ensure that resources are used in the most efficient way to achieve high levels of operational efficiency and 

sustainable development (Makovsek et al., 2015). Their role goes beyond the technical aspect of infrastructure 
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management, as their efficiency directly affects the quality of services, operational costs, and user satisfaction. 

Inefficient management can lead to serious consequences, including increased maintenance costs, transportation 

delays, and reduced user trust, further diminishing the competitiveness of the railway sector compared to other 

modes of transport. Analyzing and identifying best practices among efficient RIMs offers significant benefits not 

only for optimizing existing resources but also for setting standards that can serve as a reference for other managers. 

Researching and identifying efficient RIMs not only provides insights into best practices in railway infrastructure 

management but also enables the implementation of strategies that can be key to optimizing railway services and 

resources for better customer service and more economical operations (European Commission, 2020b). These 

practices include innovative solutions such as digitization, process automation, and the use of advanced 

technologies for maintenance, which directly contribute to reducing costs and increasing operational efficiency. 

Furthermore, improving interoperability on international railway corridors further enhances efficiency and 

facilitates the development of multimodal transport systems. The railway sector has untapped potential in 

providing a sustainable and competitive form of transport. Identifying KPIs and developing guidelines based on 

best practices not only improves service quality but also contributes to a more cost-effective and environmentally 

responsible functioning of the entire transport system. Research on efficient railway infrastructure management 

and analysis of best practice examples is an important step toward modernizing and improving the railway sector, 

making it better suited to the challenges of today and the needs of future generations. 

This study aims to identify efficient RIMs using Pearson’s correlation and the DEA method. Pearson’s 

correlation was used to analyze the correlation between KPIs, while the DEA method was applied to assess the 

efficiency of the managers. This combination enables the optimization of analysis by reducing the number of 

variables entering the DEA method, thus avoiding the complexity problem and reducing the possibility of 

overestimating the efficiency of decision-making units (DMUs) when working with a large number of inputs and 

outputs (Alirezaee et al., 1998). The research included nine RIMs and 35 KPIs. Using Pearson’s correlation, KPIs 

with high correlation were identified and excluded to reduce data redundancy and increase the accuracy of the 

DEA method’s results. After identifying correlations and eliminating highly correlated KPIs, efficiency analysis 

using the DEA method was performed based on eight variables (KPIs), three of which were inputs and five were 

outputs. The results of the DEA analysis revealed significant differences in efficiency among the managers. Of the 

nine managers analyzed, some exhibited a high level of efficiency, while others were identified as less efficient, 

indicating the need for optimization of their resource management and operations. 

The main contribution of this study is the development of an analytical framework for evaluating the efficiency 

of RIMs through the combination of Pearson’s correlation and the DEA method. The application of this 

methodology allows for more precise and reliable analysis by reducing the number of KPIs through the 

identification and elimination of highly correlated performance indicators. The results of the research hold 

significant practical value as they provide a foundation for benchmarking among RIMs, the development of 

standards and guidelines for improving managerial practices, and the formulation of informed policies that support 

more sustainable and efficient development of the railway sector. Furthermore, this study contributes to a broader 

understanding of sustainable transport strategies, particularly in the context of the role of railways in reducing 

emissions and increasing energy efficiency. By laying the foundation for future research and training program 

development, this research provides both theoretical and practical contributions to the improvement of the railway 

infrastructure sector. 

The rest of the study is structured as follows: Chapter 2 provides an overview of the relevant literature, including 

key studies on efficiency in the railway sector, methods of efficiency evaluation, Pearson’s correlation, and the 

DEA method, as well as efficiency in railway infrastructure management. Chapter 3 presents a detailed description 

of the combined methodology of Pearson’s correlation and the DEA method. Chapter 4 demonstrates the 

application of the methodology to a specific sample of nine RIMs, along with input variables and the obtained 

results. Chapter 5, the discussion, examines the results, analyzing factors contributing to efficiency, the limitations 

of the methodology, and the theoretical and practical implications. Finally, Chapter 6 presents the conclusions of 

this study and suggests directions for future research. 

 

2. Literature Review 

 

Efficiency in the railway sector plays a crucial role in enhancing sustainability and competitiveness. Efficiency 

is reflected in the ability of railway systems to optimally utilize resources to reduce operational costs, increase 

capacity, and improve service quality. In European countries, the restructuring process of railway companies, 

initiated by Directive 91/440/EEC, resulted in the separation of infrastructure management from operational 

activities (Council of the European Communities, 1991). This reform laid the foundation for adopting new 

approaches to efficiency in the railway sector, allowing for greater transparency and fostering competition. 

Railway sector efficiency has been explored through various aspects, including technical, allocative, and 

operational efficiency (Zhang et al., 2022). Factors that influence the efficiency of the railway sector include the 

size of the network, technical equipment, level of investment, and regulations. The development of methodologies 
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for measuring efficiency, particularly in the last three decades, has helped identify key factors affecting 

performance and efficiency in the railway sector. A review of previous research on efficiency in the railway sector 

analyzes key studies focusing on efficiency, the methods used, and specific challenges in infrastructure 

management, aiming to provide a comprehensive insight into previous research and identify future directions. 

Litman & Burwell (2006) emphasized how economic and ecological factors play a key role in achieving 

sustainable efficiency. Catalano et al. (2019) investigated the approaches applied in efficiency analysis in the 

railway sector, finding that in most cases, the railway operator, or the company as a whole, is used as the basic 

unit of analysis (70 out of 100 studies). In 24 studies, efficiency was examined on a broader scale, such as national 

or regional levels, which is common in international comparative studies of efficiency between different countries. 

Particular emphasis was placed on the importance of careful selection and compilation of country-specific data, 

including inputs from both infrastructure managers and operators. In the review of previous research, DEA and 

Stochastic Frontier Analysis (SFA) are the most commonly used methods for assessing efficiency. Input and output 

parameters are used in these methods to measure technical and allocative efficiency in railway systems and are 

frequently applied to compare the efficiency of different railway companies or countries (Oum et al., 1999). The 

DEA method is used to analyze the relative efficiency between different railway companies, operators, or 

infrastructure managers. In contrast to the DEA method, SFA provides a deeper analysis through stochastic 

modeling of random errors and technical inefficiencies (Makovsek et al., 2015). The first DEA model, the CCR 

model, was developed by Charnes et al. (1978) based on the assumption of constant returns to scale. Later, Banker 

et al. (1984) developed the BCC model, which allows for variable returns to scale. 

The application of the DEA method in many areas highlights its adaptability and practical value in various 

situations. It has been used to evaluate the efficiency of intermodal terminals (Krstić et al., 2020), analyze 

collaborative development in e-commerce and logistics (Wang et al., 2017), determine optimal investment 

strategies (Zhang et al., 2016), assess the efficiency and effectiveness of state-owned transport companies (Singh 

& Jha, 2017), investigate the efficiency of commercial banks (Fan, 2016), analyze port efficiency (Birafane & El 

Abdi, 2019), and evaluate the efficiency of primary healthcare and medical institutions (Tan & Li, 2020). 

The application of the DEA method in the railway sector most often focuses on five main areas: (a) performance 

analysis of railway companies in passenger and freight transport (Hilmola, 2007; Kutlar et al., 2013; Maltseva et 

al., 2020), (b) performance assessment considering environmental factors (Lan & Lin, 2005; Michali et al., 2021; 

Song et al., 2016), (c) locating urban railway stations and evaluating efficiency (Haghighi & Babazadeh, 2020; 

Mohajeri & Amin, 2010; Sameni et al., 2016), (d) investigating the impact of the private sector, management 

structure, new investments, and infrastructure on efficiency (Cantos et al., 1999; Cantos et al., 2012; Sueyoshi & 

Yuan, 2017; Tomikawa & Goto, 2022), and (e) analysis of efficiency changes over time (Hadjar Soumai & Yassine, 

2021; Mahmoudi et al., 2020; Yu, 2008). The DEA method is a non-parametric approach that allows for the 

measurement of technical and allocative efficiency among different entities. Oum et al. (1999) applied DEA to 19 

railway companies in Organization for Economic Co-operation and Development (OECD) countries over ten years 

and identified significant differences in efficiency caused by different regulatory frameworks and market 

conditions. This study is pioneering in exploring how market liberalization contributes to improvements in 

technical and operational efficiency. Hilmola (2007) analyzed the efficiency and productivity of European freight 

rail transport from 1980 to 2003 using the DEA method and partial productivity analysis. The study shows that 

countries with the highest levels of efficiency in the 1980s experienced a collapse of efficiency in the 1990s, 

particularly those from the former Eastern Bloc and Western Europe. Jitsuzumi & Nakamura (2010) investigated 

the causes of inefficiency in Japanese railways and proposed the DEA approach for calculating optimal subsidies 

tailored to railway companies operating under regulated operational constraints. The study identified inefficiency 

causes in 53 railway operators, distinguishing between those caused by management-controlled factors and those 

resulting from external conditions. Chen (2012) examined the impact of high-speed rail on regional economic 

efficiency in western Taiwan using DEA and Tobit regression models. The study showed that economic efficiency 

in these regions worsened after the commencement of the railway, indicating that negative effects outweigh the 

positive ones in the long term. The need for further research on the impact of railway infrastructure on regional 

development was emphasized. Lan & Lin (2005) developed a four-stage DEA approach to correct the 

shortcomings of conventional DEA models, such as the CCR and BCC models, which do not adjust for 

environmental impacts, statistical noise, and "slacks" when measuring efficiency. Their method considers 

heterogeneous operating conditions to avoid biased comparisons among DMUs. Based on empirical data from 44 

railway operators in different countries over seven years, it was found that without this adjustment, efficiency and 

productivity results were often overestimated. The SFA method, developed by Aigner et al. (2023), enables 

stochastic modeling of inefficiencies in production systems. These models allow for the separation of random 

variations in data from actual technical inefficiencies, making SFA useful in efficiency analysis in the railway 

sector, especially in large and complex systems. Couto & Graham (2009) applied SFA to assess cost efficiency in 

European railways for the period from 1972 to 1999. Their analysis highlights significant cost inefficiency, with 

allocative inefficiency being more pronounced than technical inefficiency. Furthermore, productivity 

improvements were attributed to technological progress rather than increased efficiency of railway companies 
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concerning frontier efficiency. Farsi et al. (2005) analyzed the cost efficiency of 50 Swiss railway companies 

during the period from 1985 to 1997 using the SFA method through the Cobb-Douglas cost function. Their 

research showed that the estimation of cost inefficiency depends on the panel model used and emphasized the need 

to distinguish between inefficiency and company-specific characteristics to avoid overestimating inefficiency. Lan 

& Lin (2006) used two stochastic distance functions to assess the efficiency of railway systems. First, a stochastic 

input distance function with an inefficiency effect was used to measure technical efficiency through input variables 

such as the number of passenger and freight cars and employees. Second, a stochastic output distance function 

with an inefficiency effect was used to measure service effectiveness using output variables such as passenger and 

freight kilometers. This method allows for distinguishing technical inefficiency from service inefficiency, taking 

into account external factors such as gross national income and network density. Holvad (2020) provided a 

comprehensive review of efficiency analysis in the railway sector, focusing on frontier-based efficiency methods, 

particularly through techniques like DEA and SFA. The paper analyzes various aspects of the application of these 

methods in the railway sector, including input and output variables, geographical variations, and key findings from 

previous studies. It also highlights challenges in applying these methods and suggests directions for future research, 

particularly regarding the adaptation of qualitative aspects of provided services in efficiency measurement.  

After reviewing the literature on the application of various methods for measuring efficiency in the railway 

sector, particularly DEA and SFA methods, it is clear that research has mainly focused on analyzing the 

performance of railway companies in passenger and freight transport and the general railway sector. However, the 

efficiency of railway infrastructure management, which is crucial for optimal resource use and service quality 

improvement, has not been extensively studied. Efficient railway infrastructure management becomes especially 

important in the context of expanding market liberalization. The role of RIMs is critical to ensuring optimal use 

of infrastructure, reducing congestion, and improving services for end-users. The European Union, through the 

Platform for Infrastructure Managers (PRIME), monitors the performance and development of efficiency among 

managers using KPIs (European Commission, 2020a). Kalem et al. (2023) analyzed the performance of RIMs 

through a range of KPIs, covering aspects such as safety, operational performance, financial efficiency, and 

capacity for growth. Additionally, Kalem et al. (2024a) used the Technique for Order of Preference by Similarity 

to Ideal Solution (TOPSIS) method to evaluate the impact of geographical, economic, and technological factors 

on efficiency, enabling a comprehensive view of railway infrastructure performance. Despite the importance of 

infrastructure managers, research in this area is sparse, which opens up opportunities for further studies. A greater 

focus on the efficiency of RIMs would provide a more accurate understanding of the challenges and opportunities 

in this segment, thereby contributing to the competitiveness of the sector in the context of increasing market 

competition and restructuring (Kalem et al., 2024b). This study proposes a methodology that combines Pearson's 

correlation and the DEA method to identify efficient RIMs. The application of the DEA method enables the 

identification of efficient RIMs through the analysis of multiple inputs and outputs, while Pearson's correlation 

was used to reduce the number of variables in the DEA analysis. The application of Pearson's correlation before 

the DEA analysis is still underrepresented in literature dealing with infrastructure manager efficiency, although it 

is recognized as a useful tool in other research areas. Djordjević et al. (2021) combined Pearson's correlation and 

the DEA method to assess the sustainability of the railway system. Pearson's correlation was used to examine the 

interdependencies between key sustainability indicators for railways, while the DEA method was applied to 

evaluate efficiency based on these indicators. In this case, Pearson's correlation was applied to determine the 

interrelationships between various indicators, such as the length of electrified railway networks, the volume of 

passenger traffic, and greenhouse gas emissions. Banjerdpaiboon & Limleamthong (2023) used the DEA super-

efficiency model and the Malmquist productivity index to assess circular economy performance among European 

countries. Combining these methods allows for evaluating efficiency and monitoring performance changes over 

time, providing deeper insights into sustainable practices at the national level. Pearson's correlation was applied to 

investigate the correlations among indicators, which contributes to understanding the interconnections between 

variables, but was not used to reduce the number of variables in the DEA analysis. Chen & Chen (2009) used the 

DEA method to assess operational efficiency in the silicon semiconductor wafer manufacturing industry in Taiwan. 

The aim of the study was to determine the efficiency of companies by analyzing three input variables (total assets, 

operating costs, and operating expenses) and one output variable (net sales). To ensure data validity for the DEA 

analysis, Pearson's correlation was applied to analyze the relationship between input and output variables, 

confirming their positive correlation.  

The combination of methods proposed in this study, Pearson's correlation and the DEA method, represents a 

significant gap in previous research and offers considerable potential to improve the efficiency analysis of RIMs. 

Djordjević et al. (2021) used the combination of Pearson's correlation and the DEA method to assess the 

sustainability of the railway system through the analysis of KPIs covering economic, ecological, and social aspects 

of sustainability. Unlike this study, which focuses on identifying correlations using the Pearson test and verifying 

those correlations through the DEA method to exclude strongly correlated KPIs, the goal of thisstudy is not only 

to identify correlations but also to use the Pearson test as a tool for reducing the number of input and output 

variables in the DEA analysis. This approach allows for greater efficiency in the DEA method, avoiding the 
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generation of numerous DMUs with maximum efficiencies, and provides clearer and more practical results in 

assessing the performance of RIMs. 

 

3. Methodology 

 

This research applies a combination of Pearson's correlation and the DEA method to assess the efficiency of 

RIMs. The objective of this approach is to identify the most efficient RIMs through DEA analysis while reducing 

the number of variables (inputs and outputs) included in the model using Pearson's correlation. This step enables 

model optimization and mitigates the issue of "model overfitting," which can occur when there are too many 

variables, leading to a large number of efficient DMUs and making it difficult to accurately identify truly efficient 

RIMs. Figure 1 illustrates the proposed framework for evaluating the efficiency of RIMs. This framework consists 

of three key stages. The first stage involved defining the problem structure, where relevant KPIs were identified 

to be used as inputs and outputs. In the second stage, Pearson's correlation was employed to reduce the number of 

variables, enabling more efficient application of the DEA method. In the third stage, DEA analysis was applied to 

the optimized set of KPIs, allowing for the identification of efficient and inefficient managers. The results of this 

analysis can serve as a foundation for further recommendations and benchmarking. 

 

 
 

Figure 1. Methodology for assessing the efficiency of RIMs 

 

Stage I: Problem structure 

In this stage, the goal is to define the problem structure by identifying the relevant DMUs and KPIs tobe used 

in the efficiency analysis of RIMs. The first step involves the precise selection of DMUs, which represent different 

RIMs, and the identification of specific KPIs that serve as inputs and outputs in the DEA method. This stage 

includes the selection of indicators that are essential for assessing efficiency while drawing on performance metrics 

established in the literature, such as those from the study by Kalem et al. (2024b). In this way, the problem structure 

lays the foundation for the subsequent steps in the analysis by defining the DMUs and selecting the KPIs relevant 

for effective decision-making and evaluation. 
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Stage II: Pearson correlation and KPI reduction 

Stage II involves the application of the Pearson correlation to reduce the number of KPIs tobe used in the DEA 

analysis. The Pearson correlation allows for the reduction of highly correlated variables (KPIs), which increases 

the accuracy of the results and minimizes the risk of having an excessive number of efficient DMUs in the analysis. 

First, the Pearson correlation was calculated between the KPIs to identify variables with high mutual correlation. 

Based on the obtained results, variables that show a high degree of correlation with other variables were recognized 

and adjusted for further analysis. The criterion for eliminating variables was a correlation threshold of ±0.70—

variables with correlations equal to or greater than this threshold were considered redundant and removed from 

further analysis. This process helps avoid redundant data, thus enhancing the precision and clarity of the model in 

evaluating the efficiency of RIMs. In this way, the refined set of KPIs represents the final inputs and outputs for 

the DEA analysis, enabling a more efficient evaluation. 

Pearson's correlation (r) between two variables x and y can be calculated using the following formula (Mukaka, 

2020): 

 

𝑟 =  
∑ (𝑥𝑖−𝑥)(𝑦𝑖−𝑦)𝑛

𝑖=1

√[∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1 ][∑ (𝑦𝑖−�̅�)2𝑛

𝑖=1 ]
, (1) 

 

where, 𝑥𝑖 and 𝑦𝑖 are the values of x and y for the i-th observation; and�̅� and �̅� represent their mean values, 

which are calculated as: 

 

�̅� =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 , (2) 

 

�̅� =
1

𝑛
∑ 𝑦𝑖

𝑛

𝑖=1
 (3) 

 

The value of the Pearson correlation ranges from -1 to 1. Values close to 1 or -1 indicate a strong positive or 

negative correlation, respectively, while values close to 0 indicate a weak or no correlation between the variables. 

 

Stage III: Application of the DEA method 

In the third stage, the DEA method was used to assess the efficiency of RIMs. The input and output variables 

represent the optimized set of KPIs obtained through Pearson correlation, which allows for the identification of 

efficient and inefficient managers. The DEA method can be presented as a linear program to maximize the output-

to-input ratio for each DMU. Suppose there are DMUs, each utilizing m inputs to produce outputs. The efficiency 

of the h-th DMU is determined by solving the following formula (Charnes et al., 1978): 

 

max ℎ0 =
∑ 𝑤𝑡𝑧𝑡𝑜

𝑠
𝑡=1

∑ 𝑢𝑘
𝑚
𝑘=1 𝑞𝑘𝑜

, (4) 

 

The constraint is as follows: 

 
∑ 𝑤𝑡𝑧𝑡𝑗

𝑠
𝑡=1

∑ 𝑢𝑘
𝑚
𝑘=1 𝑞𝑘𝑗

≤ 1, 𝑗 = 1,2, . . , 𝑝, (5) 

 

𝑤𝑡 , 𝑢𝑘 ≥ 0, ∀𝑡, 𝑘 (6) 

 

where, 𝑧𝑡𝑗 is the value of output t for DMU j; 𝑞𝑘𝑗 is the value of input k for DMU j; 𝑤𝑡 is the weight coefficient 

for output t; and 𝑢𝑘 is the weight coefficient for input. 

 

4. Case Study-Determining the Efficiency of Rims 

 

This chapter validates the previously described methodology for determining the efficiency of RIMs using a 

combination of Pearson's correlation test and the DEA method. The analysis includes nine European RIMs. Data 

for these RIMs were sourced from the PRIME report for 2021 (Platform of Rail Infrastructure Managers in Europe, 

2021). To ensure confidentiality, the identities of the managers were anonymized and labeled as RIM1, RIM2, and 

so forth. 

The dataset for the analysis consists of 35 KPIs defined in the study by Kalem et al. (2024b). These indicators 

provide insight into various aspects of RIM operations and encompass a wide range of operational characteristics 

important for efficiency analysis. The collected KPIs include metrics related to safety, performance, costs, and the 

utilization of resources and network capacity. The software Minitab was used to calculate Pearson's correlation 
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between the selected indicators. The correlation results are presented in Appendix Table A1. 

The results of the first stage of the analysis demonstrate the successful reduction of the number of KPIs through 

the application of Pearson's correlation, as per Eqs. (1)-(3). This reduction minimized redundancy in the model 

and improved the interpretability of the results. Using a correlation threshold set at ±0.70, Pearson's correlation 

facilitated the identification and elimination of indicators that exhibited a high degree of interconnection. 

Indicators with correlations exceeding this threshold were deemed redundant and excluded from further analysis 

to ensure the accuracy of the DEA model and avoid overlapping information. The final set of retained indicators 

includes a total of eight key KPIs, as shown in Table 1. These indicators were retained because they have 

correlations below the defined threshold, providing a clearer insight into the efficiency of RIMs. 

 

Table 1. Inputs and outputs of DMUs 

 
Category KPIs KPI unit 

Inputs 

D4 Power supply failures in relation to network size 
Number per thousand main 

track-km 

F2 Maintenance expenditures in relation to network size Euro per main track-km 

F3 Capital expenditures (CAPEX) in relation to network size Euro per main track-km 

Outputs 

S1 Significant accidents Number per million train-km 

S2 Fatalities and serious injuries Number per million train-km 

S3 Infrastructure manager-related precursors to accidents Number per million train-km 

P3 Delay minutes caused by the infrastructure manager Minutes per train- km 

F5 Track Access Charges (TAC) revenue in relation to network size Euro per main track-km 

 

Inputs represent the resources and costs allocated for maintenance and capital investments in railway 

infrastructure, while outputs reflect key indicators of safety, network performance, and generated revenues. Table 

2 presents the input and output values for the RIMs. Following the previously described methodology and using 

Eqs. (4)-(6), the DEA method was applied to the optimized set of KPI indicators, with the primary goal of assessing 

the efficiency of each infrastructure manager relative to the other analyzed units.  

 

Table 2. Inputs and outputs data for the DEA method 

 
 Inputs Outputs 

DMUs D4 F2 F3 S1 S2 S3 P3 F5 

RIM1 58 37.00 264 0.52 0.09 2.7 8 8 

RIM2 1 39.00 158 0.29 0.1 0.16 2.5 95 

RIM3 36 48.00 86 0.95 0.54 1.75 24 25 

RIM4 149 52.00 168 0.8 0.61 2.8 8 30 

RIM5 35 81.00 159 0.18 0.07 0.5 9 50 

RIM6 29 59 214 0.2 0.15 0.2 2 62 

RIM7 10 57 110 0.31 0.12 0.9 6.5 103 

RIM8 134 90 50 0.1 0.45 0.01 20 18 

RIM9 74 38 139 0,.2 0.1 3.7 6.5 15 

 

The obtained results, presented in Table 3, indicate that RIM2 is the most efficient manager with an efficiency 

score of 1.000, positioning it as the benchmark unit for others. RIM6 and RIM7 also demonstrated a high level of 

efficiency, with only slight deviations from the maximum value, indicating minimal opportunities for improvement. 

Other units, such as RIM1, RIM3, and RIM4, achieved significantly lower scores, highlighting substantial untapped 

potential and the need for resource optimization to enhance productivity. The ranking order further reflects the 

relative efficiency of each unit compared to the others, with lower scores associated with greater disproportions 

between inputs and outputs in their operations. This provides a valuable tool for identifying areas for improvement 

and making strategic decisions aimed at increasing efficiency. 

 

Table 3. Results of the ranking using DEA 
 

DMUs DEA CCR DEA rank 

RIM1 0.539 7 

RIM2 1,000 1 

RIM3 0.183 9 

RIM4 0.302 8 

RIM5 0.852 4 

RIM6 0.930 2 

RIM7 0.922 3 

RIM8 0.565 6 

RIM9 0.589 5 
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RIM2 was recognized as the most efficient RIM, suggesting an optimal balance between the input and output 

parameters defined in the analysis. Its success can likely be attributed to a low level of power supply failures and 

well-managed maintenance costs, indicating the adoption of modern technologies and efficient procedures. 

Furthermore, capital investments are likely directed toward projects with long-term benefits, such as infrastructure 

upgrades and safety systems, reducing significant accidents, fatalities, and serious injuries. Lower accident rates 

linked to infrastructure management, along with fewer train delay minutes per kilometer, highlight high operational 

efficiency. Additionally, revenue from TAC relative to the network size reflects a balanced approach to financial 

management and the provision of high-quality services to users. This combination of factors suggests that RIM2 

serves as a model of best practices in railway infrastructure management. 

 

5. Discussion 

 

The research problem of this study was to identify efficient RIMs based on KPIs, using Pearson's correlation 

and the DEA method, to analyze the relationships among KPIs and evaluate the relative efficiency of each manager. 

Based on the results and outputs of the DEA analysis, differences in efficiency among RIMs were observed. These 

differences can be explained by varying approaches to resource management, technology implementation, and 

work organization strategies. Managers with higher efficiency levels, such as RIM2, likely have better-optimized 

maintenance processes that reduce power failures and maintenance costs relative to the size of the network. 

Additionally, more efficient managers invest in capital projects that directly contribute to improving safety and 

reducing the number of accidents, serious injuries, and train delays. On the other hand, less efficient managers 

may face challenges such as outdated infrastructure, suboptimal investment strategies, or weaker maintenance 

process organization. These factors can lead to higher costs, more frequent failures, and a greater number of safety 

incidents. The difference in efficiency may also result from the level of income from TAC, where more efficient 

managers better balance their tariffs and the quality of services provided. Finally, the degree of adoption of modern 

technologies and innovations, as well as approaches to training and staff development, also significantly influence 

efficiency differences between various managers. 

The combination of Pearson’s correlation and the DEA method for evaluating the efficiency of RIMs represents 

an advancement over previous research in the field of railway infrastructure management and is a significant 

contribution to this study. While earlier studies, such as the study by Djordjević et al. (2021), applied this 

combination to analyze the sustainability of railway systems, this study focuses on a specific aspect of the 

efficiency of RIMs, with a detailed analysis of KPIs. The methodology applied in this study provides a foundation 

for benchmarking among different RIMs, offering a basis for formulating strategies to improve efficiency and 

optimize resources. This contributes not only to the theoretical framework for analyzing efficiency in the railway 

sector but also to practical recommendations for improving infrastructure management practices, which is crucial 

for the future development of railway systems. 

Although the methodology proposed in this study makes a significant contribution to the analysis of the 

efficiency of RIMs, it contains several key limitations that should be considered. The availability of high-quality 

data represents a challenge, as the accuracy and consistency of the data directly affect the reliability of the Pearson 

correlation and DEA analysis results. Quality data are crucial for obtaining accurate and valid efficiency estimates. 

One of the key limitations of the approach used in this study is that the classical DEA method may overlook the 

weights of some inputs and outputs, which can lead to insufficiently precise efficiency estimates. In the traditional 

DEA approach, some inputs or outputs may receive a weight of 0, implying their complete irrelevance in the 

analysis, which can undermine the model’s accuracy. To overcome this issue, the introduction of Assurance 

Region (AR) DEA methods was proposed, which introduces safety regions into the optimization process, ensuring 

that the weights of all relevant variables are considered (Tadić et al., 2019). These safety regions can be generated 

using multi-criteria optimization (MCO) methods, allowing for better management of input and output weights. 

This approach represents a potential direction for future research, enabling a more precise evaluation of the 

efficiency of RIMs and reducing the likelihood of overlooking key indicators that affect efficiency. The study 

establishes a framework for further research, allowing future researchers to refine the methodological approach to 

efficiency analysis in the infrastructure sector. On a practical level, the results of this research can serve as a 

valuable resource for regulators and policymakers to identify best practices and direct resources to areas with the 

greatest potential for efficiency improvements. Furthermore, railway infrastructure management and sector 

analysts can use these findings as a basis for benchmarking processes and developing strategies aimed at increasing 

operational efficiency. 

 

6. Conclusions 

 

The efficiency of railway infrastructure management is crucial for achieving sustainability, optimal resource 

utilization, and high-quality services in the railway sector. As a vital component of the transport network, efficient 

infrastructure management directly contributes to safety, reduction of operational costs, and increased system 
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reliability, which is particularly important in the context of market liberalization and growing competition in the 

sector. The goal of this study is to develop and apply a methodological framework for assessing the efficiency of 

RIMs by combining the Pearson correlation and DEA methods. This approach allows for the optimization of the 

number of variables for DEA analysis, reducing redundancy and focusing on the most important KPIs. Based on 

the proposed methodological framework, efficient managers were identified, establishing a reference framework 

for benchmarking and improving management practices in the railway infrastructure sector. The contribution of 

this study lies in improving methodological approaches for assessing efficiency in infrastructure by using the 

Pearson correlation and DEA method, enhancing the precision and interpretative value of the results. The findings 

are useful for regulators and policymakers in the sector, enabling them to identify best practices and direct 

resources to areas with the greatest potential for efficiency improvement. Future research should test the 

methodology on a larger group of RIMs to improve its generalizability. One of the main limitations of the approach 

applied in this study relates to the fact that the classical DEA method has a drawback, as it may overlook the 

weights of certain inputs and outputs, leading to inaccurate efficiency estimates. In classical DEA analysis, some 

inputs or outputs may receive a weight of 0, making them irrelevant in the analysis and compromising the precision 

of the results. To overcome this limitation, the AR DEA method can be applied, which incorporates safety zones 

into the optimization process, ensuring that all key factors are properly evaluated. Safety zones can be generated 

using MCO methods, allowing for better management of input and output weights. This approach represents a step 

forward in more accurately assessing the efficiency of RIMs and reduces the risk of overlooking factors critical to 

the accuracy of the model. This research direction can open opportunities for further development of the 

methodology and its application in a broader context. 
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Table A1. Pearson correlation between KPIs 
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