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Abstract: Industrial parks represent one of the most significant contributors to carbon emissions, making their transition toward zero-carbon operations a critical priority. Achieving this goal requires scientific, phased evaluation tools capable of guiding differentiated emission reduction strategies. This study introduces an integrated assessment framework that combines interval-valued triangular fuzzy sets, an enhanced CRITIC weighting method, and matter-element extension theory to provide robust and diagnostic insights into carbon performance. Sensitivity and comparative analyses confirm the model's reliability and resilience. An empirical application involving five industrial parks in China’s Yangtze River Delta demonstrates the framework’s effectiveness. The results indicate that Park C has approached a near-zero-carbon status, while Parks D and E remain in high-emission stages. Notable disparities are observed among the parks: high-performing parks benefit from strong governance and energy synergy, whereas underperforming parks face bottlenecks due to weak carbon management and limited adoption of circular economy practices.  The proposed model maintains stable ranking outcomes even under weight perturbations and aligns closely with alternative evaluation methods. These findings suggest that successful zero-carbon transformation depends on coordinated progress across multiple dimensions rather than isolated improvements in specific indicators. This research offers a scientific foundation for targeted, phase-based decarbonization strategies in industrial parks. 
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1. Introduction  

Global warming presents profound challenges to economic and social systems worldwide. According to the IPCC Sixth Assessment Report, the energy and industrial sectors collectively account for approximately 73% of global greenhouse gas emissions (Masson-Delmotte et al., 2021). Within these sectors, industrial parks are critical leverage points for emission reduction due to their intensive energy consumption and concentrated industrial chains. China’s Dual-Carbon Target underscores that the low-carbon transition of industrial parks is crucial for achieving the national goals of carbon peak and neutrality. The International Energy Agency (IEA) estimates that, through systematic strategies—including enhanced energy efficiency, waste heat recovery, renewable energy integration, and carbon capture, utilization, and storage (CCUS)—industrial parks could cumulatively reduce carbon emissions by over 20% by 2050  (IEA, 2021).  Furthermore, international trade policies, such as the European Union’s Carbon Border Adjustment Mechanism (CBAM), are elevating carbon management to a critical factor in global competitiveness (European Union. , 2023) compelling industrial parks worldwide to accelerate their low-carbon transformation. 

China’s “14th Five-Year Plan for Industrial Green Development” explicitly advocates for establishing numerous near-zero and zero-carbon demonstration parks, with phased targets to significantly reduce carbon intensity before https://doi.org/10.56578/ocs040205 
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2030. The transition to a zero-carbon park represents a progressive evolution through “low-carbon to near-zero carbon to zero-carbon” stages (Yu et al.,  2018), rather than a mere matter of technological accumulation. Therefore, accurately determining a park’s current stage of carbon development is a critical prerequisite for formulating differentiated emission reduction pathways and optimizing policy resource allocation (Zhao et al.,  2024). This task is particularly urgent due to the diverse transformation pathways and complex influencing mechanisms involved in the transition of industrial parks. From a strategic perspective, Qian et al. (2022) developed an integrated “Land-Industry-Carbon” (LIC) model to simulate and validate the central role of industrial restructuring in achieving carbon peak, highlighting the value of multidimensional solutions. Through a comparative multi-case study, Sun et al.  (2024) identified a systematic carbon neutrality pathway encompassing 12 key areas, including energy substitution and carbon capture. Regarding driving mechanisms, Meng et al. (2024) employed a configurational analysis based on the Technology-Organization-Environment (TOE) framework. Their analysis revealed that the effectiveness of green transformation in parks depends on the complex interactions among technological capability, organizational structure, and environmental factors, rather than on any single linear factor. 

While the importance of the low-carbon transition in industrial parks is widely recognized, as evidenced by previous studies, a systematic assessment of their development levels remains inadequate. Existing evaluation systems are limited in framework completeness, indicator coverage, and technical application (Huang et al.,  2023). 

First, universal indicator systems that can adapt to diverse energy structures and industrial characteristics are lacking. In particular, dynamic inter-indicator mechanisms (e.g.,  the negative correlation between industrial agglomeration and emission reduction costs (Langie et al., 2022) and complex interactions among technological, organizational, and environmental factors  (Zhang et al., 2025) have received insufficient attention. Second, weighting methods have notable shortcomings: subjective weighting is susceptible to expert bias, objective weighting fails to reflect strategic priorities, and combined weighting methods often rely on simplistic averaging, which cannot capture the context-dependent dynamics of indicator importance (Huang et al., 2023). Third, most studies continue to use linear evaluation frameworks, which are ill-suited to capture the nonlinear coupling characteristics of energy-carbon systems. This limitation is particularly evident in modeling complex feedback mechanisms, such as carbon flows and energy-waste recycling loops. Finally, the validation of assessment results is often limited to individual case studies and lacks systematic, cross-regional, or cross-industrial verification, which undermines the generalizability and reliability of the conclusions (Du et al., 2024; Feng et al.,  2018). 

To address these limitations, this study proposes an integrated and practically applicable evaluation framework for assessing the carbon transition stage of industrial parks. This framework integrates interval-valued triangular fuzzy sets with an enhanced CRITIC weighting model. This integration balances expert knowledge with objective data characteristics and incorporates a dynamic mechanism to characterize the contextual importance of indicators for weight determination. We improve the matter-element extension theory to enable phase identification under multi-indicator, nonlinear, and fuzzy conditions. Furthermore, methods including TOPSIS, grey relational analysis (GRA), and Kullback-Leibler (KL) divergence are employed for multi-dimensional consistency verification of the assessment results. Global sensitivity analysis is further applied to test the model's robustness and adaptability. 

This approach scientifically determines the carbon development stage of industrial parks, thereby systematically revealing common shortcomings and key drivers across different park types during their zero-carbon transition. It provides quantitative evidence for formulating differentiated policies and designing precise transition pathways. 

Moreover, it facilitates the effective implementation of zero-carbon park assessments by bridging theoretical methodology and management practice. 

2. Literature Review 

2.1 Development Stages of Zero-Carbon Parks 

Zero-carbon industrial parks are vital vehicles for addressing climate change and advancing green industrial transformation. They are typically viewed as evolving through a gradual developmental process. This progression involves phased transitions from low-carbon to near-zero-carbon and, ultimately, to zero-carbon parks (Zhang et al., 2024). This evolutionary logic demonstrates global universality. According to a recent International Energy Agency (IEA) assessment, deep decarbonization of the industrial sector is a central challenge for achieving global net-zero emissions targets, with industrial parks identified as critical leverage points (IEA,  2021). Globally, diverse zero-carbon park practices have emerged, ranging from the industrial symbiosis paradigm in the Netherlands (Eilering et al.,  2004) to emission reduction strategic planning for industrial estates in Singapore (Wong et al., 

2008), and integrated hydrogen energy storage exploration in China's Ordos (Zou et al., 2024). 

In the low-carbon phase, research and practice focused primarily on enhancing energy efficiency and replacing fossil fuels with renewable energy sources. Representative measures included energy-efficient building retrofits (Zhang et al.,  2023b), industrial waste heat recovery, and the initial adoption of renewable energy (Adebayo & Ağa,  2022). Although these efforts effectively reduced carbon intensity, they often relied on isolated technological measures and remained dependent on fossil fuels, thereby creating a ceiling for emissions reduction. Limitations 136

in systemic integration were recognized even at this early stage. Early research on eco-industrial parks similarly focused on enterprise-level clean production and park-level waste exchange models  (Chertow, 2000). The European Union's early promotion of best practices initially focused on energy-saving retrofits of individual facilities  (Feng et al., 2018) and later shifted towards helping park enterprises identify and improve energy efficiency opportunities (Miśkiewicz et al., 2021). This approach parallels the initial practices in China's low-carbon parks.A case study of Canada's Debert Aerospace Industrial Park exemplifies this shift in perspective (Côté 

& Liu, 2016). This pioneering research moved beyond isolated technologies, highlighting the critical importance of a systemic approach. This approach integrated land use, infrastructure, buildings, energy, vegetation management, and policy mechanisms to achieve deep emissions reductions within the park. 

Amid intensifying emission reduction pressures and accelerated technological advancements, some industrial parks have progressed to the near-zero carbon development phase. This phase is characterized by the deep integration of multi-energy systems and information technologies. On one hand, distributed photovoltaics, energy storage systems, and smart microgrids form the foundation of new energy supply systems (Aziz et al., 2023). On the other hand, energy-carbon management platforms leveraging IoT and big data provide core support for system optimization. For instance, Luo et al. (2024) proposed a multi-energy coupling system that utilizes by-product hydrogen. Through four case studies, they quantified the differences in economic and environmental benefits among various by-product hydrogen utilization methods, demonstrating the positive  impact of multi-energy coupling on emissions reduction. 

Conceptually, this work aligns closely with the energy hub optimization model (Olgyay & Campbell, 2018). In recent years, integrated with artificial intelligence, this concept has been further developed to solve dynamic optimal scheduling problems for park-level integrated energy systems (Wang et al., 2024). Furthermore, pilot 

"Smart Energy Park" projects, which integrate distributed energy resources through digital technologies to optimize the overall park energy system, represent advanced practices in the near-zero-carbon stage (Yu & Liu, 

2024). Their findings indicate that selecting and optimizing innovative energy utilization approaches is crucial for enhancing the overall emissions reduction performance of industrial parks. However, it should be noted that near-zero-carbon industrial parks still face challenges such as immature key technologies like carbon capture and green hydrogen production, as well as high cost burdens (Irham et al.,  2024; Urbina,  2023). 

Zero-carbon industrial parks represent the ultimate developmental goal, characterized by achieving net-zero emissions through complete reliance on carbon-free energy, carbon capture and removal, and cross-industry circular coupling (Zhang et al.,  2024). For example, a German energy industrial park has established a zero-carbon demonstration model spanning the building, transportation, and industrial energy sectors via the systematic integration of distributed renewables and energy storage technologies (Côté & Liu,  2016). 

It is noteworthy that the exploration of zero-carbon parks is a global endeavor. In developing countries such as India, Green Industrial Park Initiatives provide infrastructure subsidies to encourage low-carbon technology adoption. However, the challenges they face differ markedly from those in developed countries, focusing more on financing access, technology acquisition, and grid stability (Jain,  2021). This disparity reveals the distinct political-economic contexts that economies at different development stages face during the zero-carbon transition. China's Ordos Zero-Carbon Industrial Park and Suzhou Industrial Park have explored integrated pathways for renewables, energy storage, and hydrogen utilization using a “wind-solar-hydrogen-storage-vehicle” model (Xiao et al.,  2018). 

These cases demonstrate that zero-carbon park development has progressed from concept validation to large-scale implementation, although chal enges persist in standardization, systemic coordination, and policy incentives. 

In summary, the evolution through carbon development stages in industrial parks results from not only technological accumulation but also the combined influence of policy, market forces, and industrial chains. 

Accurately identifying each park's developmental stage facilitates the formulation of tailored transformation pathways, prevents the inefficacy of one-size-fits-all policies, and optimizes resource allocation across different park types. 



2.2 Evaluation Criteria and Indicator Systems 

The scientific identification and quantitative assessment of the carbon development stage in industrial parks depend on a robust indicator system. Early indicator systems primarily focused on single dimensions, such as energy consumption and carbon emissions, using conventional static metrics like energy consumption per unit of industrial output and carbon intensity  (Huang et al., 2016).  Although these indicators enable macro-level comparability, they often fail to capture variations in energy structures, industrial characteristics, and technological levels across different parks, thus providing limited insight into the overall transition process. As research has advanced, evaluation frameworks have expanded to incorporate multiple dimensions, including energy, environment, and economy. For instance, Huang et al. (2023) developed a comprehensive evaluation framework for low-carbon development in industrial parks. This framework includes energy and emission metrics, alongside indicators such as the clean energy proportion and waste recycling rate, demonstrating an increased emphasis on industrial circularity and resource efficiency. Similarly, the European Union’s guidelines for low-carbon park 137

assessment incorporate institutional and management factors—such as governance mechanisms and policy implementation effectiveness—highlighting the critical role of management systems in emission reduction efforts (Fragkos et al.,  2021). 



Table 1.  Indicator system for assessing zero-carbon levels in industrial parks Core 

Dimensions 

Primary Indicator 

Secondary Indicators 

Specific Source/Basis 

Distributed Energy Coverage Rate 

(C1) 

The international RE100 initiative, 

Renewable Energy 

China’s “Pilot Program for Green 

Share of Renewable Energy in 

Energy 

Utilization 

Power Trading” (Fait et al., 2022) 

Installed Capacity (C2) 

structure and 

Electricity consumption per unit 

efficiency 

area in public buildings (C3) 

(Zhang et al.,  2023a) 

Energy Efficiency 

Green Travel Ratio (C4) 

(Zhang et al.,  2024) 

Optimization 

Intelligence Level of Energy 

China’s Smart Park Construction Guide 

Management Systems (C5) 

(Wang et al.,  2019) 

Carbon Emission Intensity 

ISO 14064 China’s Carbon Emission 

Reduction Rate (C6

Trading Management Measures (Côté 

） 

& Liu,  2016) 

Direct Carbon 

(Prajapati et al.,  2024) 

Emissions Control 

Carbon Capture Technology 

China’s Science and Technology 

Adoption Rate (C7) 

Roadmap for Carbon Peaking and 

Carbon 

Carbon Neutrality 

management 

Energy consumption per unit of 

and emissions 

product (C8) 

(Tian et al., 2023) 

reduction 

Proportion of Carbon Emissions 

Standard Specifications: ISO 14067 

Offset by Green Certificates (C9) 

SBTi (Zhu et al., 2025) 

Indirect Carbon 

Comprehensive Energy 

CDM Administrative Measures for 

Emissions 

Consumption per Unit of 

China’s CCER (Olgyay & Campbell, 

Management 

Industrial Value Added (C10) 

2018) 

Carbon Al owance Compliance 

China’s Regulations on the 

Rate (C11) 

Administration of Carbon Emission 

Trading (Côté & Liu,  2016) 

Industrial Solid Waste 

Comprehensive Utilization Rate 

GB/T 39198-2020(Fragkos et al., 2021) 

Industrial Solid Waste 

Industrial Water Recycling Rat 

Circular 

Comprehensive 

(C13) 

ISO 46001 (Roberts, 2004) 

economy and 

Utilization Rate 

Household Waste Sorting 

China’s Water Pollution Prevention 

resource 

Collection Rate (C14) 

and Control Action Plan (Hu et al., 

utilization 

2019) 

Green Space Ratio (C15) 

(Xiao et al., 2018) 

Infrastructure 

Industrial Value Added per Unit of 

Administrative Measures for Green 

Construction Land (C16) 

Product Labels (While & Eadson, 

2022) 

China’s “Green Development 

Low-Carbon Development Special 

Guidelines for Industrial Parks” and 

Fund Investment Rate (C17) 

“National Low-Carbon Industrial Park 

Pilot Implementation Plan” (While & 

Policy and Planning 

Eadson, 2022) 

Frequency of Carbon Disclosure 

TCFD (Task Force on Climate-related 

Governance and 

(C18) 

Financial Disclosures) Framework (Lee 

innovation 

et al., 2015; Prajapati et al., 2024) 

capabilities 

Carbon Management System 

United Nations SDG 11 (Sustainable 

Certification Rate (C19) 

Cities and Communities) 

Digital Carbon Management 

Guiding Opinions on Promoting the 

Technological 

Platform Coverage Rate (C20) 

Development of “Internet Plus” Smart 

Innovation and 

Energy in China (Wang et al.,  2019) 

Digitalization 

Implementation Rate of Zero-

China’s 14th Five-Year Plan for Green 

Carbon Production Audits in 

Industrial Development (Lee et al., 

Enterprises (C21) 

2015) 

To construct an internationally comparable evaluation system, a systematic review of major global assessment standards is essential. Currently, widely applied international frameworks can be categorized into three types: policy-regulated standards, market-driven standards, and certification and reporting standards, including the ISO 

14064 series for greenhouse gas accounting, which provide methodologies or certification labels. In recent years, 138
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indicator systems have evolved toward greater systematicity and dynamic characterization. Scholars have attempted to integrate life cycle assessment  (Zhang et al., 2023a), carbon footprint accounting, and multidimensional composite indicators into a unified framework. This framework incorporates energy supply (Wang et al., 2019), upstream-downstream industrial synergy (Zhu et al., 2025), digital management, and policy implementation. While this trend has improved the coverage and refinement of indicator systems, it has also introduced challenges, including subjective weight allocation and increased complexity in inter-indicator couplings. For instance, studies have revealed nonlinear trade-offs between energy substitution rates and economic output. These complex relationships are often oversimplified by the additive weighting methods used in existing frameworks, which fail to capture their actual dynamic interactions (Adebayo & Ağa, 2022).  

In summary, although existing research has made substantial progress in identifying developmental stages and constructing indicator systems for zero-carbon industrial parks, critical limitations persist. To address these gaps, this study establishes an indicator system across four key dimensions: (1) energy structure and efficiency, (2) carbon management and emission reduction, (3) circular economy and resource utilization, and (4) governance and innovation capability. This integrated framework is designed to balance universality with specificity and to accommodate the characteristics of dynamic, complex systems, as detailed in Table 1 and Figure 1. Consequently, the proposed system provides a methodological foundation for the scientifically robust assessment of developmental stages in zero-carbon industrial parks. 





Figure 1. Integrated framework   

 3. Methodology 

  To address the challenges of data ambiguity, indicator heterogeneity, and the conflicts between subjective and objective weighting in assessing the low-carbon performance of industrial parks, this study proposes an integrated evaluation framework. The framework combines expert-derived weights, interval-valued fuzzy data processing, and extension-based decision modeling. The overall methodological workflow is illustrated in Figure 2, and the specific computational procedures are detailed in the following subsections. 
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Figure 2.  Carbon phase assessment framework for the park 3.1 Expert Weight Quantification Based on Intuitionistic Fuzzy Sets The accuracy of expert-derived weights directly determines the credibility of the evaluation results. Traditional methods, which often rely on direct assignment, fail to capture the cognitive uncertainty inherent in expert judgments. Assessing the low-carbon performance of industrial parks involves multidimensional, heterogeneous indicators (e.g., energy structure, process-level carbon efficiency, and management policies). This complexity leads to significant disparities in expert knowledge, especially concerning emerging technologies such as carbon capture. Although classical fuzzy sets use membership functions to represent degrees of expert endorsement, they lack mathematical representations of opposition (non-membership) and uncertainty (hesitancy). This limitation can introduce bias into weight allocation. To overcome these limitations, we introduce intuitionistic fuzzy sets (IFS). IFS comprehensively capture the importance assigned by experts through a triple structure (μ, v, π). As an extension of traditional fuzzy set theory, IFS provides enhanced capabilities for processing fuzzy and imperfect information. 

3.1.1 Relevant definition 

Definition 1: Let  X be a non-empty universe of discourse. An intuitionistic fuzzy set (IFS)  A on  X is defined as: 𝐴𝐴 = ��𝑥𝑥, 𝜇𝜇𝐴𝐴(𝑥𝑥), 𝑣𝑣𝐴𝐴(𝑥𝑥)��𝑥𝑥 ∈ 𝑋𝑋� 

(1) 

where,  𝜇𝜇𝐴𝐴(𝑥𝑥): 𝑋𝑋 → [0,1]  denotes the degree of membership of element  x   in set  A, and 𝑣𝑣𝐴𝐴(𝑥𝑥): 𝑋𝑋 → [0,1] 

denotes the degree of non-membership, satisfying the condition:    0 ≤ 𝜇𝜇𝐴𝐴(𝑥𝑥) + 𝑣𝑣𝐴𝐴(𝑥𝑥) ≤ 1. 

Definition 2: The third parameter of IFS is the hesitancy degree  𝜋𝜋𝐴𝐴(𝑥𝑥)  calculated by the following Eq. (2): 𝜋𝜋𝐴𝐴(𝑥𝑥) = 1 − 𝜇𝜇𝐴𝐴(𝑥𝑥) − 𝑣𝑣𝐴𝐴(𝑥𝑥) 

(2) 

A smaller value of  𝜋𝜋𝐴𝐴(𝑥𝑥)  indicates clearer decision information regarding  X. while a larger value reflects greater uncertainty. When  𝜋𝜋𝐴𝐴(𝑥𝑥) = 0  the intuitionistic fuzzy set reduces to an ordinary fuzzy set. 

3.1.2 Implementation steps 
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Step 1: The Delphi method is employed to invite  K experts to evaluate each other’s authoritative level using a five-level intuitionistic fuzzy scale, as shown in Table 2:   



Table 2.  Linguistic terms for ranking the importance of Decision-Makers (DMs) 

 

Linguistic Terms 

Intuitionistic Fuzzy Numbers (IFNs) 

Very important 

(0.90,0.10) 

Important 

(0.75,0.20) 

Medium 

(0.50,0.45) 

Unimportant 

(0.35,0.60) 

Very Unimportant 

(0.10,0.90) 

Step 2: Determine expert weights 

The relative importance among experts is expressed through linguistic terms represented by intuitionistic fuzzy numbers. Let the evaluation of the  k-th expert be denoted as  𝐷𝐷𝑘𝑘 = [𝜇𝜇𝑘𝑘, 𝑣𝑣𝑘𝑘, 𝜋𝜋𝑘𝑘]  The weight of each expert is then calculated using the following formula:   



𝜇𝜇𝑘𝑘 + 𝜋𝜋𝑘𝑘 ⋅ � 𝜇𝜇𝑘𝑘 �

𝑤𝑤

𝜇𝜇𝑘𝑘 + 𝜈𝜈𝑘𝑘

𝑘𝑘 =



𝐾𝐾

(3) 

�

�𝜇𝜇𝑘𝑘 + 𝜋𝜋𝑘𝑘 ⋅ � 𝜇𝜇𝑘𝑘

𝜇𝜇

��

𝑘𝑘=1

𝑘𝑘 + 𝜈𝜈𝑘𝑘

3.2 Subjective Weighting of Indicators Based on Interval Triangular Fuzzy Numbers Triangular fuzzy numbers (TFNs), a class of fuzzy sets characterized by convexity and normality, are widely used to process fuzzy decision information. However, TFNs rely on fixed value boundaries. In contrast, interval-valued triangular fuzzy numbers allow different experts to define varying membership degree intervals for the same indicator. This approach better accommodates the data gaps and fluctuations commonly found in industrial park data. This method not only preserves the integrity of fuzzy decision information but also ensures that its constituent elements are more readily obtainable than those of trapezoidal fuzzy numbers, as shown in Table 3. 



Table 3. The importance and scoring of language terms for each criterion The Importance of Linguistic Terms 

Fuzzy Number of Triangular Interval Values 

Very low (VL) 

[(0,0),0, (0.1,0.15)] 

Low (L) 

[(0,0.05),0.1, (0.25,0.35)] 

Medium low (ML) 

[(0,0.15),0.3, (0.45,0.55)] 

Medium (M) 

[(0.25,0.35),0.5, (0.65,0.75)] 

Medium high (MH) 

[(0.45,0.55),0.7, (0.8,0.95)) 

High (H) 

[(0.55,0.75),0.9, (0.95,1)] 

Very high (VH) 

[(0.85,0.95),1, (1,1)] 



3.2.1. Relevant definitions 

~

Definition 3: Let  𝑋𝑋  be a set of real numbers. An interval triangular fuzzy set  𝐴𝐴  is defined as: 



~

𝐴𝐴 = 𝑥𝑥, �𝜇𝜇𝐴𝐴∼𝐿𝐿(𝑥𝑥), 𝜇𝜇𝐴𝐴∼𝑈𝑈(𝑥𝑥)�, 𝑥𝑥 ∈ 𝑋𝑋, 𝜇𝜇𝐴𝐴∼𝐿𝐿, 𝜇𝜇𝐴𝐴∼𝑈𝑈: 𝑋𝑋 → [0,1] 

(4) 



where,  𝐴𝐴𝐴𝐴𝜇𝜇

𝜇𝜇

∼(𝑥𝑥)   and  𝐴𝐴𝐴𝐴∼(𝑥𝑥) represent the lower and upper bounds of the interval-valued membership degree, respectively, satisfying: 



𝜇𝜇𝐴𝐴∼(𝑥𝑥) ≤ 𝜇𝜇𝐴𝐴∼∪(𝑥𝑥), ∀𝑥𝑥 ∈ 𝑋𝑋 

(5) 



𝜇𝜇𝐴𝐴∼(𝑥𝑥) = [𝜇𝜇𝐴𝐴∼𝐿𝐿(𝑥𝑥), 𝜇𝜇𝐴𝐴∼∪(𝑥𝑥)], ∀𝑥𝑥 ∈ 𝑋𝑋 

(6) 



~

~ ~

An interval triangular fuzzy set can be defined as  𝐴𝐴 = [𝐴𝐴𝐿𝐿, 𝐴𝐴𝑈𝑈] = [(1𝑥𝑥 𝑥𝑥 𝑥𝑥 𝜇𝜇

𝑥𝑥

𝑥𝑥

𝑥𝑥

𝜇𝜇

𝐿𝐿 , 2𝐿𝐿 , 3𝐿𝐿 ; 𝐴𝐴∼(𝑥𝑥)), (1𝑈𝑈, 2𝑈𝑈, 3𝑈𝑈; 𝐴𝐴𝐴𝐴𝑈𝑈 (𝑥𝑥))] 

~

~

where,  𝐴𝐴𝐿𝐿   and  𝐴𝐴𝑈𝑈   denote the lower and upper interval-valued triangular fuzzy numbers, respectively, with 

~

~

𝐴𝐴𝐿𝐿 ⊂ 𝐴𝐴𝑈𝑈. When  𝜇𝜇

𝜇𝜇

𝑋𝑋

𝑋𝑋

𝐴𝐴𝐿𝐿(𝑥𝑥) = 𝐴𝐴𝑈𝑈∼(𝑥𝑥) = 1  and  2𝐿𝐿 = 2𝑈𝑈,  the interval triangular fuzzy set can be simplified as: 141

~

~

~

𝐴𝐴 = �𝐴𝐴𝐿𝐿, 𝐴𝐴𝑈𝑈� = [(1𝑥𝑥 𝑥𝑥

𝑥𝑥

𝑥𝑥

𝑈𝑈, 1𝐿𝐿 ), 𝑥𝑥2, (3𝐿𝐿 , 3𝑈𝑈)] 

(7) 



Geometrically, unlike conventional triangular fuzzy numbers with a deterministic membership value, the membership degree in this representation becomes an interval, allowing more flexible and accurate expression of fuzzy information. 

Definition 4: Based on the definition by Liu et al. (2019) for two interval triangular fuzzy numbers: TIVFNs 

~

~

~

~

~

~

𝐴𝐴 = [𝐴𝐴𝐿𝐿, 𝐴𝐴𝑈𝑈] = [(1𝑥𝑥 𝑥𝑥

𝑥𝑥

𝑥𝑥

𝐿𝐿

𝑈𝑈

𝑦𝑦

𝑦𝑦

𝑦𝑦

𝑦𝑦

𝑈𝑈, 1𝐿𝐿 ), 𝑥𝑥2, (3𝐿𝐿 , 3𝑈𝑈)]   and  𝐵𝐵 = [𝐵𝐵 , 𝐵𝐵 ] = [(1𝑈𝑈, 1𝐿𝐿 ), 𝑦𝑦2, (3𝐿𝐿 , 3𝑈𝑈)]   the following arithmetic operations apply: 



~

~

𝐴𝐴 + 𝐵𝐵 = [(1𝑋𝑋 𝑋𝑋

𝑋𝑋

𝑋𝑋

𝑦𝑦

𝑦𝑦

𝑦𝑦

𝑦𝑦

𝑈𝑈, 1𝐿𝐿 ), 𝑥𝑥2, (3𝐿𝐿 , 3𝑈𝑈)] + ��1𝑈𝑈, 1𝐿𝐿 �, 𝑦𝑦2, �3𝐿𝐿 , 3𝑈𝑈��

(8) 

= ��1𝑥𝑥

𝑦𝑦

𝑥𝑥

𝑦𝑦

𝑥𝑥

𝑦𝑦

𝑥𝑥

𝑦𝑦

𝑈𝑈 + 1𝑈𝑈, 1𝐿𝐿 + 1𝐿𝐿 �, 𝑥𝑥2 + 𝑦𝑦2, �3𝐿𝐿 + 3𝐿𝐿 , 3𝑈𝑈 + 3𝑈𝑈�� 



~

~

𝐴𝐴 − 𝐵𝐵 = [(1𝑥𝑥 𝑥𝑥

𝑥𝑥

𝑥𝑥

𝑦𝑦

𝑦𝑦

𝑦𝑦

𝑦𝑦

𝑈𝑈, 1𝐿𝐿 ), 𝑥𝑥2, (3𝐿𝐿 , 3𝑈𝑈)] − ��1𝑈𝑈, 1𝐿𝐿 �, 𝑦𝑦2, �3𝐿𝐿 , 3𝑈𝑈��

(9) 

= ��1𝑥𝑥

𝑦𝑦

𝑥𝑥

𝑦𝑦

𝑥𝑥

𝑦𝑦

𝑥𝑥

𝑦𝑦

𝑈𝑈 − 1𝑈𝑈, 1𝐿𝐿 − 1𝐿𝐿 �, 𝑥𝑥2 − 𝑦𝑦2, �3𝐿𝐿 − 3𝐿𝐿 , 3𝑈𝑈 − 3𝑈𝑈�� 



~

Definition 5: The defuzzification of an interval triangular fuzzy number  𝐴𝐴  can be performed using the following formula to obtain a crisp value: 



~

(1𝑥𝑥 + 1𝑥𝑥) + 2𝑥𝑥

𝑥𝑥 + 3𝑥𝑥)

ℎ �𝐴𝐴� = 𝑈𝑈

𝐿𝐿

2 + (3𝐿𝐿

𝑈𝑈

6



(10) 

 3.3 Enhanced CRITIC Method 

Determining the weight of each evaluation indicator is central to multi-criteria comprehensive evaluation. The accuracy and objectivity of these weights critically influence the credibility of low-carbon performance assessments for industrial parks. The entropy weight method determines weights based on indicator variability, is free from subjective influence, and involves a straightforward computational process. However, for low-carbon assessment of industrial parks, cost-based indicators exhibit both variability and certain intercorrelations. Relying solely on the entropy method fails to adequately capture inter-indicator correlations. Therefore, this study integrates the CRITIC and entropy methods to establish an improved CRITIC-entropy weight fing approach. This combined method enables a more scientific and comprehensive evaluation of low-carbon performance in industrial parks. 

Assume there are 𝐢𝐢 samples and  𝐣𝐣  indicators, forming an evaluation matrix 𝐗𝐗: x11 x12 ⋯ x1j

x

X = � 21 x22 ⋯ x2j

⋮

⋮

⋯

⋮ � 

(11) 

xi1 xi2 ⋯ xij

Standardize the indicators using Eq. (12) to obtain the normalized matrix 𝐗𝐗′ = [𝐢𝐢𝐣𝐣𝐱𝐱′]. 



⎧ xij − minxj

⎪maxx

Positive indicator

x

j − minyxj

ij =



(12) 

⎨ maxxj − xij

⎪

Reverse indicator

⎩ maxxj − minxj

  Calculate the correlation coefficients between evaluation indicators using the Pearson product-moment 142

correlation coefficient, resulting in the correlation matrix: 𝑟𝑟11 𝑟𝑟12 ⋯ 𝑟𝑟1𝑛𝑛

𝑟𝑟

𝑅𝑅 = �𝑟𝑟

21

𝑟𝑟22 ⋯ 𝑟𝑟2𝑛𝑛

𝑝𝑝𝑝𝑝�

= �

� 

(13) 

𝑛𝑛×𝑛𝑛

⋮

⋮

⋯

⋮

𝑟𝑟𝑛𝑛1 𝑟𝑟𝑛𝑛2 ⋯ 𝑟𝑟𝑛𝑛𝑛𝑛



�𝑛𝑛 �𝑥𝑥

𝑟𝑟

𝑘𝑘𝑝𝑝 − 𝑥𝑥̅𝑝𝑝��𝑥𝑥𝑘𝑘𝑝𝑝 − 𝑥𝑥̅𝑝𝑝�

𝑖𝑖=1

𝑝𝑝𝑝𝑝 =



(14) 

��𝑛𝑛 (𝑥𝑥

𝑛𝑛

𝑘𝑘𝑝𝑝 − 𝑥𝑥̅𝑝𝑝) ∙ ��

(𝑥𝑥

𝑖𝑖=1

𝑘𝑘𝑝𝑝 − 𝑥𝑥̅𝑝𝑝)

𝑖𝑖=1



where,  𝑥𝑥̅𝑝𝑝  and  𝑥𝑥̅𝑝𝑝  are the average values of the normalized    𝑝𝑝 - 𝑡𝑡ℎ  and    𝑞𝑞 - 𝑡𝑡ℎ  indicators, respectively;  𝑥𝑥𝑘𝑘𝑝𝑝  and 𝑥𝑥𝑘𝑘𝑝𝑝   are the normalized values of the    𝑝𝑝  - 𝑡𝑡ℎ   and    𝑞𝑞  - 𝑡𝑡ℎ   indicators for the    𝑘𝑘  - 𝑡𝑡ℎ   industrial park. In general, the closer  𝑟𝑟𝑝𝑝𝑝𝑝  𝑡𝑡𝑡𝑡 1 the stronger the correlation between the indicators. 

Compute the information content  𝑇𝑇𝑗𝑗  contained in the cost-based indicators: 𝑛𝑛

𝑇𝑇𝑗𝑗 = 𝑢𝑢𝑗𝑗 ��1 − |𝑟𝑟𝑝𝑝𝑗𝑗|� 

(15) 

𝑖𝑖=1

where,  𝑢𝑢𝑗𝑗 is the standard deviation of the   𝑗𝑗−𝑡𝑡ℎ cost-based indicator, and 𝑟𝑟𝑝𝑝𝑗𝑗 is the correlation coefficient between the    𝑝𝑝 − 𝑡𝑡ℎ and the  𝑝𝑝 − 𝑡𝑡ℎ  cost-based indicators. 

Calculate the entropy value  𝑠𝑠𝑗𝑗  of the evaluation indicators: 



�𝑚𝑚 𝑥𝑥

𝑠𝑠

𝑖𝑖𝑗𝑗𝐴𝐴𝑙𝑙  𝑥𝑥𝑖𝑖𝑗𝑗

𝑖𝑖=1

𝑗𝑗 = −



(16) 

𝐴𝐴𝑙𝑙𝑙𝑙

The final improved CRITIC-entropy combined weight 𝑊𝑊𝑗𝑗 is obtained as: 1 − 𝑠𝑠

𝑊𝑊

𝑗𝑗 + 𝑇𝑇𝑗𝑗

𝑗𝑗 =



(17) 

�𝑛𝑛 �1 − 𝑠𝑠𝑗𝑗 + 𝑇𝑇𝑗𝑗�

𝑗𝑗=1



3.4 Combined Weighting Based on Minimum Deviation Method 



Let the subjective weight derived from interval fuzzy sets be denoted as  𝑤𝑤1  and the objective weight from the improved CRITIC method as  𝑤𝑤2. The combined weight ω is calculated as: 𝑤𝑤 = 𝛼𝛼∗𝑤𝑤1 + 𝛽𝛽∗𝑤𝑤2 

(18) 

where, the coefficients  α  and  β satisfy the following constrained optimization problem: 𝑚𝑚

𝑛𝑛

�𝑙𝑙𝑚𝑚𝑥𝑥𝑚𝑚(𝛼𝛼, 𝛽𝛽) = � ��(𝛼𝛼𝑤𝑤1 + 𝛽𝛽𝑤𝑤2)� 

(19) 

𝑙𝑙=1 𝑘𝑘=1

𝑠𝑠. 𝑡𝑡. 𝛼𝛼2 + 𝛽𝛽2 = 1



Using the Lagrange multiplier method under extreme value conditions, the coefficients  α and  β are computed as: 
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𝑚𝑚

𝑛𝑛

⎧

�

∑𝑘𝑘=1 𝑤𝑤

𝛼𝛼 =

1𝑏𝑏𝑙𝑙𝑘𝑘

𝑙𝑙=1

⎪

⎪

�(�𝑚𝑚 ∑𝑛𝑛

)2 + (�𝑚𝑚 ∑𝑛𝑛

)2

𝑙𝑙=1 𝑘𝑘=1 𝑤𝑤

𝑙𝑙=1 𝑘𝑘=1 𝑤𝑤1𝑏𝑏𝑙𝑙𝑘𝑘

2𝑏𝑏𝑙𝑙𝑘𝑘



(20) 

⎨

�𝑚𝑚 ∑𝑛𝑛𝑘𝑘=1 𝑤𝑤

𝛽𝛽 =

2𝑏𝑏1𝑘𝑘

1=1

⎪

⎪

𝑚𝑚

𝑛𝑛

𝑚𝑚

𝑛𝑛

⎩

�(�

∑

)2 + (�

∑

)2

𝑙𝑙=1 𝑘𝑘=1 𝑤𝑤

𝑙𝑙=1 𝑘𝑘=1 𝑤𝑤1𝑏𝑏𝑙𝑙𝑘𝑘

2𝑏𝑏𝑙𝑙𝑘𝑘



Finally,  α and  β are normalized to obtain  α* and  β* 



�𝛼𝛼∗ = 𝛼𝛼/(𝛼𝛼 + 𝛽𝛽) 

(21) 

𝛽𝛽∗ = 𝛽𝛽/(𝛼𝛼 + 𝛽𝛽)



3.5 Improved Mater -Element Extension Model   



Matter-element extension theory provides a theoretical foundation for handling uncertain and fuzzy information. 

By constructing matter-element models, this approach can accurately describe the key characteristics of industrial parks. Meanwhile, the calculation of correlation degrees quantifies how well indicator values align with different performance levels. This theoretical approach has been widely adopted in the fields of multi-criteria decision-making and comprehensive evaluation. 

(1)  Definition of Classical Domain 

For the 21 secondary indicators, four zero-carbon development levels are defined based on international standards, policy documents, and academic research, as shown in Table 1, Table 4 and Appendix. 



Table 4. Evaluation index system for carbon stage in the park Dimension 

Secondary 

Net-zero 

Near-zero 

Low zero 

High 

Indicators 

Carbonization

Carbonization

Carbonization

Carbonization

（Ⅰ） 

（Ⅱ） 

（Ⅲ） 

（Ⅳ） 

Energy structure 

C1 

[50%,70%) 

[30%,50%) 

[15%,30%) 

[0,15%) 

and efficiency 

C2 

[90%,100%) 

[50%,90%) 

[15%, 50%) 

[0%,15%) 

C3 

[0.8,1) 

[0.5,0.8) 

[0.2,0.5) 

[0, 0.2) 

C4 

[90%,100%) 

[80%,90%) 

[60%,80%) 

[50,60%) 

C5 

[90,100) 

[75,90) 

[60,75) 

[50,60) 

Carbon 

C6 

[6%,7.5%) 

[4.5%,6%) 

[3.5%,4.5%) 

[0%,3.5%) 

management and 

C7 

[70%,100%) 

[50%,70%) 

[30%,50%) 

[0,30%) 

emission reduction 

C8 

[80%,100%) 

[60%,80%) 

[40%,60%) 

[20,40%) 

C9 

[80%,100%) 

(60%,70%) 

(30%,60%) 

[0%,30%) 

C10 

[0，0.35) 

[0.35,0.5) 

[0.5,0.7) 

[0.7,1) 

C11 

[90%,100%) 

[80%,90%) 

[70%,80%) 

[60,70%) 

Circular economy 

C12 

[90%,100%) 

[85%,90%) 

[50%,85%) 

[0,50%) 

and resource 

C13 

[80%,100%) 

[70%,80%) 

[0.6%,70%) 

[50,60%) 

utilization 

C14 

[90%,100%) 

[65%,90%) 

[50%,65%) 

[35%,50%) 

C15 

[40%,100%) 

[35%,40%) 

[30%,35%) 

[0,30%) 

C16 

[1,1.5) 

[0.6,1) 

[0.3,0.6) 

[0,0.3) 

Governance and 

C17 

[7%，10%) 

[0.06,0.07) 

[5%，6%) 

[4%,5%) 

innovation 

C18 

[3,4) 

[3,2) 

[2,1) 

[0,1) 

capabilities 

C19 

[90%,100%) 

[70%,90%) 

[50%,70%) 

[30,50%) 

C20 

[80%,100%) 

[50%,80%) 

[15%,50%) 

[0,15%) 

C21 

[90%,100%) 

[70%,90%) 

[30%,70%) 

[0,30%) 
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𝑁𝑁

⎡ 𝑗𝑗 𝐸𝐸1 𝑣𝑣1𝑗𝑗⎤

𝐸𝐸

⎡𝑁𝑁𝑗𝑗 𝐸𝐸1 [𝑚𝑚1𝑗𝑗 𝑏𝑏1𝑗𝑗]⎤

𝑅𝑅

⎢

2

𝑣𝑣2𝑗𝑗⎥ ⎢

𝐸𝐸2 [𝑚𝑚2𝑗𝑗 𝑏𝑏2𝑗𝑗]⎥

𝑗𝑗 = �𝑁𝑁𝑗𝑗, 𝐸𝐸𝑖𝑖, 𝑉𝑉𝑖𝑖𝑗𝑗� = ⎢

⎥ = ⎢

⎥ 

(22) 

⎢

⋮

⋮ ⎥ ⎢

⋮

⋮

⎥

⎣

𝐸𝐸𝑛𝑛 𝑣𝑣𝑖𝑖𝑗𝑗 ⎦ ⎣

𝐸𝐸𝑛𝑛 [𝑚𝑚𝑛𝑛𝑗𝑗 𝑏𝑏𝑛𝑛𝑗𝑗]⎦



where,  𝑁𝑁𝑗𝑗   denotes the 𝑗𝑗 -𝑡𝑡ℎ   evaluation level  .𝐸𝐸1, 𝐸𝐸2, ⋯ , 𝐸𝐸𝑛𝑛   are the evaluation indicators  𝑣𝑣1𝑗𝑗, 𝑣𝑣2𝑗𝑗, ⋯ , 𝑣𝑣𝑛𝑛𝑗𝑗 

represent the dimensionless value intervals of the evaluation indicators for the  𝑗𝑗-𝑡𝑡ℎ  level; and  [𝑚𝑚𝑛𝑛𝑗𝑗, 𝑏𝑏𝑛𝑛𝑗𝑗]  is the threshold interval of indicator  𝐸𝐸𝑛𝑛  under level  𝑁𝑁𝑗𝑗. 

(2)  Definition of Section Domain 

The minimum and maximum values of each indicator across all evaluation levels define the section domain matter-element matrix, as shown in Eq. (23): 



𝑁𝑁

⎡ 𝑝𝑝 𝐸𝐸1 𝑣𝑣𝑝𝑝1⎤

𝐸𝐸

⎡𝑁𝑁𝑗𝑗 𝐸𝐸1 [𝑚𝑚𝑝𝑝1 𝑏𝑏𝑝𝑝1]⎤

𝑅𝑅

⎢

2

𝑣𝑣𝑝𝑝2⎥ ⎢

𝐸𝐸2 [𝑚𝑚𝑝𝑝2 𝑏𝑏𝑝𝑝2]⎥

𝑝𝑝 = �𝑁𝑁𝑝𝑝, 𝐸𝐸𝑛𝑛, 𝑉𝑉𝑝𝑝� = ⎢

⎥ = ⎢

⎥ 

(23) 

⎢

⋮

⋮ ⎥ ⎢

⋮

⋮

⎥

⎣

𝐸𝐸𝑛𝑛 𝑣𝑣𝑝𝑝𝑛𝑛⎦ ⎣

𝐸𝐸𝑛𝑛 [𝑚𝑚𝑝𝑝𝑛𝑛 𝑏𝑏𝑝𝑝𝑛𝑛]⎦



Here,  𝑁𝑁𝑝𝑝   represents all evaluation levels,  𝐸𝐸1, 𝐸𝐸2, ⋯ , 𝐸𝐸𝑛𝑛   are the evaluation indicators,     𝑣𝑣𝑝𝑝𝑛𝑛   is the dimensionless value range of the evaluation indicators; and  [𝑚𝑚𝑝𝑝𝑛𝑛 𝑏𝑏𝑝𝑝𝑛𝑛]denotes the value interval. 

(3)  Determining the Matter-Element to be Evaluated 

For a set of m indicators evaluating the zero-carbon level of an industrial park, the matter-element for the  t-th indicator is given by： 



𝑁𝑁𝑡𝑡 𝐸𝐸1 𝑣𝑣𝑡𝑡1

𝑅𝑅

𝐸𝐸2 𝑣𝑣𝑡𝑡2

𝑡𝑡 = (𝑁𝑁𝑡𝑡, 𝐸𝐸𝑛𝑛, 𝑉𝑉𝑡𝑡) = �

⋮

⋮ � 

(24) 

𝐸𝐸𝑛𝑛 𝑣𝑣𝑡𝑡𝑛𝑛



where,  𝑅𝑅𝑡𝑡(t=1, 2,  ⋯  m) is the matter-element to be evaluated, and  𝑉𝑉𝑡𝑡    represents the actual data of the zero-carbon indicators. 

(4)  Data Normalization 

To eliminate dimensional differences,  𝑅𝑅𝑗𝑗 and  𝑅𝑅𝑡𝑡 are normalized using Eqs. (25)-(26): 



⎡

𝑚𝑚

𝑏𝑏

𝑁𝑁

1𝑗𝑗

1𝑗𝑗

𝑗𝑗

𝐸𝐸1 �

, 

�⎤

⎢

𝑚𝑚𝑝𝑝1 𝑏𝑏𝑝𝑝1 ⎥

⎢

𝑚𝑚2𝑗𝑗 𝑏𝑏2𝑗𝑗 ⎥

𝑗𝑗𝑅𝑅

𝑉𝑉

⎢

𝐸𝐸2 �

, 

�⎥

′ = �𝑁𝑁𝑗𝑗, 𝐸𝐸𝑖𝑖, 𝑖𝑖𝑗𝑗′ � =

𝑚𝑚

𝑏𝑏



(25) 

⎢

𝑝𝑝2

𝑝𝑝2 ⎥

⎢

⋮

⋮

⎥

⎢

𝑚𝑚

𝑏𝑏

𝐸𝐸

𝑛𝑛𝑗𝑗 , 𝑛𝑛𝑗𝑗�⎥

⎣

𝑛𝑛

�𝑚𝑚𝑝𝑝𝑛𝑛 𝑏𝑏𝑝𝑝𝑛𝑛 ⎦



𝑣𝑣

⎡𝑁𝑁

𝑡𝑡1

𝑡𝑡

𝐸𝐸1

⎤

⎢

𝑏𝑏𝑝𝑝1⎥

⎢

𝑣𝑣

𝐸𝐸

𝑡𝑡2 ⎥

𝑡𝑡𝑅𝑅

𝑉𝑉

2

′ = (𝑁𝑁𝑡𝑡, 𝐸𝐸𝑛𝑛, 𝑡𝑡′ ) = ⎢

𝑏𝑏 ⎥ 

(26) 

⎢

𝑝𝑝2⎥

⎢

⋮

⋮ ⎥

⎢

𝑣𝑣

𝐸𝐸

𝑡𝑡𝑛𝑛 ⎥

⎣

𝑛𝑛

𝑏𝑏𝑝𝑝𝑛𝑛⎦
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(5)  Calculation of Indicator Correlation Degree The correlation degree 𝐻𝐻𝑠𝑠∗�𝑣𝑣𝑘𝑘𝑗𝑗�   between the actual value of each indicator and the classical domain is calculated as: 



1

𝑛𝑛

𝐻𝐻𝑠𝑠∗�𝑣𝑣𝑘𝑘𝑗𝑗� = 1 −



(27) 

𝑙𝑙(𝑙𝑙 + 1) � 𝜌𝜌𝑗𝑗�𝑣𝑣𝑘𝑘𝑗𝑗�𝜔𝜔𝑗𝑗

𝑗𝑗=1



Here,  𝜌𝜌�𝑣𝑣𝑖𝑖, 𝑣𝑣𝑖𝑖𝑗𝑗�  denotes the distance between the matter-element and the classical domain, computed as: 1

1

𝜌𝜌�𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖𝑗𝑗� = �𝑣𝑣𝑖𝑖 − 2�𝑚𝑚𝑖𝑖𝑗𝑗 + 𝑏𝑏𝑖𝑖𝑗𝑗�� − 2�𝑏𝑏𝑖𝑖𝑗𝑗 + 𝑚𝑚𝑖𝑖𝑗𝑗� 

1

1

(28) 

𝜌𝜌(𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖𝑝𝑝) = |𝑣𝑣𝑖𝑖 − 2(𝑚𝑚𝑖𝑖𝑝𝑝 + 𝑏𝑏𝑖𝑖𝑝𝑝)| − 2(𝑏𝑏𝑖𝑖𝑝𝑝 + 𝑚𝑚𝑖𝑖𝑝𝑝) In the equations,  𝜌𝜌(𝑉𝑉𝑖𝑖, 𝑉𝑉𝑖𝑖𝑗𝑗)  represents the distance between  𝑉𝑉𝑖𝑖  and the interval  𝑉𝑉𝑖𝑖𝑗𝑗  ,and  𝜌𝜌�𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖𝑝𝑝� represents the distance between  𝑉𝑉𝑖𝑖  and the interval  𝑉𝑉𝑖𝑖𝑝𝑝. 

（6）Determining the Evaluation Level 



𝐻𝐻𝑆𝑆∗(𝑣𝑣𝑘𝑘𝑖𝑖) − 5

𝐻𝐻�

𝑠𝑠𝑖𝑖𝑙𝑙1 �𝐻𝐻𝑆𝑆∗(𝑣𝑣𝑘𝑘𝑖𝑖)�

𝑆𝑆∗�𝑣𝑣𝑘𝑘𝑗𝑗� =

4

4



(29) 

𝑙𝑙𝑚𝑚𝑥𝑥 {𝐻𝐻𝑆𝑆∗(𝑣𝑣𝑘𝑘𝑖𝑖)} − 𝑙𝑙𝑖𝑖𝑙𝑙 {𝐻𝐻𝑆𝑆∗(𝑣𝑣𝑘𝑘𝑖𝑖)}

𝑠𝑠∗ = 1

𝑠𝑠∗ = 1



�5 𝑠𝑠∗𝐻𝐻�

𝑠𝑠∗∗ =

𝑆𝑆∗�𝑣𝑣𝑘𝑘𝑗𝑗�

𝑠𝑠=1



(30) 

�5 𝐻𝐻�𝑆𝑆∗�𝑣𝑣𝑘𝑘𝑗𝑗�

𝑠𝑠=1



In Eq. (30),  𝑠𝑠∗∗  is the variable characteristic value of the matter-element to be evaluated. It determines the degree of deviation toward adjacent levels and enables the ranking of objects within the same evaluation level. 

3.6 Limitations of Model Application 

Although the comprehensive evaluation framework proposed in this study offers theoretical advantages, its practical application requires careful consideration of specific contexts. However, it must be acknowledged that the model’s effectiveness is highly dependent on the completeness, accuracy, and consistency of the underlying data.  To enhance operational practicality, a tiered application strategy is proposed:  (1)  For parks with comprehensive data, the full model can be applied to obtain precise diagnostic results. (2) For parks with partially missing data, a fuzzy comprehensive evaluation method can be employed to estimate the missing values before model application.  Specifically, interval-valued triangular fuzzy numbers can handle quantitative indicators, whereas expert scoring or analogy with similar parks is suitable for qualitative indicators. (3) For parks with a critically inadequate data foundation, the priority should be to monitor core indicators (e.g., C1, C6, C12, C17) and conduct a qualitative stage assessment. 



4 Results and Discussion 

Based on geographical distribution and socio-economic development levels, this study selected five industrial parks in the Yangtze River Delta region as research subjects. Due to the large number of parks in the region, conducting a comprehensive analysis of all parks would be resource- and time-prohibitive. Therefore, following the Yangtze River Delta Urban Agglomeration Development Plan and using publicly available geographic information platforms, we selected five representative parks: one industrial park each in Suzhou, Shanghai, and Ningbo, and one science park each in Wuxi and Hefei. The evaluation results from these representative parks will provide insights into the overall regional situation. 



4.1 Indicator Weight Calculation 
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 First, a panel of three experts was assembled to assess and select the most appropriate indicators for evaluating the low-carbon performance of industrial parks. The relative weight of each expert was determined based on three criteria: (1) experience and knowledge in low-carbon development, (2) professional and educational background in relevant fields, and (3) organizational position. The relative weights of the three experts are provided as linguistic terms in Table 5. These linguistic terms were then converted into intuitionistic fuzzy numbers. Expert weights were derived from these conversions. 



Table 5. The importance and weight of experts 



Expert 

DM1 

DM2 

DM3 

Language term weight 

Important (0.318) 

Very important (0.363) 

Important (0.318) 

Table 6. The index weights are transformed into interval triangular fuzzy numbers and weighted averages Indicators 

Expert 

Weighted Average 

DM1 

DM2 

DM3 

C1 

[(0.85,0.95), 1, (1,1)] 

[(0.45,0.55), 0.7, (0.8,0.9   [(0.85,0.95), 1, (1,1)] 

[(0.704,0.804), 0.89, (0.926,0.98  

C2 

[(0.55,0.75), 0.9, (0.95,1)  [(0.45,0.55), 0.7, (0.8,0.9 [  (0.55,0.75), 0.9, (0.95,1)]  [(0.513,0.677), 0.827, (0.895,0.9



C3 

[(0.45,0.55), 0.7, (0.8,0.9 [  (0.25,0.35), 0.5, (0.65,0. [(  0.55,0.75), 0.9, (0.95,1)]  [(0.409,0.540), 0.69, (0.792,0.89  

C4 

[(0.55,0.75), 0.9, (0.95,1)  [(0.45,0.55), 0.7, (0.8,0.9 [  (0.45,0.55), 0.7, (0.8,0.95)]  [(0.481,0.613), 0.763, (0.847,0.9



C5 

[(0.85,0.95), 1, (1,1)] 

[(0.45,0.55), 0.7, (0.8,0.9 [  (0.55,0.75), 0.9, (0.95,1)]  [(0.609,0.740), 0.858, (0.911,0.9



C6 

[(0.55,0.75), 0.9, (0.95,1)   [(0.85,0.95), 1, (1,1)] 

[(0.85,0.95), 1, (1,1)] 

[(0.754,0.885), 0.967, (0.983,0.9



C7 

[(0.25,0.35), 0.5, (0.65,0. [(  

0,0.15), 0.3, (0.45,0.55)   [(0.85,0.95), 1, (1,1)] 

[(0.35,0.468), 0.586, (0.688,0.75  

C8 

[(0.45,0.55), 0.7, (0.8,0.9 [  (0.45,0.55), 0.7, (0.8,0.9 [  (0.45,0.55), 0.7, (0.8,0.95)]  [(0.450,0.549), 0.699, (0.799,0.9



C9 

[(0.45,0.55), 0.7, (0.8,0.9  [(0.85,0.95), 1, (1,1)]  [(0.45,0.55), 0.7, (0.8,0.95)]  [(0.595,0.695)0.808, (0.872,0.96  

C10 

[(0,0.15), 0.3, (0.45,0.55)  [(0.25,0.35), 0.5, (0.65,0. [(  

0.45,0.55), 0.7, (0.8,0.95)]  [(0.234,0.350), 0.5, (0.633,0.749  

C11 

[(0.85,0.95), 1, (1,1)] 

[(0.25,0.35), 0.5, (0.65,0. [(  

0.45,0.55), 0.7, (0.8,0.95)]  [(0.504,0.604), 0.722, (0.808,0.9



C12 

[(0.55,0.75), 0.9, (0.95,1)  [(0.45,0.55), 0.7, (0.8,0.9   [(0.85,0.95), 1, (1,1)] 

[(0.609,0.740), 0.858, (0.911,0.9



C13 

[(0.45,0.55), 0.7, (0.8,0.9 [  (0.45,0.55), 0.7, (0.8,0.9 [  (0.45,0.55), 0.7, (0.8,0.95)]  [(0.450,0.549), 0.699, (0.799,0.9



C14 

[(0.45,0.55), 0.7, (0.8,0.9 [  (0.25,0.35), 0.5, (0.65,0. [(  

0.45,0.55), 0.7, (0.8,0.95)]  [(0.377,0.477), 0.627, (0.745,0.8



C15 

[(0.25,0.35), 0.5, (0.65,0. [(  

0.45,0.55), 0.7, (0.8,0.9   [(0.85,0.95), 1, (1,1)] 

[(0.513,0.613), 0.731, (0.815,0.9



C16 

[(0.25,0.35), 0.5, (0.65,0. [(  

0.45,0.55), 0.7, (0.8,0.9 [  (0.45,0.55), 0.7, (0.8,0.95)]  [(0.386,0.486), 0.636, (0.752,0.8



C17 

[(0.85,0.95), 1, (1,1)] 

[(0.85,0.95), 1, (1,1)] 

[(0.85,0.95), 1, (1,1)] 

[(0.849,0.949), 0.999, (0.999,0.9



C18 

[(0.45,0.55), 0.7, (0.8,0.9  [(0.85,0.95), 1, (1,1)] 

[(0.45,0.55), 0.7, (0.8,0.95)]  [(0.595,0.695), 0.808, (0.872, .96  

C19 

[(0.85,0.95), 1, (1,1)] 

[(0.45,0.55), 0.7, (0.8,0.9   [(0.85,0.95), 1, (1,1)] 

[(0.704,0.84), 0.890, (0.926,0.98  

C20 

[(0.45,0.55), 0.7, (0.8,0.9 [  (0.45,0.55), 0.7, (0.8,0.9 [  (0.45,0.55), 0.7, (0.8,0.95)]  [(0.450,0.549), 0.699, (0.799,0.9



C21 

[(0.85,0.95), 1, (1,1)] 

[(0.45,0.55), 0.7, (0.8,0.9 [  (0.45,0.55), 0.7, (0.8,0.95)]  [(0.577,0.677), 0.795, (0.863,0.9



The subjective weights of the indicators were calculated according to the procedures described in Sections 3.1 

and 3.2. The expert weights, determined using intuitionistic fuzzy sets, were applied to transform the linguistic evaluations of indicator importance into interval-valued triangular fuzzy numbers. The resulting data are summarized in Table 6.  

The subjective weights were obtained by defuzzifying the triangular fuzzy weighted averages of the indicators. 

The objective weights were determined using the improved CRITIC method described in Section 3.3. Using the maximum-minimum deviation method, the optimal combination coefficients for the subjective and objective weighting methods were determined as 0.533 and 0.467, respectively. This determination was based on the principles of maximizing deviation from the ideal solution and minimizing the worst-case deviation. These coefficients were then substituted into Eqs. (20)-(21) to calculate the combined weights, as shown in Table 7.  



Table 7. The weight results of the secondary indicators in three cases Target Layer 

Secondary 

Triangular Interval Fuzzy 

Improve 

Combined 

Indicators 

Function 

CRITIC 

Weight 

The carbon phase level 

C1 

0.055 

0.028 

0.041 

of the park 

C2 

0.050 

0.040 

0.045 

C3 

0.043 

0.043 

0.043 
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C4 

0.047 

0.036 

0.041 

C5 

0.053 

0.063 

0.058 

C6 

0.059 

0.039 

0.048 

C7 

0.037 

0.053 

0.046 

C8 

0.044 

0.062 

0.054 

C9 

0.050 

0.045 

0.047 

C10 

0.032 

0.040 

0.037 

C11 

0.046 

0.054 

0.050 

C12 

0.053 

0.044 

0.048 

C13 

0.044 

0.055 

0.050 

C14 

0.040 

0.067 

0.054 

C15 

0.046 

0.049 

0.048 

C16 

0.041 

0.081 

0.062 

C17 

0.061 

0.065 

0.063 

C18 

0.050 

0.054 

0.052 

C19 

0.055 

0.044 

0.049 

C20 

0.044 

0.016 

0.029 

C21 

0.050 

0.023 

0.035 



As shown in Table 7, the improved CRITIC method captures information through the comparative strength and conflict among indicators. This approach highlights the influence of highly variable and strongly correlated indicators—such as carbon emission intensity and energy structure—on the parks’  low-carbon performance. 

Indicators such as the smartness level of energy management systems, comprehensive utilization rate of industrial solid waste, and value-added output per unit of construction land typically receive higher weights. This tendency may bias the evaluation results toward the high-carbon end of the spectrum. Therefore, weighting based on triangular fuzzy functions within the intuitionistic fuzzy set framework was employed. This method incorporates experts' degrees of hesitation and membership regarding indicator importance by using triangular fuzzy numbers to represent semantic judgments. This approach makes the weights more representative of the parks' actual low-carbon operational characteristics. The combined weights fall between those derived from the individual methods, indicating that the weighting scheme has been moderated through integration. This integration mitigates biases inherent in any single method and enhances the objectivity and robustness of the low-carbon performance evaluation. 



4.2 Comprehensive Evaluation and Level Diagnosis 

Through field investigations and literature reviews, current values for each low-carbon indicator were collected and calculated. By integrating the evaluation criteria with Eq. (22), Eqs. (25)-(26), the normalized matter-element matrix for the classical domain of the evaluated subjects was constructed as follows: 𝑁𝑁𝐴𝐴 𝐶𝐶1 0.28

𝑁𝑁𝐵𝐵 𝐶𝐶1 0.47

𝑁𝑁𝐶𝐶 𝐶𝐶1 0.68

𝑁𝑁𝑅𝑅

𝐶𝐶2 0.15 𝑅𝑅

𝐶𝐶2 0.12 𝑅𝑅

𝐶𝐶2 0.28

⬚ = �

⋮

⋮ � 𝑁𝑁⬚ = �

⋮

⋮ � 𝑁𝑁⬚ = �

⋮

⋮ � 

(31) 

𝐶𝐶21 0.56

𝐶𝐶21 0.64

𝐶𝐶21 0.77



𝑁𝑁𝐴𝐴 𝐶𝐶1 0.72

𝑁𝑁𝐴𝐴 𝐶𝐶1 0.58

𝑁𝑁𝑅𝑅

𝐶𝐶2 0.40 𝑅𝑅

𝐶𝐶2 0.35

⬚ = �

⋮

⋮ � 𝑁𝑁⬚ = �

⋮

⋮ � 

(32) 

𝐶𝐶21 0.80

𝐶𝐶21 0.60

The correlation coefficients for each indicator across all grades were calculated using the methodology described in Section 3.5. The correlation coefficient values for each indicator and the comprehensive evaluation results for the five parks were determined based on the maximum correlation principle, as shown in Figure 3. 
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(a) 

(b) 

(c)   

(d) 

(e) 

Figure 3. The correlation degree and evaluation grades of the index layers of each park As can be seen from Figure 3, the index correlation graph of the five parks clearly reveals the imbalance in their internal development, which directly supports the core finding of this paper regarding the bottleneck effect. The proportions of indicators rated at Level III or above were 71.43%, 80.95%, 19.05%, 90.48%, and 95.24% for Parks A through E, respectively. Parks A, B, D, and E exhibited relatively weaker overall indicator performance, whereas Park C demonstrated consistently stronger performance across most indicators. Further analysis revealed that although Parks E and D met Level I standards for key indicators (e.g., C1, C8, C19), they lacked clearly defined and systematic net-zero carbon pathways. Parks B and A were in transition from high-carbon to low-carbon development. Park B showed potential for improvement in process efficiency indicators such as C4 and C15. Park A demonstrated strong performance in end-of-pipe emission control indicators (e.g., C7, C10), indicating a current 149

focus on downstream measures rather than process optimization and systemic coordination. Park C maintained most indicators at Level III or above, with particularly strong performance in foundational metrics such as C3 and C21. This indicates advantages not  only in distributed energy technologies but also in management systems, transparency, and public engagement. These visualized data strongly demonstrate that the zero-carbon transformation of the park is not a simultaneous improvement of all indicators, but rather a process of overcoming shortcomings in key dimensions. 



Table 8.  The relevance of each park for each level 



Net-Zero 

Near-Zero 

High 

Park 

Carbonization 

Carbon 

Low-Carbon 

Carbonization 

Standard 

Standard 

Standards 

Standard 

A 

0.804 

0.971 

1.002 

0.836 

B 

0.778 

0.943 

0.987 

0.863 

C 

0.925 

0.943 

0.847 

0.708 

D 

0.676 

0.826 

0.903 

0.937 

E 

0.642 

0.793 

0.896 

0.931 



Based on the comprehensive correlation scores for each level in Table 8,  the development levels of the parks were calculated using Eqs. (29)-(30) and ranked by their  𝑠𝑠∗∗  values, as shown in Table 9.  For example, Park E's 𝑠𝑠∗∗  value of 3.199 indicates a relatively low level of low-carbon development, while Park D’s  𝑠𝑠∗∗  value of 3.174 

suggests above-average carbon emissions, albeit lower than Park E's. 



Table 9. Comprehensive correlation and ranking of each park Park 

𝑺𝑺′ 

Evaluation Results 

𝒔𝒔∗∗ 

Rank 

A 

1.002 

Low-Carbon Park 

2.660 

2 

B 

0.987 

Near-Zero Carbon Park 

2.824 

3 

C 

0.943 

Near-Zero Carbon Park 

1.868 

1 

D 

0.937 

High-Carbon Park 

3.174 

4 

E 

0.931 

High-Carbon Park 

3.199 

5 

From a dimensional perspective, all parks demonstrated relatively strong performance in governance and innovation capabilities, suggesting established policy support and social consensus. However, significant disparities emerged in the dimensions of carbon management and emission reduction, as well as circular economy and resource utilization. This finding suggests that the current low-carbon transformation remains primarily technology-driven, with market mechanisms and resource circulation coordination not yet fully leveraged. 

4.3 Sensitivity Analysis 

To ensure the reliability of the conclusions derived from the combined weights determined by the maximum-minimum deviation method, a sensitivity analysis was conducted. This analysis tested the robustness of the evaluation results against variations in the subjective-objective weight allocation ratio. A sensitivity coefficient λ 

was introduced, varying within the range [0,1] with an increment of  ∆𝜆𝜆 = 0.2, to generate different combined weighting schemes. The comprehensive scores were recalculated for each scheme, yielding new ranking sequences as shown in Table 10 and Figure 4. 

The sensitivity analysis results presented in  Figure  4  provide critical evidence for the robustness of the evaluation conclusions in this study. The results demonstrate that when λ varies across [0,1], simulating scenarios from complete reliance on objective data to complete reliance on expert judgment—the comprehensive scores exhibit minor fluctuations. However, the final ranking order (C > A > B  > D > E) remains unchanged. This indicates that the evaluation results are robust and insensitive to the choice of weight allocation strategy. This finding is significant because it demonstrates that the disparities in park development levels identified in this study originate not from the arbitrary choice of subjective weighting schemes, but from objective, structural performance gaps across multiple indicators. 

Table 10.  The comprehensive correlation degree of the combined weights under different interval coefficients Interval 

[0,1] 

[0.2,0.8] 

[0.4,0.6] 

[0.6,0.4] 

[0.8,0.2] 

[1,0] 

A 

2.562 

2.567   

2.572   

2.578   

2.583   

2.589   

B 

2.883   

2.879   

2.874   

2.869   

2.864   

2.858   

C 

1.822   

1.815   

1.809   

1.804   

1.798   

1.793   

D 

3.251   

3.252   

3.253   

3.254   

3.255   

3.256   

150
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E 

3.255 

3.259 

3.262 

3.266 

3.270 

3.274 

Figure 4. Sort after the weight interval changes 

The robustness of these results fundamentally originates from the inherent structural disparities in net-zero carbon development levels among the parks. As previously discussed, Parks D and E have achieved Level III or higher for over 90% of their indicators, establishing a comprehensive leading advantage. Conversely, Park C 

remains at Level III or below for over 80% of its indicators, indicating systemic developmental lag. 

This fundamental heterogeneity implies that the excellence of high-performing parks derives from synergistic improvements across multiple indicators, not from outstanding performance in isolated metrics. Similarly, the shortcomings of lagging parks manifest as multidimensional, concurrent challenges. Consequently, weight reallocation can only induce minor fluctuations in the internal score structures of individual parks; it cannot overturn their inherent hierarchical ranking determined by comprehensive performance. The reliability of this study's evaluation conclusions is rooted not in the specific weighting scheme, but in the objectively existing, fundamental developmental gradient among the research subjects. 

4.4 Comparative Analysis 

To verify the robustness of this study's conclusions at the model framework level, the GRA-KL-TOPSIS 

integrated model was selected as a benchmark for comparison. This choice is scientifically justified by the fundamental theoretical differences between the models. The matter-element extension model, based on extension set theory, achieves grade diagnosis through correlation functions and represents an absolute evaluation paradigm. 

In contrast, the GRA-KL-TOPSIS model integrates grey relational analysis with  the ideal solution method, performing rankings by measuring relative closeness to the ideal solution, and represents a relative evaluation paradigm. The specific algorithmic steps of the GRA-KL-TOPSIS model are as follows: Step 1: Calculate the weighted normalized matrix Z.by multiplying the normalized matrix P by the weight vector  

𝜔𝜔. Then, determine the positive ideal solution (𝑍𝑍+) and the negative ideal solution (𝑍𝑍−) from the alternatives. 

𝑍𝑍 = (𝑧𝑧𝑖𝑖𝑗𝑗)𝑡𝑡𝑥𝑥𝑡𝑡 = (𝑤𝑤𝑘𝑘𝑃𝑃𝑙𝑙𝑘𝑘)𝑡𝑡𝑥𝑥𝑡𝑡 

(33) 

𝑗𝑗𝑧𝑧

𝑧𝑧

𝑧𝑧

𝑧𝑧

+ = �𝑙𝑙𝑚𝑚𝑥𝑥𝑧𝑧𝑖𝑖𝑗𝑗 �𝑧𝑧𝑖𝑖𝑗𝑗 ∈ 𝑍𝑍+, 𝑙𝑙𝑖𝑖𝑙𝑙𝑧𝑧𝑖𝑖𝑗𝑗 � 𝑧𝑧𝑖𝑖𝑗𝑗 ∈ 𝑍𝑍−� = {1+, 2+ … 𝑖𝑖+} 

(34) 

𝑖𝑖

𝑖𝑖

𝑗𝑗𝑡𝑡

𝑡𝑡

𝑡𝑡

𝑡𝑡

− = �𝑙𝑙𝑖𝑖𝑙𝑙𝑧𝑧

𝑧𝑧

, 2 … 𝑖𝑖 } 

(35) 

𝑖𝑖

𝑖𝑖𝑗𝑗 �𝑧𝑧𝑖𝑖𝑗𝑗 ∈ 𝑍𝑍+, 𝑙𝑙𝑚𝑚𝑥𝑥

𝑖𝑖

𝑖𝑖𝑗𝑗� 𝑧𝑧𝑖𝑖𝑗𝑗 ∈ 𝑍𝑍−� = {1−

−

−

where,  𝑗𝑗𝑍𝑍

𝑍𝑍

+  denotes that a larger value is better for the  j-th indicator (benefit-type), and  𝑗𝑗−  denotes that a smaller value is better (cost-type). 

Step 2: Calculate the grey correlation coefficients  𝑖𝑖𝑗𝑗𝜁𝜁

𝜁𝜁

+and  𝑖𝑖𝑗𝑗−  between the value of the    𝑗𝑗   -th  indicator for the 𝑖𝑖-th  alternative and  𝑗𝑗𝑍𝑍

𝑍𝑍

+  or  𝑗𝑗−, respectively. 
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where, ρ is the distinguishing coefficient, set to 0.5 based on research experience. 

Step 3: Calculate the grey correlation degrees  𝑖𝑖𝛾𝛾

𝛾𝛾

𝑡𝑡

𝑡𝑡

+  and  𝑖𝑖−  for the  i- th alternative with respect to  𝑗𝑗+  and  𝑗𝑗−. 

𝑛𝑛

𝑖𝑖𝛾𝛾

𝜁𝜁
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(39) 

𝑗𝑗=1

Step 4: Calculate the Kullback - Leibler (KL) divergence  𝑖𝑖𝑑𝑑

𝑑𝑑

+  and  𝑖𝑖− from the indicator values of the evaluated 

object to the positive and negative ideal solutions of matrix  F. 

𝑛𝑛
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Step 5: Determine the comprehensive relative closeness  𝐶𝐶𝑟𝑟𝑖𝑖    for each evaluation target. 

𝑖𝑖𝑑𝑑

𝐶𝐶𝑟𝑟

+

𝑖𝑖 =

(42) 

𝑖𝑖𝑑𝑑

𝑑𝑑

+ + 𝑖𝑖−

The model comparison results presented in Figure 5 verify the reliability of this study from a methodological perspective and reveal the inherent value orientations of different modeling approaches. 

Although the matter-element extension model and the GRA-KL-TOPSIS model differ in their theoretical foundations—the former focuses on absolute grade evaluation, whereas the latter emphasizes relative ranking—

they exhibit a high degree of consistency in the overall ranking (Spearman’s  𝜌𝜌 = 0.8). This consistency cross-validates the objectivity of the differences in the carbon development stages among the industrial parks. It is worth noting that slight differences exist in the rankings of Parks A and C between the two models. Specifically, the GRA-KL-TOPSIS model ranked Park A first due to its highest proximity to the ideal solution (0.5720). In contrast, the matter-element extension model ranked Park C first, based on its more balanced overall development and superior comprehensive score (1.868), as detailed in Table  11. Furthermore, except for Park E, the adjusted rankings of the other parks exhibit a fluctuating trend in the line chart in Figure 5. This observed volatility provides valuable insights. 
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Figure 5.  Comparison of matter-element extension and TOPSIS evaluation results 

The  TOPSIS model is more sensitive to exceptionally performing indicators, whereas the matter-element extension model places greater emphasis on the overall balance of the indicator system. This contrast highlights a key advantage of using the matter-element extension model for “diagnosis”  over simple “ranking”: it can effectively identify parks that achieve high comprehensive scores yet retain critical weaknesses. This capability provides deeper insights for formulating targeted policies. Collectively, the results from multiple perspectives confirm that inherent disparities in the development levels of industrial parks are the dominant factor determining the evaluation conclusions. The choice of research methodology does not alter this fundamental conclusion but reveals its characteristics from different dimensions. 

Table 11. The comprehensive Posting progress and ranking under comparative analysis Park 

𝒊𝒊𝒅𝒅

𝒅𝒅

+

𝒊𝒊−

𝑪𝑪𝒓𝒓𝒊𝒊 

Rank 

A 

0.1966 

0.1471 

0.5720 

1 

B 

0.1498 

0.1981 

0.4036 

4 

C 

0.2009 

0.1568 

0.5616 

2 

D 

0.2499 

0.2128 

0.5402 

3 

E 

0.2027 

0.3032 

0.4006 

5 

The fundamental cause of these discrepancies is the uneven development of carbon management levels across industrial parks. The TOPSIS method tends to over-reward outstanding strengths, whereas the matter-element extension model over-penalizes weaknesses. The ultimate goal is to guide all parks toward a balanced, high-quality low-carbon development model that addresses all aspects, rather than pursuing excellence in any single metric. 

5. Conclusion

Accurately assessing the zero-carbon development stage of industrial parks is fundamental for formulating effective emission reduction strategies. This study constructs a comprehensive evaluation model that integrates interval-valued triangular fuzzy sets, an improved CRITIC method, and matter-element extension theory. This model enables a methodological shift from traditional "ranking" to precise "diagnostics." An empirical analysis of five industrial parks in the Yangtze River Delta revealed that Park C has entered a near-zero-carbon stage, whereas Parks D and E remain in a high-carbon stage, with significant disparities observed across all parks. 

The advantages of leading parks stem from the synergy between governance innovation and energy structure optimization. In contrast, bottlenecks in lagging parks are concentrated in dimensions such as carbon management and the circular economy. Consequently, the zero-carbon transition of industrial parks must follow differentiated pathways. For high-carbon parks, the immediate priority is to consolidate data and management foundations. This involves prioritizing the deployment of a comprehensive carbon accounting system, initiating energy-saving retrofits for key high-consumption equipment, and rapidly installing distributed photovoltaic systems and solid waste disposal facilities. For near-zero- and low-carbon parks, the focus shifts to systemic coordination and value capture. Deep decarbonization can be achieved by establishing carbon performance incentive mechanisms, developing smart microgrids with multi-energy coordination, and managing supply chain carbon footprints. At the policy level, we recommend implementing park-specific carbon budget management and differentiated 153

performance evaluation based on this assessment framework. Market mechanisms should be leveraged to drive cost-effective emission reductions. 

Methodologically, this study demonstrates the model's robustness and interpretability. Sensitivity analysis confirmed that perturbations in weight assignments did not alter the ranking outcomes. Furthermore, a comparative analysis with the GRA-KL-TOPSIS model revealed a high degree of consistency. This indicates that the robustness of the conclusions stems not from arbitrary weight allocation but from intrinsic structural development disparities among the parks—reflecting fundamental differences rather than methodological bias. 

The primary contributions of this study are threefold: (1) proposing a robust and diagnosable framework for assessing the carbon development stage of industrial parks; (2) empirically identifying and explaining bottleneck patterns in zero-carbon transformation; and (3) offering differentiated transformation pathways based on diagnostic findings. For parks with leading advantages, strengths in governance and energy should be extended to carbon management and circular economy dimensions. For high-carbon parks, foundational capabilities must be prioritized to prevent the amplification of bottleneck effects. It should be noted that the conclusions are derived from a sample in the Yangtze River Delta; thus, their generalizability requires further validation in resource-based and heavy industrial parks. Future research should expand this framework to multiple types of industrial parks, compare and simulate their differentiated low-carbon transition paths. Furthermore, the ultimate goal of industrial park diagnosis is to promote the transformation of the management paradigm from post-hoc evaluation to real-time decision-making. Therefore, future studies should explore the construction of a carbon management platform based on digital twins and artificial intelligence, to realize real-time perception, predictive early warning, and adaptive optimization of carbon flows, thereby providing intelligent decision support for industrial parks throughout the entire life cycle of planning, construction, and operation. 
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Appendix A:   

  Table A1. The Definition and Quantification of Indicators for Carbon Development Stages in Industrial Parks 

  Indicator 

Definition & Quantification Method 

Threshold Rationale 

C1 

The proportion of energy-consuming units equipped 

Aligned with the development goals outlined in 

with distributed energy systems. Formula:𝐶𝐶1 =

China's "14th Five-Year Plan for Modern Energy 

�𝑁𝑁𝑁𝑁𝑚𝑚𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑓𝑓 𝑁𝑁𝑛𝑛𝑖𝑖𝑡𝑡𝑠𝑠 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡𝑁𝑁𝑖𝑖𝑁𝑁𝑁𝑁𝑡𝑡𝑁𝑁𝑑𝑑 𝑠𝑠𝑦𝑦𝑠𝑠𝑡𝑡𝑁𝑁𝑚𝑚𝑠𝑠� × 100% 

Systems" and benchmarked against practical targets 

𝑇𝑇𝑜𝑜𝑡𝑡𝑇𝑇𝑙𝑙 𝑛𝑛𝑁𝑁𝑚𝑚𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑓𝑓 𝑁𝑁𝑛𝑛𝑖𝑖𝑡𝑡𝑠𝑠

(e.g., >50% for large-scale application) from leading 

parks like Suzhou Industrial Park and Shanghai 

Jinqiao Export Processing Zone. 

C2 

The percentage of total installed electricity capacity 

Derived from the International Energy Agency's 

derived from renewable sources. Formula:  𝐶𝐶2 =

(IEA) "Net Zero by 2050: A Roadmap for the Global 
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Indicator 
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Threshold Rationale 

� 𝐼𝐼𝑛𝑛𝑠𝑠𝑡𝑡𝑇𝑇𝑙𝑙𝑙𝑙𝑁𝑁𝑑𝑑 𝑁𝑁𝑁𝑁𝑛𝑛𝑁𝑁𝑤𝑤𝑇𝑇𝑁𝑁𝑙𝑙𝑁𝑁 𝑐𝑐𝑇𝑇𝑝𝑝𝑇𝑇𝑐𝑐𝑖𝑖𝑡𝑡𝑦𝑦  �×100%. 

Energy Sector", which recommends that renewable 

𝑇𝑇𝑜𝑜𝑡𝑡𝑇𝑇𝑙𝑙 𝑖𝑖𝑛𝑛𝑠𝑠𝑡𝑡𝑇𝑇𝑙𝑙𝑙𝑙𝑁𝑁𝑑𝑑 𝑁𝑁𝑙𝑙𝑁𝑁𝑐𝑐𝑡𝑡𝑁𝑁𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝑦𝑦 𝑐𝑐𝑇𝑇𝑝𝑝𝑇𝑇𝑐𝑐𝑖𝑖𝑡𝑡𝑦𝑦

generation shares reach 60% by 2030 and nearly 

90% by 2050 in advanced economies. Thresholds are 

adapted for the Chinese context. 

C3 

The electricity consumption per unit area of public 

Directly based on the mandatory national standard 

buildings relative to the industry benchmark. 

GB/T 51161. A ratio of 1.0 indicates compliance, 

Formula:  𝐶𝐶

while a ratio below 0.5 represents a "leading" 

3 = �𝑃𝑃𝑇𝑇𝑁𝑁𝑘𝑘′𝑠𝑠 𝑁𝑁𝑁𝑁𝑖𝑖𝑙𝑙𝑑𝑑𝑖𝑖𝑛𝑛𝑏𝑏 𝑁𝑁𝑛𝑛𝑁𝑁𝑁𝑁𝑏𝑏𝑦𝑦 𝑖𝑖𝑛𝑛𝑡𝑡𝑁𝑁𝑛𝑛𝑠𝑠𝑖𝑖𝑡𝑡𝑦𝑦 ×

𝐵𝐵𝑁𝑁𝑛𝑛𝑐𝑐ℎ𝑚𝑚𝑇𝑇𝑁𝑁𝑘𝑘 𝑣𝑣𝑇𝑇𝑙𝑙𝑁𝑁𝑁𝑁

performance level. 

100%�. The benchmark is the "constraint value" 

specified for the corresponding climate zone and 

building type in the Chinese national standard 

“Standard for energy consumption of 

building"(GB/T 51161-2016). 

C4 

The percentage of trips made using low-carbon 

References the EU's Sustainable Urban Mobility 

modes (walking, cycling, new energy vehicles, 

Plans (SUMPs), which set a target of 70-80% or 

public transport). Formula:   

higher for green travel modal share in core cities as a 

𝐶𝐶

key indicator of sustainability 

4 = �𝑁𝑁𝑁𝑁𝑚𝑚𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑓𝑓 𝑙𝑙𝑜𝑜𝑤𝑤−𝑐𝑐𝑇𝑇𝑁𝑁𝑁𝑁𝑜𝑜𝑛𝑛 𝑡𝑡𝑁𝑁𝑖𝑖𝑝𝑝𝑠𝑠�× 100%. 

𝑇𝑇𝑜𝑜𝑡𝑡𝑇𝑇𝑙𝑙 𝑛𝑛𝑁𝑁𝑚𝑚𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑓𝑓 𝑡𝑡𝑁𝑁𝑖𝑖𝑝𝑝𝑠𝑠

C5 

A score (0-100) evaluating the level of system 

According to the "Smart Park Construction Guide", a intelligence, determined by expert assessment based 

score above 75 signifies an "Integrated and 

on guidelines such as China's "Smart Park 

Optimized" level, and above 90 represents an 

Construction Guide". 

"Innovation and Leadership" level. 

C6 

The average annual reduction rate of CO2 emissions  Based on China's "Action Plan for Carbon Dioxide per unit of industrial added value compared to a base  Peaking Before 2030", which mandates a reduction year (e.g., the final year of the 13th Five-Year Plan).  of over 18% during the 14th Five-Year Plan period 1

and over 15% in the 15th, translating to an average 

Formula:  𝐶𝐶

𝑛𝑛

6 = �1 − �𝐼𝐼𝑡𝑡� �×100% .Where  𝐼𝐼

𝐼𝐼

𝑡𝑡 current  annual reduction rate of 4-4.5%. A threshold of 4.5% 

𝑜𝑜

year carbon intensity  𝐼𝐼

is set as an ambitious target. 

𝑜𝑜  base year n is the number 

of years. 

C7 

The proportion of fossil fuel CO2 emissions 

Based on the IEA's "Energy Technology 

captured by CCUS technology. Formula: 

Perspectives" report, which indicates that CCUS 

C7 = ( Annual CO2 captured by CCUS / Total fossil   application rates in industry need to scale up from fuel CO2 emissions) × 100%. This indicator is 

around 10% by 2030 to nearly 40-70% by 2050 to 

particularly relevant for high-emission parks (e.g., 

achieve net-zero goals. 

chemical, steel). 

C8 

The carbon emissions per unit of product relative to 

The methodology is aligned with the benchmark 

an industry benchmark. Formula: 

approach core to China's national Emissions Trading 

𝑃𝑃𝑟𝑟𝑡𝑡𝑃𝑃𝑢𝑢𝑃𝑃𝑡𝑡 𝑃𝑃𝑚𝑚𝑟𝑟𝑏𝑏𝑡𝑡𝑙𝑙 𝑖𝑖𝑙𝑙𝑡𝑡𝑖𝑖𝑙𝑙𝑠𝑠𝑖𝑖𝑡𝑡𝑦𝑦

Scheme (ETS), an internationally recognized method 

𝐶𝐶8 = �𝐼𝐼𝑙𝑙𝑃𝑃𝑢𝑢𝑠𝑠𝑡𝑡𝑟𝑟𝑦𝑦 𝑏𝑏𝑖𝑖𝑙𝑙𝑃𝑃ℎ𝑙𝑙𝑚𝑚𝑟𝑟𝑘𝑘 𝑣𝑣𝑚𝑚𝐴𝐴𝑢𝑢𝑖𝑖� 

for ensuring fairness and efficiency. Thresholds 

directly reflect carbon efficiency competitiveness 

within the sector. 

C9 

The proportion of the park's total carbon emissions 

The reliance on off-site mitigation instruments like 

offset by purchasing Green Electricity Certificates 

GECs is expected to increase as decarbonization 

(GECs). Formula: 

deepens, making this a key indicator for advanced 

C9 = (𝐸𝐸𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑜𝑜𝑛𝑛 𝑁𝑁𝑁𝑁𝑑𝑑𝑁𝑁𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 𝑁𝑁𝑝𝑝𝑁𝑁𝑖𝑖𝑣𝑣𝑇𝑇𝑙𝑙𝑁𝑁𝑛𝑛𝑡𝑡 𝑜𝑜𝑓𝑓 𝐺𝐺𝐸𝐸𝐶𝐶𝑠𝑠    ) × 100% 

stages. 

𝑇𝑇𝑜𝑜𝑡𝑡𝑇𝑇𝑙𝑙 𝑝𝑝𝑇𝑇𝑁𝑁𝑘𝑘 𝑁𝑁𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑜𝑜𝑛𝑛𝑠𝑠

C10 

The park's energy consumption per unit of industrial 

Using a relative value helps benchmark the park's 

added value relative to the average of its host 

performance against its regional peers, reflecting 

province/municipality. Formula:   

achievements in both technological and structural 

C10 = (

𝑃𝑃𝑇𝑇𝑁𝑁𝑘𝑘′𝑠𝑠 𝑁𝑁𝑛𝑛𝑁𝑁𝑁𝑁𝑏𝑏𝑦𝑦 𝑖𝑖𝑛𝑛𝑡𝑡𝑁𝑁𝑛𝑛𝑠𝑠𝑖𝑖𝑡𝑡𝑦𝑦 

) × 100% 

energy savings. 

𝑅𝑅𝑁𝑁𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛𝑇𝑇𝑙𝑙 𝑇𝑇𝑣𝑣𝑁𝑁𝑁𝑁𝑇𝑇𝑏𝑏𝑁𝑁 𝑁𝑁𝑛𝑛𝑁𝑁𝑁𝑁𝑏𝑏𝑦𝑦 𝑖𝑖𝑛𝑛𝑡𝑡𝑁𝑁𝑛𝑛𝑠𝑠𝑖𝑖𝑡𝑡𝑦𝑦

C11 

he percentage of enterprises covered by the 

While 100% compliance is the legal requirement per 

emissions trading system that fully and timely 

China's "Interim Regulations on Carbon Emissions 

surrender their carbon quotas. Formula: 

Trading", a Tier I threshold of 90% acknowledges 

C11 = (

𝑁𝑁𝑁𝑁𝑚𝑚𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑓𝑓 𝑐𝑐𝑜𝑜𝑚𝑚𝑝𝑝𝑙𝑙𝑖𝑖𝑇𝑇𝑛𝑛𝑡𝑡 𝑁𝑁𝑛𝑛𝑡𝑡𝑁𝑁𝑁𝑁𝑝𝑝𝑁𝑁𝑖𝑖𝑠𝑠𝑁𝑁𝑠𝑠

) 

the high national compliance rate (>99.5% in the 

𝑇𝑇𝑜𝑜𝑡𝑡𝑇𝑇𝑙𝑙 𝑛𝑛𝑁𝑁𝑚𝑚𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑓𝑓 𝑁𝑁𝑛𝑛𝑡𝑡𝑁𝑁𝑁𝑁𝑝𝑝𝑁𝑁𝑖𝑖𝑠𝑠𝑁𝑁𝑠𝑠 𝑜𝑜𝑁𝑁𝑙𝑙𝑖𝑖𝑏𝑏𝑇𝑇𝑡𝑡𝑁𝑁𝑑𝑑 𝑡𝑡𝑜𝑜 𝑐𝑐𝑜𝑜𝑚𝑚𝑝𝑝𝑙𝑙𝑦𝑦

first cycle) while allowing for minor, non-systemic 

× 100% 

delays. 

C12 

The proportion of industrial solid waste that is 

Based on China's "Standard for National Eco-

comprehensively utilized. Formula: 

industrial Demonstration Parks" (HJ 274-2015) and 

C12 = 

the "Indicator System for 'Zero-Waste City' 

(

𝐴𝐴𝑚𝑚𝑜𝑜𝑁𝑁𝑛𝑛𝑡𝑡 𝑁𝑁𝑡𝑡𝑖𝑖𝑙𝑙𝑖𝑖𝑡𝑡𝑁𝑁𝑑𝑑 

) × 

Construction", which identify a utilization rate 

𝐴𝐴𝑚𝑚𝑜𝑜𝑁𝑁𝑛𝑛𝑡𝑡 𝑏𝑏𝑁𝑁𝑛𝑛𝑁𝑁𝑁𝑁𝑇𝑇𝑡𝑡𝑁𝑁𝑑𝑑 +  𝑝𝑝𝑁𝑁𝑁𝑁𝑣𝑣𝑖𝑖𝑜𝑜𝑁𝑁𝑠𝑠 𝑦𝑦𝑁𝑁𝑇𝑇𝑁𝑁𝑠𝑠′ 𝑠𝑠𝑡𝑡𝑜𝑜𝑐𝑐𝑘𝑘𝑝𝑝𝑖𝑖𝑙𝑙𝑁𝑁𝑠𝑠

exceeding 90% as an international advanced level. 

100% 
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Threshold Rationale 

C13 

The proportion of water reused in industrial 

The World Business Council for Sustainable 

processes. Formula:   

Development's (WBCSD) "Water Tool" considers an 

C13 = ( Volume of water reused / Total water 

industrial water recycling rate above 80% as "best 

 intake)×100% 

practice". 

C14 

The proportion of domestically generated waste that 

None 

is separately collected at source. Formula:   

C14 = (𝐴𝐴𝑚𝑚𝑜𝑜𝑁𝑁𝑛𝑛𝑡𝑡 𝑜𝑜𝑓𝑓 𝑠𝑠𝑁𝑁𝑝𝑝𝑇𝑇𝑁𝑁𝑇𝑇𝑡𝑡𝑁𝑁𝑙𝑙𝑦𝑦 𝑐𝑐𝑜𝑜𝑙𝑙𝑙𝑙𝑁𝑁𝑐𝑐𝑡𝑡𝑁𝑁𝑑𝑑 𝑤𝑤𝑇𝑇𝑠𝑠𝑡𝑡𝑁𝑁 )×100% 

𝑇𝑇𝑜𝑜𝑡𝑡𝑇𝑇𝑙𝑙 𝑇𝑇𝑚𝑚𝑜𝑜𝑁𝑁𝑛𝑛𝑡𝑡 𝑜𝑜𝑓𝑓 𝑤𝑤𝑇𝑇𝑠𝑠𝑡𝑡𝑁𝑁 𝑡𝑡𝑁𝑁𝑇𝑇𝑛𝑛𝑠𝑠𝑝𝑝𝑜𝑜𝑁𝑁𝑡𝑡𝑁𝑁𝑑𝑑 

C15 

The percentage of construction land area dedicated 

References China's "Urban Greening Planning and 

to green space. Formula:   

Construction Indicators" and standards for eco-

C15 = ( Green space area / Total construction land 

industrial parks. 

 area) × 100% 

C16 

The economic output density, measured as industrial 

Benchmarked against world-class parks like 

added value generated per unit area of construction 

Singapore's Industrial Estate and Japan's Kawasaki 

land. Formula:   

Eco-Town, which demonstrate significantly higher 

C16 = (𝐼𝐼𝑛𝑛𝑑𝑑𝑁𝑁𝑠𝑠𝑡𝑡𝑁𝑁𝑖𝑖𝑇𝑇𝑙𝑙 𝑇𝑇𝑑𝑑𝑑𝑑𝑁𝑁𝑑𝑑 𝑣𝑣𝑇𝑇𝑙𝑙𝑁𝑁𝑁𝑁)×100% 

land productivity through intensive development. 

𝐶𝐶𝑜𝑜𝑛𝑛𝑠𝑠𝑡𝑡𝑁𝑁𝑁𝑁𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 𝑙𝑙𝑇𝑇𝑛𝑛𝑑𝑑 𝑇𝑇𝑁𝑁𝑁𝑁𝑇𝑇

C17 

The share of the park administration's budget 

Reflects the level of financial commitment and 

allocated specifically to low-carbon development 

resource allocation by the park management 

initiatives. 

authority towards the green transition, often 

influenced by local government support intensity. 

C18 

The frequency of carbon-related information 

Aligned with the Task Force on Climate-related 

disclosure. Scored ordinally: 0=None, 1=Annual, 

Financial Disclosures (TCFD) recommendation for 

2=Semi-annual, 3=Quarterly, 4=Monthly/Near-real-

more frequent and timely disclosure, as well as 

time. Assessed via park websites, sustainability 

guidance from bodies like the Shanghai Stock 

reports, or public platforms. 

Exchange on environmental disclosure frequency. 

C19 

The proportion of enterprises that have established 

Consistent with China's policy direction of 

and operate a certified carbon management system.  promoting carbon management system construction Formula:   

in key enterprises. 

C19 = 

(

𝑁𝑁𝑁𝑁𝑚𝑚𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑓𝑓 𝑐𝑐𝑁𝑁𝑁𝑁𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖𝑁𝑁𝑑𝑑 𝑁𝑁𝑛𝑛𝑡𝑡𝑁𝑁𝑁𝑁𝑝𝑝𝑁𝑁𝑖𝑖𝑠𝑠𝑁𝑁𝑠𝑠

   ) 

𝑇𝑇𝑜𝑜𝑡𝑡𝑇𝑇𝑙𝑙 𝑛𝑛𝑁𝑁𝑚𝑚𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑓𝑓 𝑁𝑁𝑛𝑛𝑡𝑡𝑁𝑁𝑁𝑁𝑝𝑝𝑁𝑁𝑖𝑖𝑠𝑠𝑁𝑁𝑠𝑠 𝑡𝑡𝑇𝑇𝑁𝑁𝑏𝑏𝑁𝑁𝑡𝑡𝑁𝑁𝑑𝑑 𝑓𝑓𝑜𝑜𝑁𝑁 𝑐𝑐𝑁𝑁𝑁𝑁𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖𝑐𝑐𝑇𝑇𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛

× 100%. 

C20 

The percentage of key emission sources (as defined  Emphasizes the foundational role of digital platforms by the park based on energy consumption/emission 

for transparency and precision in carbon 

levels) connected to a unified digital carbon 

management, as highlighted by initiatives like the 

management platform. Formula:   

WEF's Global Lighthouse Network.。 

C20 = (𝑁𝑁𝑁𝑁𝑚𝑚𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑓𝑓 𝑐𝑐𝑜𝑜𝑛𝑛𝑛𝑛𝑁𝑁𝑐𝑐𝑡𝑡𝑁𝑁𝑑𝑑 𝑠𝑠𝑜𝑜𝑁𝑁𝑁𝑁𝑐𝑐𝑁𝑁𝑠𝑠   /) × 100%. 

𝑇𝑇𝑜𝑜𝑡𝑡𝑇𝑇𝑙𝑙 𝑛𝑛𝑁𝑁𝑚𝑚𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑓𝑓 𝑘𝑘𝑁𝑁𝑦𝑦 𝑠𝑠𝑜𝑜𝑁𝑁𝑁𝑁𝑐𝑐𝑁𝑁𝑠𝑠

C21 

The proportion of enterprises that have conducted  Such audits are a standardized starting point for deep zero-carbon production audits or in-depth energy 

decarbonization at the enterprise level, promoted by 

conservation diagnostics. Formula:   

organizations like the World Resources Institute 

C21 = ( Number of enterprises conducting audits / 

(WRI) under frameworks for carbon footprint 

 Total number of enterprises) × 100%。 

accounting and reduction planning. 
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Abstract: Industrial parks represent one of the most significant contributors to carbon emissions, making their
transition toward zero-carbon operations a critical priority. Achieving this goal requires scientific, phased
evaluation tools capable of guiding differentiated emission reduction strategies. This study introduces an integrated
assessment framework that combines interval-valued triangular fuzzy sets, an enhanced CRITIC weighting method,
and matter-element extension theory to provide robust and diagnostic insights into carbon performance. Sensitivity
and comparative analyses confirm the model's reliability and resilience. An empirical application involving five
industrial parks in China’s Yangtze River Delta demonstrates the framework’s effectiveness. The results indicate
that Park C has approached a near-zero-carbon status, while Parks D and E remain in high-emission stages. Notable
disparities are observed among the parks: high-performing parks benefit from strong governance and energy
synergy, whereas underperforming parks face bottlenecks due to weak carbon management and limited adoption
of circular economy practices. The proposed model maintains stable ranking outcomes even under weight
perturbations and aligns closely with alternative evaluation methods. These findings suggest that successful zero-
carbon transformation depends on coordinated progress across multiple dimensions rather than isolated
improvements in specific indicators. This research offers a scientific foundation for targeted, phase-based
decarbonization strategies in industrial parks.

Keywords: Industrial park; Decarbonization process; Evaluation indicator system; Empirical analysis;
Development strategy

1. Introduction

Global warming presents profound challenges to economic and social systems worldwide. According to the
IPCC Sixth Assessment Report, the energy and industrial sectors collectively account for approximately 73% of
global greenhouse gas emissions (Masson-Delmotte et al., 2021). Within these sectors, industrial parks are critical
leverage points for emission reduction due to their intensive energy consumption and concentrated industrial
chains. China’s Dual-Carbon Target underscores that the low-carbon transition of industrial parks is crucial for
achieving the national goals of carbon peak and neutrality. The International Energy Agency (IEA) estimates that,
through systematic strategies—including enhanced energy efficiency, waste heat recovery, renewable energy
integration, and carbon capture, utilization, and storage (CCUS)—industrial parks could cumulatively reduce
carbon emissions by over 20% by 2050 (IEA, 2021). Furthermore, international trade policies, such as the
European Union’s Carbon Border Adjustment Mechanism (CBAM), are elevating carbon management to a critical
factor in global competitiveness (European Union., 2023) compelling industrial parks worldwide to accelerate
their low-carbon transformation.

China’s “14th Five-Year Plan for Industrial Green Development” explicitly advocates for establishing numerous
near-zero and zero-carbon demonstration parks, with phased targets to significantly reduce carbon intensity before
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