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Abstract: Industrial parks represent one of the most significant contributors to carbon emissions, making their 
transition toward zero-carbon operations a critical priority. Achieving this goal requires scientific, phased 
evaluation tools capable of guiding differentiated emission reduction strategies. This study introduces an integrated 
assessment framework that combines interval-valued triangular fuzzy sets, an enhanced CRITIC weighting method, 
and matter-element extension theory to provide robust and diagnostic insights into carbon performance. Sensitivity 
and comparative analyses confirm the model's reliability and resilience. An empirical application involving five 
industrial parks in China’s Yangtze River Delta demonstrates the framework’s effectiveness. The results indicate 
that Park C has approached a near-zero-carbon status, while Parks D and E remain in high-emission stages. Notable 
disparities are observed among the parks: high-performing parks benefit from strong governance and energy 
synergy, whereas underperforming parks face bottlenecks due to weak carbon management and limited adoption 
of circular economy practices. The proposed model maintains stable ranking outcomes even under weight 
perturbations and aligns closely with alternative evaluation methods. These findings suggest that successful zero-
carbon transformation depends on coordinated progress across multiple dimensions rather than isolated 
improvements in specific indicators. This research offers a scientific foundation for targeted, phase-based 
decarbonization strategies in industrial parks. 
 
Keywords: Industrial park; Decarbonization process; Evaluation indicator system; Empirical analysis; 
Development strategy 
 
1. Introduction  

 
Global warming presents profound challenges to economic and social systems worldwide. According to the 

IPCC Sixth Assessment Report, the energy and industrial sectors collectively account for approximately 73% of 
global greenhouse gas emissions (Masson-Delmotte et al., 2021). Within these sectors, industrial parks are critical 
leverage points for emission reduction due to their intensive energy consumption and concentrated industrial 
chains. China’s Dual-Carbon Target underscores that the low-carbon transition of industrial parks is crucial for 
achieving the national goals of carbon peak and neutrality. The International Energy Agency (IEA) estimates that, 
through systematic strategies—including enhanced energy efficiency, waste heat recovery, renewable energy 
integration, and carbon capture, utilization, and storage (CCUS)—industrial parks could cumulatively reduce 
carbon emissions by over 20% by 2050 (IEA, 2021). Furthermore, international trade policies, such as the 
European Union’s Carbon Border Adjustment Mechanism (CBAM), are elevating carbon management to a critical 
factor in global competitiveness (European Union., 2023) compelling industrial parks worldwide to accelerate 
their low-carbon transformation.  

China’s “14th Five-Year Plan for Industrial Green Development” explicitly advocates for establishing numerous 
near-zero and zero-carbon demonstration parks, with phased targets to significantly reduce carbon intensity before 
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2030. The transition to a zero-carbon park represents a progressive evolution through “low-carbon to near-zero 
carbon to zero-carbon” stages (Yu et al., 2018), rather than a mere matter of technological accumulation. Therefore, 
accurately determining a park’s current stage of carbon development is a critical prerequisite for formulating 
differentiated emission reduction pathways and optimizing policy resource allocation (Zhao et al., 2024). This task 
is particularly urgent due to the diverse transformation pathways and complex influencing mechanisms involved 
in the transition of industrial parks. From a strategic perspective, Qian et al. (2022) developed an integrated “Land-
Industry-Carbon” (LIC) model to simulate and validate the central role of industrial restructuring in achieving 
carbon peak, highlighting the value of multidimensional solutions. Through a comparative multi-case study, Sun 
et al. (2024) identified a systematic carbon neutrality pathway encompassing 12 key areas, including energy 
substitution and carbon capture. Regarding driving mechanisms, Meng et al. (2024) employed a configurational 
analysis based on the Technology-Organization-Environment (TOE) framework. Their analysis revealed that the 
effectiveness of green transformation in parks depends on the complex interactions among technological capability, 
organizational structure, and environmental factors, rather than on any single linear factor. 

While the importance of the low-carbon transition in industrial parks is widely recognized, as evidenced by 
previous studies, a systematic assessment of their development levels remains inadequate. Existing evaluation 
systems are limited in framework completeness, indicator coverage, and technical application (Huang et al., 2023). 
First, universal indicator systems that can adapt to diverse energy structures and industrial characteristics are 
lacking. In particular, dynamic inter-indicator mechanisms (e.g., the negative correlation between industrial 
agglomeration and emission reduction costs (Langie et al., 2022) and complex interactions among technological, 
organizational, and environmental factors (Zhang et al., 2025) have received insufficient attention. Second, 
weighting methods have notable shortcomings: subjective weighting is susceptible to expert bias, objective 
weighting fails to reflect strategic priorities, and combined weighting methods often rely on simplistic averaging, 
which cannot capture the context-dependent dynamics of indicator importance (Huang et al., 2023). Third, most 
studies continue to use linear evaluation frameworks, which are ill-suited to capture the nonlinear coupling 
characteristics of energy-carbon systems. This limitation is particularly evident in modeling complex feedback 
mechanisms, such as carbon flows and energy-waste recycling loops. Finally, the validation of assessment results 
is often limited to individual case studies and lacks systematic, cross-regional, or cross-industrial verification, 
which undermines the generalizability and reliability of the conclusions (Du et al., 2024; Feng et al., 2018). 

To address these limitations, this study proposes an integrated and practically applicable evaluation framework 
for assessing the carbon transition stage of industrial parks. This framework integrates interval-valued triangular 
fuzzy sets with an enhanced CRITIC weighting model. This integration balances expert knowledge with objective 
data characteristics and incorporates a dynamic mechanism to characterize the contextual importance of indicators 
for weight determination. We improve the matter-element extension theory to enable phase identification under 
multi-indicator, nonlinear, and fuzzy conditions. Furthermore, methods including TOPSIS, grey relational analysis 
(GRA), and Kullback-Leibler (KL) divergence are employed for multi-dimensional consistency verification of the 
assessment results. Global sensitivity analysis is further applied to test the model's robustness and adaptability. 
This approach scientifically determines the carbon development stage of industrial parks, thereby systematically 
revealing common shortcomings and key drivers across different park types during their zero-carbon transition. It 
provides quantitative evidence for formulating differentiated policies and designing precise transition pathways. 
Moreover, it facilitates the effective implementation of zero-carbon park assessments by bridging theoretical 
methodology and management practice. 
 
2. Literature Review 
 
2.1 Development Stages of Zero-Carbon Parks 

 
Zero-carbon industrial parks are vital vehicles for addressing climate change and advancing green industrial 

transformation. They are typically viewed as evolving through a gradual developmental process. This progression 
involves phased transitions from low-carbon to near-zero-carbon and, ultimately, to zero-carbon parks (Zhang et 
al., 2024). This evolutionary logic demonstrates global universality. According to a recent International Energy 
Agency (IEA) assessment, deep decarbonization of the industrial sector is a central challenge for achieving global 
net-zero emissions targets, with industrial parks identified as critical leverage points (IEA, 2021). Globally, diverse 
zero-carbon park practices have emerged, ranging from the industrial symbiosis paradigm in the Netherlands 
(Eilering et al., 2004) to emission reduction strategic planning for industrial estates in Singapore (Wong et al., 
2008), and integrated hydrogen energy storage exploration in China's Ordos (Zou et al., 2024). 

 In the low-carbon phase, research and practice focused primarily on enhancing energy efficiency and replacing 
fossil fuels with renewable energy sources. Representative measures included energy-efficient building retrofits 
(Zhang et al., 2023b), industrial waste heat recovery, and the initial adoption of renewable energy (Adebayo & 
Ağa, 2022). Although these efforts effectively reduced carbon intensity, they often relied on isolated technological 
measures and remained dependent on fossil fuels, thereby creating a ceiling for emissions reduction. Limitations 
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in systemic integration were recognized even at this early stage. Early research on eco-industrial parks similarly 
focused on enterprise-level clean production and park-level waste exchange models (Chertow, 2000). The 
European Union's early promotion of best practices initially focused on energy-saving retrofits of individual 
facilities (Feng et al., 2018) and later shifted towards helping park enterprises identify and improve energy 
efficiency opportunities (Miśkiewicz et al., 2021). This approach parallels the initial practices in China's low-
carbon parks.A case study of Canada's Debert Aerospace Industrial Park exemplifies this shift in perspective (Côté 
& Liu, 2016). This pioneering research moved beyond isolated technologies, highlighting the critical importance 
of a systemic approach. This approach integrated land use, infrastructure, buildings, energy, vegetation 
management, and policy mechanisms to achieve deep emissions reductions within the park. 

Amid intensifying emission reduction pressures and accelerated technological advancements, some industrial 
parks have progressed to the near-zero carbon development phase. This phase is characterized by the deep 
integration of multi-energy systems and information technologies. On one hand, distributed photovoltaics, energy 
storage systems, and smart microgrids form the foundation of new energy supply systems (Aziz et al., 2023). On 
the other hand, energy-carbon management platforms leveraging IoT and big data provide core support for system 
optimization. For instance, Luo et al. (2024) proposed a multi-energy coupling system that utilizes by-product 
hydrogen. Through four case studies, they quantified the differences in economic and environmental benefits 
among various by-product hydrogen utilization methods, demonstrating the positive impact of multi-energy 
coupling on emissions reduction.  

Conceptually, this work aligns closely with the energy hub optimization model (Olgyay & Campbell, 2018). In 
recent years, integrated with artificial intelligence, this concept has been further developed to solve dynamic 
optimal scheduling problems for park-level integrated energy systems (Wang et al., 2024). Furthermore, pilot 
"Smart Energy Park" projects, which integrate distributed energy resources through digital technologies to 
optimize the overall park energy system, represent advanced practices in the near-zero-carbon stage (Yu & Liu, 
2024). Their findings indicate that selecting and optimizing innovative energy utilization approaches is crucial for 
enhancing the overall emissions reduction performance of industrial parks. However, it should be noted that near-
zero-carbon industrial parks still face challenges such as immature key technologies like carbon capture and green 
hydrogen production, as well as high cost burdens (Irham et al., 2024; Urbina, 2023). 

Zero-carbon industrial parks represent the ultimate developmental goal, characterized by achieving net-zero 
emissions through complete reliance on carbon-free energy, carbon capture and removal, and cross-industry 
circular coupling (Zhang et al., 2024). For example, a German energy industrial park has established a zero-carbon 
demonstration model spanning the building, transportation, and industrial energy sectors via the systematic 
integration of distributed renewables and energy storage technologies (Côté & Liu, 2016).  

It is noteworthy that the exploration of zero-carbon parks is a global endeavor. In developing countries such as 
India, Green Industrial Park Initiatives provide infrastructure subsidies to encourage low-carbon technology 
adoption. However, the challenges they face differ markedly from those in developed countries, focusing more on 
financing access, technology acquisition, and grid stability (Jain, 2021). This disparity reveals the distinct political-
economic contexts that economies at different development stages face during the zero-carbon transition. China's 
Ordos Zero-Carbon Industrial Park and Suzhou Industrial Park have explored integrated pathways for renewables, 
energy storage, and hydrogen utilization using a “wind-solar-hydrogen-storage-vehicle” model (Xiao et al., 2018). 
These cases demonstrate that zero-carbon park development has progressed from concept validation to large-scale 
implementation, although challenges persist in standardization, systemic coordination, and policy incentives. 

In summary, the evolution through carbon development stages in industrial parks results from not only 
technological accumulation but also the combined influence of policy, market forces, and industrial chains. 
Accurately identifying each park's developmental stage facilitates the formulation of tailored transformation 
pathways, prevents the inefficacy of one-size-fits-all policies, and optimizes resource allocation across different 
park types. 

 
2.2 Evaluation Criteria and Indicator Systems 
 

The scientific identification and quantitative assessment of the carbon development stage in industrial parks 
depend on a robust indicator system. Early indicator systems primarily focused on single dimensions, such as 
energy consumption and carbon emissions, using conventional static metrics like energy consumption per unit of 
industrial output and carbon intensity (Huang et al., 2016). Although these indicators enable macro-level 
comparability, they often fail to capture variations in energy structures, industrial characteristics, and technological 
levels across different parks, thus providing limited insight into the overall transition process. As research has 
advanced, evaluation frameworks have expanded to incorporate multiple dimensions, including energy, 
environment, and economy. For instance, Huang et al. (2023) developed a comprehensive evaluation framework 
for low-carbon development in industrial parks. This framework includes energy and emission metrics, alongside 
indicators such as the clean energy proportion and waste recycling rate, demonstrating an increased emphasis on 
industrial circularity and resource efficiency. Similarly, the European Union’s guidelines for low-carbon park 
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assessment incorporate institutional and management factors—such as governance mechanisms and policy 
implementation effectiveness—highlighting the critical role of management systems in emission reduction efforts 
(Fragkos et al., 2021). 

 
Table 1. Indicator system for assessing zero-carbon levels in industrial parks 

 
Core 

Dimensions Primary Indicator Secondary Indicators Specific Source/Basis 

Energy 
structure and 

efficiency 

Renewable Energy 
Utilization 

Distributed Energy Coverage Rate 
(C1) The international RE100 initiative, 

China’s “Pilot Program for Green 
Power Trading” (Fait et al., 2022) Share of Renewable Energy in 

Installed Capacity (C2) 
Electricity consumption per unit 

area in public buildings (C3) (Zhang et al., 2023a) 

Energy Efficiency 
Optimization 

Green Travel Ratio (C4) (Zhang et al., 2024) 
Intelligence Level of Energy 
Management Systems (C5) 

China’s Smart Park Construction Guide 
(Wang et al., 2019) 

Carbon 
management 

and emissions 
reduction 

Direct Carbon 
Emissions Control 

Carbon Emission Intensity 
Reduction Rate (C6） 

ISO 14064 China’s Carbon Emission 
Trading Management Measures (Côté 

& Liu, 2016) 

Carbon Capture Technology 
Adoption Rate (C7) 

(Prajapati et al., 2024) 
China’s Science and Technology 
Roadmap for Carbon Peaking and 

Carbon Neutrality 
Energy consumption per unit of 

product (C8) (Tian et al., 2023) 

Indirect Carbon 
Emissions 

Management 

Proportion of Carbon Emissions 
Offset by Green Certificates (C9) 

Standard Specifications: ISO 14067 
SBTi (Zhu et al., 2025) 

Comprehensive Energy 
Consumption per Unit of 

Industrial Value Added (C10) 

CDM Administrative Measures for 
China’s CCER (Olgyay & Campbell, 

2018) 

Carbon Allowance Compliance 
Rate (C11) 

China’s Regulations on the 
Administration of Carbon Emission 

Trading (Côté & Liu, 2016) 

Circular 
economy and 

resource 
utilization 

Industrial Solid Waste 
Comprehensive 
Utilization Rate 

Industrial Solid Waste 
Comprehensive Utilization Rate GB/T 39198-2020(Fragkos et al., 2021) 

Industrial Water Recycling Rat 
(C13) ISO 46001 (Roberts, 2004) 

Household Waste Sorting 
Collection Rate (C14) 

China’s Water Pollution Prevention 
and Control Action Plan (Hu et al., 

2019) 

Infrastructure 

Green Space Ratio (C15) (Xiao et al., 2018) 

Industrial Value Added per Unit of 
Construction Land (C16) 

Administrative Measures for Green 
Product Labels (While & Eadson, 

2022) 

Governance and 
innovation 
capabilities 

Policy and Planning 

Low-Carbon Development Special 
Fund Investment Rate (C17) 

China’s “Green Development 
Guidelines for Industrial Parks” and 

“National Low-Carbon Industrial Park 
Pilot Implementation Plan” (While & 

Eadson, 2022) 

Frequency of Carbon Disclosure 
(C18) 

TCFD (Task Force on Climate-related 
Financial Disclosures) Framework (Lee 

et al., 2015; Prajapati et al., 2024) 
Carbon Management System 

Certification Rate (C19) 
United Nations SDG 11 (Sustainable 

Cities and Communities) 

Technological 
Innovation and 
Digitalization 

Digital Carbon Management 
Platform Coverage Rate (C20) 

Guiding Opinions on Promoting the 
Development of “Internet Plus” Smart 
Energy in China (Wang et al., 2019) 

Implementation Rate of Zero-
Carbon Production Audits in 

Enterprises (C21) 

China’s 14th Five-Year Plan for Green 
Industrial Development (Lee et al., 

2015) 
 

To construct an internationally comparable evaluation system, a systematic review of major global assessment 
standards is essential. Currently, widely applied international frameworks can be categorized into three types: 
policy-regulated standards, market-driven standards, and certification and reporting standards, including the ISO 
14064 series for greenhouse gas accounting, which provide methodologies or certification labels. In recent years, 
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indicator systems have evolved toward greater systematicity and dynamic characterization. Scholars have 
attempted to integrate life cycle assessment (Zhang et al., 2023a), carbon footprint accounting, and multi-
dimensional composite indicators into a unified framework. This framework incorporates energy supply (Wang et 
al., 2019), upstream-downstream industrial synergy (Zhu et al., 2025), digital management, and policy 
implementation. While this trend has improved the coverage and refinement of indicator systems, it has also 
introduced challenges, including subjective weight allocation and increased complexity in inter-indicator 
couplings. For instance, studies have revealed nonlinear trade-offs between energy substitution rates and economic 
output. These complex relationships are often oversimplified by the additive weighting methods used in existing 
frameworks, which fail to capture their actual dynamic interactions (Adebayo & Ağa, 2022). 

In summary, although existing research has made substantial progress in identifying developmental stages and 
constructing indicator systems for zero-carbon industrial parks, critical limitations persist. To address these gaps, 
this study establishes an indicator system across four key dimensions: (1) energy structure and efficiency, (2) 
carbon management and emission reduction, (3) circular economy and resource utilization, and (4) governance 
and innovation capability. This integrated framework is designed to balance universality with specificity and to 
accommodate the characteristics of dynamic, complex systems, as detailed in Table 1 and Figure 1. Consequently, 
the proposed system provides a methodological foundation for the scientifically robust assessment of 
developmental stages in zero-carbon industrial parks. 

 

 
Figure 1. Integrated framework  

 
3. Methodology 
 

To address the challenges of data ambiguity, indicator heterogeneity, and the conflicts between subjective and 
objective weighting in assessing the low-carbon performance of industrial parks, this study proposes an integrated 
evaluation framework. The framework combines expert-derived weights, interval-valued fuzzy data processing, 
and extension-based decision modeling. The overall methodological workflow is illustrated in Figure 2, and the 
specific computational procedures are detailed in the following subsections. 
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Figure 2. Carbon phase assessment framework for the park 

3.1 Expert Weight Quantification Based on Intuitionistic Fuzzy Sets 

The accuracy of expert-derived weights directly determines the credibility of the evaluation results. Traditional 
methods, which often rely on direct assignment, fail to capture the cognitive uncertainty inherent in expert 
judgments. Assessing the low-carbon performance of industrial parks involves multidimensional, heterogeneous 
indicators (e.g., energy structure, process-level carbon efficiency, and management policies). This complexity 
leads to significant disparities in expert knowledge, especially concerning emerging technologies such as carbon 
capture. Although classical fuzzy sets use membership functions to represent degrees of expert endorsement, they 
lack mathematical representations of opposition (non-membership) and uncertainty (hesitancy). This limitation 
can introduce bias into weight allocation. To overcome these limitations, we introduce intuitionistic fuzzy sets 
(IFS). IFS comprehensively capture the importance assigned by experts through a triple structure (μ, v, π). As an 
extension of traditional fuzzy set theory, IFS provides enhanced capabilities for processing fuzzy and imperfect 
information. 

3.1.1 Relevant definition 
Definition 1: Let X be a non-empty universe of discourse. An intuitionistic fuzzy set (IFS) A on X is defined as: 

𝐴𝐴 = ��𝑥𝑥, 𝜇𝜇𝐴𝐴(𝑥𝑥), 𝑣𝑣𝐴𝐴(𝑥𝑥)��𝑥𝑥 ∈ 𝑋𝑋� (1) 

where, 𝜇𝜇𝐴𝐴(𝑥𝑥):𝑋𝑋 → [0,1] denotes the degree of membership of element x in set A, and 𝑣𝑣𝐴𝐴(𝑥𝑥):𝑋𝑋 → [0,1] 
denotes the degree of non-membership, satisfying the condition: 0 ≤ 𝜇𝜇𝐴𝐴(𝑥𝑥) + 𝑣𝑣𝐴𝐴(𝑥𝑥) ≤ 1. 

Definition 2: The third parameter of IFS is the hesitancy degree 𝜋𝜋𝐴𝐴(𝑥𝑥) calculated by the following Eq. (2): 

𝜋𝜋𝐴𝐴(𝑥𝑥) = 1 − 𝜇𝜇𝐴𝐴(𝑥𝑥) − 𝑣𝑣𝐴𝐴(𝑥𝑥) (2) 

A smaller value of 𝜋𝜋𝐴𝐴(𝑥𝑥) indicates clearer decision information regarding X. while a larger value reflects 
greater uncertainty. When 𝜋𝜋𝐴𝐴(𝑥𝑥) = 0 the intuitionistic fuzzy set reduces to an ordinary fuzzy set. 
3.1.2 Implementation steps 
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Step 1: The Delphi method is employed to invite K experts to evaluate each other’s authoritative level using a 
five-level intuitionistic fuzzy scale, as shown in Table 2:  

 
Table 2. Linguistic terms for ranking the importance of Decision-Makers (DMs) 

 
Linguistic Terms Intuitionistic Fuzzy Numbers (IFNs) 

Very important (0.90,0.10) 
Important (0.75,0.20) 
Medium (0.50,0.45) 

Unimportant (0.35,0.60) 
Very Unimportant (0.10,0.90) 

 
Step 2: Determine expert weights 
The relative importance among experts is expressed through linguistic terms represented by intuitionistic fuzzy 

numbers. Let the evaluation of the k-th expert be denoted as 𝐷𝐷𝑘𝑘 = [𝜇𝜇𝑘𝑘, 𝑣𝑣𝑘𝑘 ,𝜋𝜋𝑘𝑘] The weight of each expert is then 
calculated using the following formula:  

 

𝑤𝑤𝑘𝑘 =
𝜇𝜇𝑘𝑘 + 𝜋𝜋𝑘𝑘 ⋅ �

𝜇𝜇𝑘𝑘
𝜇𝜇𝑘𝑘 + 𝜈𝜈𝑘𝑘

�

� �𝜇𝜇𝑘𝑘 + 𝜋𝜋𝑘𝑘 ⋅ �
𝜇𝜇𝑘𝑘

𝜇𝜇𝑘𝑘 + 𝜈𝜈𝑘𝑘
��

𝐾𝐾

𝑘𝑘=1

 (3) 

 
3.2 Subjective Weighting of Indicators Based on Interval Triangular Fuzzy Numbers 

 
Triangular fuzzy numbers (TFNs), a class of fuzzy sets characterized by convexity and normality, are widely 

used to process fuzzy decision information. However, TFNs rely on fixed value boundaries. In contrast, interval-
valued triangular fuzzy numbers allow different experts to define varying membership degree intervals for the 
same indicator. This approach better accommodates the data gaps and fluctuations commonly found in industrial 
park data. This method not only preserves the integrity of fuzzy decision information but also ensures that its 
constituent elements are more readily obtainable than those of trapezoidal fuzzy numbers, as shown in Table 3. 

 
Table 3. The importance and scoring of language terms for each criterion 

 
The Importance of Linguistic Terms Fuzzy Number of Triangular Interval Values 

Very low (VL) [(0,0),0, (0.1,0.15)] 
Low (L) [(0,0.05),0.1, (0.25,0.35)] 

Medium low (ML) [(0,0.15),0.3, (0.45,0.55)] 
Medium (M) [(0.25,0.35),0.5, (0.65,0.75)] 

Medium high (MH) [(0.45,0.55),0.7, (0.8,0.95)) 
High (H) [(0.55,0.75),0.9, (0.95,1)] 

Very high (VH) [(0.85,0.95),1, (1,1)] 
 

3.2.1. Relevant definitions 
Definition 3: Let 𝑋𝑋 be a set of real numbers. An interval triangular fuzzy set 𝐴𝐴

~
 is defined as: 

 
𝐴𝐴
~

= 𝑥𝑥, �𝜇𝜇𝐴𝐴∼𝐿𝐿(𝑥𝑥), 𝜇𝜇𝐴𝐴∼𝑈𝑈(𝑥𝑥)�, 𝑥𝑥 ∈ 𝑋𝑋, 𝜇𝜇𝐴𝐴∼𝐿𝐿, 𝜇𝜇𝐴𝐴∼𝑈𝑈:𝑋𝑋 → [0,1] (4) 
 
where, 𝐴𝐴𝐴𝐴∼𝜇𝜇(𝑥𝑥)  and 𝐴𝐴𝐴𝐴∼𝜇𝜇(𝑥𝑥) represent the lower and upper bounds of the interval-valued membership degree, 
respectively, satisfying: 

 
𝜇𝜇𝐴𝐴∼(𝑥𝑥) ≤ 𝜇𝜇𝐴𝐴∼∪(𝑥𝑥),∀𝑥𝑥 ∈ 𝑋𝑋 (5) 

 
𝜇𝜇𝐴𝐴∼(𝑥𝑥) = [𝜇𝜇𝐴𝐴∼𝐿𝐿(𝑥𝑥), 𝜇𝜇𝐴𝐴∼∪(𝑥𝑥)],∀𝑥𝑥 ∈ 𝑋𝑋 (6) 

 
An interval triangular fuzzy set can be defined as 𝐴𝐴

~
= [𝐴𝐴

~
𝐿𝐿 ,𝐴𝐴

~
𝑈𝑈] = [(1𝐿𝐿𝑥𝑥, 2𝐿𝐿𝑥𝑥 , 3𝐿𝐿𝑥𝑥;𝐴𝐴∼𝜇𝜇(𝑥𝑥)), (1𝑈𝑈𝑥𝑥 , 2𝑈𝑈𝑥𝑥 , 3𝑈𝑈𝑥𝑥 ;𝐴𝐴𝐴𝐴𝑈𝑈

𝜇𝜇(𝑥𝑥))] 
where, 𝐴𝐴

~
𝐿𝐿  and 𝐴𝐴

~
𝑈𝑈  denote the lower and upper interval-valued triangular fuzzy numbers, respectively, with 

𝐴𝐴
~
𝐿𝐿 ⊂ 𝐴𝐴

~
𝑈𝑈. When 𝜇𝜇𝐴𝐴𝐿𝐿(𝑥𝑥) = 𝐴𝐴𝑈𝑈∼

𝜇𝜇(𝑥𝑥) = 1 and 2𝐿𝐿𝑋𝑋 = 2𝑈𝑈𝑋𝑋 , the interval triangular fuzzy set can be simplified as: 
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𝐴𝐴
~

= �𝐴𝐴
~
𝐿𝐿 ,𝐴𝐴

~
𝑈𝑈� = [(1𝑈𝑈𝑥𝑥 , 1𝐿𝐿𝑥𝑥), 𝑥𝑥2, (3𝐿𝐿𝑥𝑥 , 3𝑈𝑈𝑥𝑥 )] (7) 

 
Geometrically, unlike conventional triangular fuzzy numbers with a deterministic membership value, the 

membership degree in this representation becomes an interval, allowing more flexible and accurate expression of 
fuzzy information. 

Definition 4: Based on the definition by Liu et al. (2019) for two interval triangular fuzzy numbers: TIVFNs 

𝐴𝐴
~

= [𝐴𝐴
~
𝐿𝐿 ,𝐴𝐴

~
𝑈𝑈] = [(1𝑈𝑈𝑥𝑥 , 1𝐿𝐿𝑥𝑥), 𝑥𝑥2, (3𝐿𝐿𝑥𝑥 , 3𝑈𝑈𝑥𝑥 )]  and 𝐵𝐵

~
= [𝐵𝐵

~
𝐿𝐿 ,𝐵𝐵

~
𝑈𝑈] = [(1𝑈𝑈

𝑦𝑦 , 1𝐿𝐿
𝑦𝑦),𝑦𝑦2, (3𝐿𝐿

𝑦𝑦 , 3𝑈𝑈
𝑦𝑦)]  the following arithmetic 

operations apply: 
 

𝐴𝐴
~

+ 𝐵𝐵
~

= [(1𝑈𝑈𝑋𝑋 , 1𝐿𝐿𝑋𝑋), 𝑥𝑥2, (3𝐿𝐿𝑋𝑋 , 3𝑈𝑈𝑋𝑋)] + ��1𝑈𝑈
𝑦𝑦 , 1𝐿𝐿

𝑦𝑦�, 𝑦𝑦2, �3𝐿𝐿
𝑦𝑦 , 3𝑈𝑈

𝑦𝑦��

= ��1𝑈𝑈𝑥𝑥 + 1𝑈𝑈
𝑦𝑦 , 1𝐿𝐿𝑥𝑥 + 1𝐿𝐿

𝑦𝑦�, 𝑥𝑥2 + 𝑦𝑦2 , �3𝐿𝐿𝑥𝑥 + 3𝐿𝐿
𝑦𝑦 , 3𝑈𝑈𝑥𝑥 + 3𝑈𝑈

𝑦𝑦�� 
(8) 

 

𝐴𝐴
~
− 𝐵𝐵

~
= [(1𝑈𝑈𝑥𝑥 , 1𝐿𝐿𝑥𝑥), 𝑥𝑥2, (3𝐿𝐿𝑥𝑥, 3𝑈𝑈𝑥𝑥 )] − ��1𝑈𝑈

𝑦𝑦 , 1𝐿𝐿
𝑦𝑦�, 𝑦𝑦2, �3𝐿𝐿

𝑦𝑦, 3𝑈𝑈
𝑦𝑦��

= ��1𝑈𝑈𝑥𝑥 − 1𝑈𝑈
𝑦𝑦 , 1𝐿𝐿𝑥𝑥 − 1𝐿𝐿

𝑦𝑦�, 𝑥𝑥2 − 𝑦𝑦2 , �3𝐿𝐿𝑥𝑥 − 3𝐿𝐿
𝑦𝑦 , 3𝑈𝑈𝑥𝑥 − 3𝑈𝑈

𝑦𝑦�� 
(9) 

 

Definition 5: The defuzzification of an interval triangular fuzzy number 𝐴𝐴
~

 can be performed using the 
following formula to obtain a crisp value: 
 

ℎ �𝐴𝐴
~
� =

(1𝑈𝑈𝑥𝑥 + 1𝐿𝐿𝑥𝑥) + 2𝑥𝑥2 + (3𝐿𝐿𝑥𝑥 + 3𝑈𝑈𝑥𝑥 )
6

 (10) 

 
3.3 Enhanced CRITIC Method 

 
Determining the weight of each evaluation indicator is central to multi-criteria comprehensive evaluation. The 

accuracy and objectivity of these weights critically influence the credibility of low-carbon performance 
assessments for industrial parks. The entropy weight method determines weights based on indicator variability, is 
free from subjective influence, and involves a straightforward computational process. However, for low-carbon 
assessment of industrial parks, cost-based indicators exhibit both variability and certain intercorrelations. Relying 
solely on the entropy method fails to adequately capture inter-indicator correlations. Therefore, this study 
integrates the CRITIC and entropy methods to establish an improved CRITIC-entropy weight fing approach. This 
combined method enables a more scientific and comprehensive evaluation of low-carbon performance in industrial 
parks. 

Assume there are 𝐢𝐢 samples and 𝐣𝐣 indicators, forming an evaluation matrix 𝐗𝐗: 
 

X = �

x11 x12 ⋯ x1j
x21 x22 ⋯ x2j
⋮ ⋮ ⋯ ⋮

xi1 xi2 ⋯ xij

� (11) 

 
Standardize the indicators using Eq. (12) to obtain the normalized matrix 𝐗𝐗′ = [𝐢𝐢𝐢𝐢′𝐱𝐱]. 

 

xij =

⎩
⎪
⎨

⎪
⎧ xij − minxj

maxxj − minyxj
Positive indicator

maxxj − xij
maxxj − minxj

Reverse indicator
 (12) 

 
Calculate the correlation coefficients between evaluation indicators using the Pearson product-moment 
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correlation coefficient, resulting in the correlation matrix: 
 

𝑅𝑅 = �𝑟𝑟𝑝𝑝𝑝𝑝�𝑛𝑛×𝑛𝑛
= �

𝑟𝑟11 𝑟𝑟12 ⋯ 𝑟𝑟1𝑛𝑛
𝑟𝑟21 𝑟𝑟22 ⋯ 𝑟𝑟2𝑛𝑛
⋮ ⋮ ⋯ ⋮
𝑟𝑟𝑛𝑛1 𝑟𝑟𝑛𝑛2 ⋯ 𝑟𝑟𝑛𝑛𝑛𝑛

� (13) 

 

𝑟𝑟𝑝𝑝𝑝𝑝 =
� �𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥̅𝑥𝑝𝑝��𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥̅𝑥𝑞𝑞�

𝑛𝑛
𝑖𝑖=1

�� (𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥̅𝑥𝑝𝑝)𝑛𝑛
𝑖𝑖=1 ∙ �� (𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥̅𝑥𝑞𝑞)𝑛𝑛

𝑖𝑖=1

 (14) 

 
where, 𝑥̅𝑥𝑝𝑝 and 𝑥̅𝑥𝑞𝑞  are the average values of the normalized 𝑝𝑝-𝑡𝑡ℎ and 𝑞𝑞-𝑡𝑡ℎ indicators, respectively; 𝑥𝑥𝑘𝑘𝑘𝑘 and 
𝑥𝑥𝑘𝑘𝑘𝑘   are the normalized values of the 𝑝𝑝 -𝑡𝑡ℎ  and 𝑞𝑞 -𝑡𝑡ℎ  indicators for the 𝑘𝑘 -𝑡𝑡ℎ  industrial park. In general, the 
closer 𝑟𝑟𝑝𝑝𝑝𝑝  𝑡𝑡𝑡𝑡 1 the stronger the correlation between the indicators. 

Compute the information content 𝑇𝑇𝑗𝑗 contained in the cost-based indicators: 
 

𝑇𝑇𝑗𝑗 = 𝑢𝑢𝑗𝑗��1 − |𝑟𝑟𝑝𝑝𝑝𝑝|�
𝑛𝑛

𝑖𝑖=1

 (15) 

 
where, 𝑢𝑢𝑗𝑗  is the standard deviation of the 𝑗𝑗 − 𝑡𝑡ℎ cost-based indicator, and 𝑟𝑟𝑝𝑝𝑝𝑝  is the correlation coefficient 
between the 𝑝𝑝 − 𝑡𝑡ℎ and the 𝑝𝑝 − 𝑡𝑡ℎ cost-based indicators. 

Calculate the entropy value 𝑠𝑠𝑗𝑗 of the evaluation indicators: 
 

𝑠𝑠𝑗𝑗 = −
� 𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙 𝑥𝑥𝑖𝑖𝑖𝑖

𝑚𝑚
𝑖𝑖=1
𝑙𝑙𝑙𝑙𝑙𝑙

 (16) 

 
The final improved CRITIC-entropy combined weight 𝑊𝑊𝑗𝑗 is obtained as: 

 

𝑊𝑊𝑗𝑗 =
1 − 𝑠𝑠𝑗𝑗 + 𝑇𝑇𝑗𝑗

� �1 − 𝑠𝑠𝑗𝑗 + 𝑇𝑇𝑗𝑗�
𝑛𝑛
𝑗𝑗=1

 (17) 

 
3.4 Combined Weighting Based on Minimum Deviation Method 

 
Let the subjective weight derived from interval fuzzy sets be denoted as 𝑤𝑤1 and the objective weight from the 

improved CRITIC method as 𝑤𝑤2. The combined weight ω is calculated as:  
 

𝑤𝑤 = 𝛼𝛼∗𝑤𝑤1 + 𝛽𝛽∗𝑤𝑤2 (18) 
 

where, the coefficients α and β satisfy the following constrained optimization problem: 
 

�
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼,𝛽𝛽) = ���(𝛼𝛼𝑤𝑤1 + 𝛽𝛽𝑤𝑤2)

𝑛𝑛

𝑘𝑘=1

�
𝑚𝑚

𝑙𝑙=1
𝑠𝑠. 𝑡𝑡.𝛼𝛼2 + 𝛽𝛽2 = 1

 (19) 

 
Using the Lagrange multiplier method under extreme value conditions, the coefficients α and β are computed 

as: 
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⎩
⎪⎪
⎨

⎪⎪
⎧𝛼𝛼 =

� ∑ 𝑤𝑤1𝑏𝑏𝑙𝑙𝑙𝑙𝑛𝑛
𝑘𝑘=1

𝑚𝑚
𝑙𝑙=1

�(� ∑ 𝑤𝑤1𝑏𝑏𝑙𝑙𝑙𝑙𝑛𝑛
𝑘𝑘=1

𝑚𝑚
𝑙𝑙=1 )2 + (� ∑ 𝑤𝑤2𝑏𝑏𝑙𝑙𝑙𝑙𝑛𝑛

𝑘𝑘=1
𝑚𝑚
𝑙𝑙=1 )2

𝛽𝛽 =
� ∑ 𝑤𝑤2𝑏𝑏1𝑘𝑘𝑛𝑛

𝑘𝑘=1
𝑚𝑚
1=1

�(� ∑ 𝑤𝑤1𝑏𝑏𝑙𝑙𝑙𝑙𝑛𝑛
𝑘𝑘=1

𝑚𝑚
𝑙𝑙=1 )2 + (� ∑ 𝑤𝑤2𝑏𝑏𝑙𝑙𝑙𝑙𝑛𝑛

𝑘𝑘=1
𝑚𝑚
𝑙𝑙=1 )2

 (20) 

 
Finally, α and β are normalized to obtain α*and β* 

 

�𝛼𝛼
∗ = 𝛼𝛼/(𝛼𝛼 + 𝛽𝛽)

𝛽𝛽∗ = 𝛽𝛽/(𝛼𝛼 + 𝛽𝛽) (21) 

 
3.5 Improved Mater -Element Extension Model  
 

Matter-element extension theory provides a theoretical foundation for handling uncertain and fuzzy information. 
By constructing matter-element models, this approach can accurately describe the key characteristics of industrial 
parks. Meanwhile, the calculation of correlation degrees quantifies how well indicator values align with different 
performance levels. This theoretical approach has been widely adopted in the fields of multi-criteria decision-
making and comprehensive evaluation. 

(1) Definition of Classical Domain 
For the 21 secondary indicators, four zero-carbon development levels are defined based on international 

standards, policy documents, and academic research, as shown in Table 1, Table 4 and Appendix. 
 

Table 4. Evaluation index system for carbon stage in the park 
 

Dimension Secondary 
Indicators 

Net-zero 
Carbonization

（Ⅰ） 

Near-zero 
Carbonization

（Ⅱ） 

Low zero 
Carbonization

（Ⅲ） 

High 
Carbonization

（Ⅳ） 
Energy structure 
and efficiency 

C1 [50%,70%) [30%,50%) [15%,30%) [0,15%) 
C2 [90%,100%) [50%,90%) [15%, 50%) [0%,15%) 
C3 [0.8,1) [0.5,0.8) [0.2,0.5) [0, 0.2) 
C4 [90%,100%) [80%,90%) [60%,80%) [50,60%) 
C5 [90,100) [75,90) [60,75) [50,60) 

Carbon 
management and 

emission reduction 

C6 [6%,7.5%) [4.5%,6%) [3.5%,4.5%) [0%,3.5%) 
C7 [70%,100%) [50%,70%) [30%,50%) [0,30%) 
C8 [80%,100%) [60%,80%) [40%,60%) [20,40%) 
C9 [80%,100%) (60%,70%) (30%,60%) [0%,30%) 
C10 [0，0.35) [0.35,0.5) [0.5,0.7) [0.7,1) 
C11 [90%,100%) [80%,90%) [70%,80%) [60,70%) 

Circular economy 
and resource 

utilization 

C12 [90%,100%) [85%,90%) [50%,85%) [0,50%) 
C13 [80%,100%) [70%,80%) [0.6%,70%) [50,60%) 
C14 [90%,100%) [65%,90%) [50%,65%) [35%,50%) 
C15 [40%,100%) [35%,40%) [30%,35%) [0,30%) 
C16 [1,1.5) [0.6,1) [0.3,0.6) [0,0.3) 

Governance and 
innovation 
capabilities 

C17 [7%，10%) [0.06,0.07) [5%，6%) [4%,5%) 
C18 [3,4) [3,2) [2,1) [0,1) 
C19 [90%,100%) [70%,90%) [50%,70%) [30,50%) 
C20 [80%,100%) [50%,80%) [15%,50%) [0,15%) 
C21 [90%,100%) [70%,90%) [30%,70%) [0,30%) 

 
The classical domain matter-element matrix is constructed as follows: 
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𝑅𝑅𝑗𝑗 = �𝑁𝑁𝑗𝑗 ,𝐸𝐸𝑖𝑖 ,𝑉𝑉𝑖𝑖𝑖𝑖� =

⎣
⎢
⎢
⎢
⎡
𝑁𝑁𝑗𝑗 𝐸𝐸1 𝑣𝑣1𝑗𝑗

𝐸𝐸2 𝑣𝑣2𝑗𝑗
⋮ ⋮
𝐸𝐸𝑛𝑛 𝑣𝑣𝑖𝑖𝑖𝑖 ⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡𝑁𝑁𝑗𝑗 𝐸𝐸1 [𝑎𝑎1𝑗𝑗 𝑏𝑏1𝑗𝑗]

𝐸𝐸2 [𝑎𝑎2𝑗𝑗 𝑏𝑏2𝑗𝑗]
⋮ ⋮
𝐸𝐸𝑛𝑛 [𝑎𝑎𝑛𝑛𝑛𝑛 𝑏𝑏𝑛𝑛𝑛𝑛]⎦

⎥
⎥
⎥
⎤
 (22) 

 
where, 𝑁𝑁𝑗𝑗  denotes the 𝑗𝑗 - 𝑡𝑡ℎ  evaluation level .𝐸𝐸1,𝐸𝐸2,⋯ ,𝐸𝐸𝑛𝑛  are the evaluation indicators 𝑣𝑣1𝑗𝑗 , 𝑣𝑣2𝑗𝑗 ,⋯ , 𝑣𝑣𝑛𝑛𝑛𝑛 
represent the dimensionless value intervals of the evaluation indicators for the 𝑗𝑗-𝑡𝑡ℎ level; and [𝑎𝑎𝑛𝑛𝑛𝑛 , 𝑏𝑏𝑛𝑛𝑛𝑛] is the 
threshold interval of indicator 𝐸𝐸𝑛𝑛 under level 𝑁𝑁𝑗𝑗. 

(2) Definition of Section Domain 
The minimum and maximum values of each indicator across all evaluation levels define the section domain 

matter-element matrix, as shown in Eq. (23): 
 

𝑅𝑅𝑝𝑝 = �𝑁𝑁𝑝𝑝,𝐸𝐸𝑛𝑛 ,𝑉𝑉𝑝𝑝� =

⎣
⎢
⎢
⎢
⎡
𝑁𝑁𝑝𝑝 𝐸𝐸1 𝑣𝑣𝑝𝑝1

𝐸𝐸2 𝑣𝑣𝑝𝑝2
⋮ ⋮
𝐸𝐸𝑛𝑛 𝑣𝑣𝑝𝑝𝑝𝑝⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡𝑁𝑁𝑗𝑗 𝐸𝐸1 [𝑎𝑎𝑝𝑝1 𝑏𝑏𝑝𝑝1]

𝐸𝐸2 [𝑎𝑎𝑝𝑝2 𝑏𝑏𝑝𝑝2]
⋮ ⋮
𝐸𝐸𝑛𝑛 [𝑎𝑎𝑝𝑝𝑝𝑝 𝑏𝑏𝑝𝑝𝑝𝑝]⎦

⎥
⎥
⎥
⎤
 (23) 

 
Here, 𝑁𝑁𝑝𝑝  represents all evaluation levels, 𝐸𝐸1,𝐸𝐸2,⋯ ,𝐸𝐸𝑛𝑛  are the evaluation indicators, 𝑣𝑣𝑝𝑝𝑝𝑝  is the 

dimensionless value range of the evaluation indicators; and [𝑎𝑎𝑝𝑝𝑝𝑝 𝑏𝑏𝑝𝑝𝑝𝑝]denotes the value interval. 
(3) Determining the Matter-Element to be Evaluated 

For a set of m indicators evaluating the zero-carbon level of an industrial park, the matter-element for the t-th 
indicator is given by： 

 

𝑅𝑅𝑡𝑡 = (𝑁𝑁𝑡𝑡 ,𝐸𝐸𝑛𝑛 ,𝑉𝑉𝑡𝑡) = �

𝑁𝑁𝑡𝑡 𝐸𝐸1 𝑣𝑣𝑡𝑡1
𝐸𝐸2 𝑣𝑣𝑡𝑡2
⋮ ⋮
𝐸𝐸𝑛𝑛 𝑣𝑣𝑡𝑡𝑡𝑡

� (24) 

 
where, 𝑅𝑅𝑡𝑡(t=1, 2, ⋯ m) is the matter-element to be evaluated, and 𝑉𝑉𝑡𝑡 represents the actual data of the zero-carbon 
indicators. 

(4) Data Normalization 
To eliminate dimensional differences, 𝑅𝑅𝑗𝑗 and 𝑅𝑅𝑡𝑡  are normalized using Eqs. (25)-(26): 

 

𝑗𝑗′𝑅𝑅 = �𝑁𝑁𝑗𝑗 ,𝐸𝐸𝑖𝑖 , 𝑖𝑖𝑖𝑖′𝑉𝑉� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑁𝑁𝑗𝑗 𝐸𝐸1 �

𝑎𝑎1𝑗𝑗
𝑎𝑎𝑝𝑝1

,
𝑏𝑏1𝑗𝑗
𝑏𝑏𝑝𝑝1

�

𝐸𝐸2 �
𝑎𝑎2𝑗𝑗
𝑎𝑎𝑝𝑝2

,
𝑏𝑏2𝑗𝑗
𝑏𝑏𝑝𝑝2

�

⋮ ⋮

𝐸𝐸𝑛𝑛 �
𝑎𝑎𝑛𝑛𝑛𝑛
𝑎𝑎𝑝𝑝𝑝𝑝

,
𝑏𝑏𝑛𝑛𝑛𝑛
𝑏𝑏𝑝𝑝𝑝𝑝

�
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (25) 

 

𝑡𝑡′𝑅𝑅 = (𝑁𝑁𝑡𝑡 ,𝐸𝐸𝑛𝑛 , 𝑡𝑡′𝑉𝑉) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑁𝑁𝑡𝑡 𝐸𝐸1

𝑣𝑣𝑡𝑡1
𝑏𝑏𝑝𝑝1

𝐸𝐸2
𝑣𝑣𝑡𝑡2
𝑏𝑏𝑝𝑝2

⋮ ⋮
𝐸𝐸𝑛𝑛

𝑣𝑣𝑡𝑡𝑡𝑡
𝑏𝑏𝑝𝑝𝑝𝑝⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (26) 

 

145



(5) Calculation of Indicator Correlation Degree 
The correlation degree 𝐻𝐻𝑠𝑠∗�𝑣𝑣𝑘𝑘𝑘𝑘�  between the actual value of each indicator and the classical domain is 

calculated as: 
 

𝐻𝐻𝑠𝑠∗�𝑣𝑣𝑘𝑘𝑘𝑘� = 1 −
1

𝑛𝑛(𝑛𝑛 + 1)�𝜌𝜌𝑗𝑗�𝑣𝑣𝑘𝑘𝑘𝑘�𝜔𝜔𝑗𝑗

𝑛𝑛

𝑗𝑗=1

 (27) 

 
Here, 𝜌𝜌�𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑖𝑖𝑖𝑖� denotes the distance between the matter-element and the classical domain, computed as: 
 

𝜌𝜌�𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖� = �𝑣𝑣𝑖𝑖 −
1
2
�𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑖𝑖�� −

1
2
�𝑏𝑏𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑖𝑖𝑖𝑖� 

𝜌𝜌(𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖) = |𝑣𝑣𝑖𝑖 −
1
2

(𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑖𝑖)| −
1
2

(𝑏𝑏𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑖𝑖𝑖𝑖) 
(28) 

 
In the equations, 𝜌𝜌(𝑉𝑉𝑖𝑖 ,𝑉𝑉𝑖𝑖𝑖𝑖) represents the distance between 𝑉𝑉𝑖𝑖 and the interval 𝑉𝑉𝑖𝑖𝑖𝑖 ,and 𝜌𝜌�𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖� represents 

the distance between 𝑉𝑉𝑖𝑖 and the interval 𝑉𝑉𝑖𝑖𝑖𝑖. 
（6）Determining the Evaluation Level 

 

𝐻𝐻�𝑆𝑆∗�𝑣𝑣𝑘𝑘𝑘𝑘� =
𝐻𝐻𝑆𝑆∗(𝑣𝑣𝑘𝑘𝑘𝑘) −

5
𝑠𝑠𝑠𝑠𝑠𝑠1 �𝐻𝐻𝑆𝑆∗(𝑣𝑣𝑘𝑘𝑘𝑘)�

4
𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠∗ = 1

{𝐻𝐻𝑆𝑆∗(𝑣𝑣𝑘𝑘𝑘𝑘)} −
4
𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠∗ = 1

{𝐻𝐻𝑆𝑆∗(𝑣𝑣𝑘𝑘𝑘𝑘)}
 (29) 

 

𝑠𝑠∗∗ =
� 𝑠𝑠∗𝐻𝐻�𝑆𝑆∗�𝑣𝑣𝑘𝑘𝑘𝑘�

5
𝑠𝑠=1

� 𝐻𝐻�𝑆𝑆∗�𝑣𝑣𝑘𝑘𝑘𝑘�
5
𝑠𝑠=1

 (30) 

 
In Eq. (30), 𝑠𝑠∗∗ is the variable characteristic value of the matter-element to be evaluated. It determines the 

degree of deviation toward adjacent levels and enables the ranking of objects within the same evaluation level. 
 
3.6 Limitations of Model Application 

 
Although the comprehensive evaluation framework proposed in this study offers theoretical advantages, its 

practical application requires careful consideration of specific contexts. However, it must be acknowledged that 
the model’s effectiveness is highly dependent on the completeness, accuracy, and consistency of the underlying 
data. To enhance operational practicality, a tiered application strategy is proposed: (1) For parks with 
comprehensive data, the full model can be applied to obtain precise diagnostic results. (2) For parks with partially 
missing data, a fuzzy comprehensive evaluation method can be employed to estimate the missing values before 
model application. Specifically, interval-valued triangular fuzzy numbers can handle quantitative indicators, 
whereas expert scoring or analogy with similar parks is suitable for qualitative indicators. (3) For parks with a 
critically inadequate data foundation, the priority should be to monitor core indicators (e.g., C1, C6, C12, C17) 
and conduct a qualitative stage assessment. 

 
4 Results and Discussion 

 
Based on geographical distribution and socio-economic development levels, this study selected five industrial 

parks in the Yangtze River Delta region as research subjects. Due to the large number of parks in the region, 
conducting a comprehensive analysis of all parks would be resource- and time-prohibitive. Therefore, following 
the Yangtze River Delta Urban Agglomeration Development Plan and using publicly available geographic 
information platforms, we selected five representative parks: one industrial park each in Suzhou, Shanghai, and 
Ningbo, and one science park each in Wuxi and Hefei. The evaluation results from these representative parks will 
provide insights into the overall regional situation. 

 
4.1 Indicator Weight Calculation 
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First, a panel of three experts was assembled to assess and select the most appropriate indicators for evaluating 

the low-carbon performance of industrial parks. The relative weight of each expert was determined based on three 
criteria: (1) experience and knowledge in low-carbon development, (2) professional and educational background 
in relevant fields, and (3) organizational position. The relative weights of the three experts are provided as 
linguistic terms in Table 5. These linguistic terms were then converted into intuitionistic fuzzy numbers. Expert 
weights were derived from these conversions. 

 
Table 5. The importance and weight of experts 

 
Expert DM1 DM2 DM3 

Language term weight Important (0.318) Very important (0.363) Important (0.318) 
 

Table 6. The index weights are transformed into interval triangular fuzzy numbers and weighted averages 
 

Indicators Expert Weighted Average 
DM1 DM2 DM3 

C1 [(0.85,0.95), 1, (1,1)] [(0.45,0.55), 0.7, (0.8,0.9  [(0.85,0.95), 1, (1,1)] [(0.704,0.804), 0.89, (0.926,0.98  
C2 [(0.55,0.75), 0.9, (0.95,1)  [(0.45,0.55), 0.7, (0.8,0.9  [(0.55,0.75), 0.9, (0.95,1)] [(0.513,0.677), 0.827, (0.895,0.9  
C3 [(0.45,0.55), 0.7, (0.8,0.9  [(0.25,0.35), 0.5, (0.65,0.  [(0.55,0.75), 0.9, (0.95,1)] [(0.409,0.540), 0.69, (0.792,0.89  
C4 [(0.55,0.75), 0.9, (0.95,1)  [(0.45,0.55), 0.7, (0.8,0.9  [(0.45,0.55), 0.7, (0.8,0.95)] [(0.481,0.613), 0.763, (0.847,0.9  
C5 [(0.85,0.95), 1, (1,1)] [(0.45,0.55), 0.7, (0.8,0.9  [(0.55,0.75), 0.9, (0.95,1)] [(0.609,0.740), 0.858, (0.911,0.9  
C6 [(0.55,0.75), 0.9, (0.95,1)  [(0.85,0.95), 1, (1,1)] [(0.85,0.95), 1, (1,1)] [(0.754,0.885), 0.967, (0.983,0.9  
C7 [(0.25,0.35), 0.5, (0.65,0.  [(0,0.15), 0.3, (0.45,0.55)  [(0.85,0.95), 1, (1,1)] [(0.35,0.468), 0.586, (0.688,0.75  
C8 [(0.45,0.55), 0.7, (0.8,0.9  [(0.45,0.55), 0.7, (0.8,0.9  [(0.45,0.55), 0.7, (0.8,0.95)] [(0.450,0.549), 0.699, (0.799,0.9  
C9 [(0.45,0.55), 0.7, (0.8,0.9  [(0.85,0.95), 1, (1,1)] [(0.45,0.55), 0.7, (0.8,0.95)] [(0.595,0.695)0.808, (0.872,0.96  
C10 [(0,0.15), 0.3, (0.45,0.55)  [(0.25,0.35), 0.5, (0.65,0.  [(0.45,0.55), 0.7, (0.8,0.95)] [(0.234,0.350), 0.5, (0.633,0.749  
C11 [(0.85,0.95), 1, (1,1)] [(0.25,0.35), 0.5, (0.65,0.  [(0.45,0.55), 0.7, (0.8,0.95)] [(0.504,0.604), 0.722, (0.808,0.9  
C12 [(0.55,0.75), 0.9, (0.95,1)  [(0.45,0.55), 0.7, (0.8,0.9  [(0.85,0.95), 1, (1,1)] [(0.609,0.740), 0.858, (0.911,0.9  
C13 [(0.45,0.55), 0.7, (0.8,0.9  [(0.45,0.55), 0.7, (0.8,0.9  [(0.45,0.55), 0.7, (0.8,0.95)] [(0.450,0.549), 0.699, (0.799,0.9  
C14 [(0.45,0.55), 0.7, (0.8,0.9  [(0.25,0.35), 0.5, (0.65,0.  [(0.45,0.55), 0.7, (0.8,0.95)] [(0.377,0.477), 0.627, (0.745,0.8  
C15 [(0.25,0.35), 0.5, (0.65,0.  [(0.45,0.55), 0.7, (0.8,0.9  [(0.85,0.95), 1, (1,1)] [(0.513,0.613), 0.731, (0.815,0.9  
C16 [(0.25,0.35), 0.5, (0.65,0.  [(0.45,0.55), 0.7, (0.8,0.9  [(0.45,0.55), 0.7, (0.8,0.95)] [(0.386,0.486), 0.636, (0.752,0.8  
C17 [(0.85,0.95), 1, (1,1)] [(0.85,0.95), 1, (1,1)] [(0.85,0.95), 1, (1,1)] [(0.849,0.949), 0.999, (0.999,0.9  
C18 [(0.45,0.55), 0.7, (0.8,0.9  [(0.85,0.95), 1, (1,1)] [(0.45,0.55), 0.7, (0.8,0.95)] [(0.595,0.695), 0.808, (0.872, .96  
C19 [(0.85,0.95), 1, (1,1)] [(0.45,0.55), 0.7, (0.8,0.9  [(0.85,0.95), 1, (1,1)] [(0.704,0.84), 0.890, (0.926,0.98  
C20 [(0.45,0.55), 0.7, (0.8,0.9  [(0.45,0.55), 0.7, (0.8,0.9  [(0.45,0.55), 0.7, (0.8,0.95)] [(0.450,0.549), 0.699, (0.799,0.9  
C21 [(0.85,0.95), 1, (1,1)] [(0.45,0.55), 0.7, (0.8,0.9  [(0.45,0.55), 0.7, (0.8,0.95)] [(0.577,0.677), 0.795, (0.863,0.9  

 
The subjective weights of the indicators were calculated according to the procedures described in Sections 3.1 

and 3.2. The expert weights, determined using intuitionistic fuzzy sets, were applied to transform the linguistic 
evaluations of indicator importance into interval-valued triangular fuzzy numbers. The resulting data are 
summarized in Table 6. 

The subjective weights were obtained by defuzzifying the triangular fuzzy weighted averages of the indicators. 
The objective weights were determined using the improved CRITIC method described in Section 3.3. Using the 
maximum-minimum deviation method, the optimal combination coefficients for the subjective and objective 
weighting methods were determined as 0.533 and 0.467, respectively. This determination was based on the 
principles of maximizing deviation from the ideal solution and minimizing the worst-case deviation. These 
coefficients were then substituted into Eqs. (20)-(21) to calculate the combined weights, as shown in Table 7. 

 
Table 7. The weight results of the secondary indicators in three cases 

 
Target Layer Secondary 

Indicators 
Triangular Interval Fuzzy 

Function 
Improve 
CRITIC 

Combined 
Weight 

The carbon phase level 
of the park 

C1 0.055 0.028 0.041 
C2 0.050 0.040 0.045 
C3 0.043 0.043 0.043 
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C4 0.047 0.036 0.041 
C5 0.053 0.063 0.058 
C6 0.059 0.039 0.048 
C7 0.037 0.053 0.046 
C8 0.044 0.062 0.054 
C9 0.050 0.045 0.047 

C10 0.032 0.040 0.037 
C11 0.046 0.054 0.050 
C12 0.053 0.044 0.048 
C13 0.044 0.055 0.050 
C14 0.040 0.067 0.054 
C15 0.046 0.049 0.048 
C16 0.041 0.081 0.062 
C17 0.061 0.065 0.063 
C18 0.050 0.054 0.052 
C19 0.055 0.044 0.049 
C20 0.044 0.016 0.029 
C21 0.050 0.023 0.035 

 
As shown in Table 7, the improved CRITIC method captures information through the comparative strength and 

conflict among indicators. This approach highlights the influence of highly variable and strongly correlated 
indicators—such as carbon emission intensity and energy structure—on the parks’ low-carbon performance. 
Indicators such as the smartness level of energy management systems, comprehensive utilization rate of industrial 
solid waste, and value-added output per unit of construction land typically receive higher weights. This tendency 
may bias the evaluation results toward the high-carbon end of the spectrum. Therefore, weighting based on 
triangular fuzzy functions within the intuitionistic fuzzy set framework was employed. This method incorporates 
experts' degrees of hesitation and membership regarding indicator importance by using triangular fuzzy numbers 
to represent semantic judgments. This approach makes the weights more representative of the parks' actual low-
carbon operational characteristics. The combined weights fall between those derived from the individual methods, 
indicating that the weighting scheme has been moderated through integration. This integration mitigates biases 
inherent in any single method and enhances the objectivity and robustness of the low-carbon performance 
evaluation. 

 
4.2 Comprehensive Evaluation and Level Diagnosis 

 
Through field investigations and literature reviews, current values for each low-carbon indicator were collected 

and calculated. By integrating the evaluation criteria with Eq. (22), Eqs. (25)-(26), the normalized matter-element 
matrix for the classical domain of the evaluated subjects was constructed as follows: 

 

𝑁𝑁⬚
𝑅𝑅 = �

𝑁𝑁𝐴𝐴 𝐶𝐶1 0.28
𝐶𝐶2 0.15
⋮ ⋮
𝐶𝐶21 0.56

�𝑁𝑁⬚
𝑅𝑅 = �

𝑁𝑁𝐵𝐵 𝐶𝐶1 0.47
𝐶𝐶2 0.12
⋮ ⋮
𝐶𝐶21 0.64

�𝑁𝑁⬚
𝑅𝑅 = �

𝑁𝑁𝐶𝐶 𝐶𝐶1 0.68
𝐶𝐶2 0.28
⋮ ⋮
𝐶𝐶21 0.77

� (31) 

 

𝑁𝑁⬚
𝑅𝑅 = �

𝑁𝑁𝐴𝐴 𝐶𝐶1 0.72
𝐶𝐶2 0.40
⋮ ⋮
𝐶𝐶21 0.80

�𝑁𝑁⬚
𝑅𝑅 = �

𝑁𝑁𝐴𝐴 𝐶𝐶1 0.58
𝐶𝐶2 0.35
⋮ ⋮
𝐶𝐶21 0.60

� (32) 

 
The correlation coefficients for each indicator across all grades were calculated using the methodology described 

in Section 3.5. The correlation coefficient values for each indicator and the comprehensive evaluation results for 
the five parks were determined based on the maximum correlation principle, as shown in Figure 3. 
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(a)   (b) 

(c)    (d) 

(e) 

Figure 3. The correlation degree and evaluation grades of the index layers of each park 

As can be seen from Figure 3, the index correlation graph of the five parks clearly reveals the imbalance in their 
internal development, which directly supports the core finding of this paper regarding the bottleneck effect. The 
proportions of indicators rated at Level III or above were 71.43%, 80.95%, 19.05%, 90.48%, and 95.24% for Parks 
A through E, respectively. Parks A, B, D, and E exhibited relatively weaker overall indicator performance, whereas 
Park C demonstrated consistently stronger performance across most indicators. Further analysis revealed that 
although Parks E and D met Level I standards for key indicators (e.g., C1, C8, C19), they lacked clearly defined 
and systematic net-zero carbon pathways. Parks B and A were in transition from high-carbon to low-carbon 
development. Park B showed potential for improvement in process efficiency indicators such as C4 and C15. Park 
A demonstrated strong performance in end-of-pipe emission control indicators (e.g., C7, C10), indicating a current 
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focus on downstream measures rather than process optimization and systemic coordination. Park C maintained 
most indicators at Level III or above, with particularly strong performance in foundational metrics such as C3 and 
C21. This indicates advantages not only in distributed energy technologies but also in management systems, 
transparency, and public engagement. These visualized data strongly demonstrate that the zero-carbon 
transformation of the park is not a simultaneous improvement of all indicators, but rather a process of overcoming 
shortcomings in key dimensions. 

 
Table 8. The relevance of each park for each level 

 

Park 
Net-Zero 

Carbonization 
Standard 

Near-Zero 
Carbon 

Standard 

Low-Carbon 
Standards 

High 
Carbonization 

Standard 
A 0.804 0.971 1.002 0.836 
B 0.778 0.943 0.987 0.863 
C 0.925 0.943 0.847 0.708 
D 0.676 0.826 0.903 0.937 
E 0.642 0.793 0.896 0.931 

 
Based on the comprehensive correlation scores for each level in Table 8, the development levels of the parks 

were calculated using Eqs. (29)-(30) and ranked by their 𝑠𝑠∗∗ values, as shown in Table 9. For example, Park E's 
𝑠𝑠∗∗ value of 3.199 indicates a relatively low level of low-carbon development, while Park D’s 𝑠𝑠∗∗ value of 3.174 
suggests above-average carbon emissions, albeit lower than Park E's. 

 
Table 9. Comprehensive correlation and ranking of each park 

 
Park 𝑺𝑺′ Evaluation Results 𝒔𝒔∗∗ Rank 

A 1.002 Low-Carbon Park 2.660 2 
B 0.987 Near-Zero Carbon Park 2.824 3 
C 0.943 Near-Zero Carbon Park 1.868 1 
D 0.937 High-Carbon Park 3.174 4 
E 0.931 High-Carbon Park 3.199 5 

 
From a dimensional perspective, all parks demonstrated relatively strong performance in governance and 

innovation capabilities, suggesting established policy support and social consensus. However, significant 
disparities emerged in the dimensions of carbon management and emission reduction, as well as circular economy 
and resource utilization. This finding suggests that the current low-carbon transformation remains primarily 
technology-driven, with market mechanisms and resource circulation coordination not yet fully leveraged. 
 
4.3 Sensitivity Analysis 

 
To ensure the reliability of the conclusions derived from the combined weights determined by the maximum-

minimum deviation method, a sensitivity analysis was conducted. This analysis tested the robustness of the 
evaluation results against variations in the subjective-objective weight allocation ratio. A sensitivity coefficient λ 
was introduced, varying within the range [0,1] with an increment of ∆𝜆𝜆 = 0.2, to generate different combined 
weighting schemes. The comprehensive scores were recalculated for each scheme, yielding new ranking sequences 
as shown in Table 10 and Figure 4. 

The sensitivity analysis results presented in Figure 4 provide critical evidence for the robustness of the 
evaluation conclusions in this study. The results demonstrate that when λ varies across [0,1], simulating scenarios 
from complete reliance on objective data to complete reliance on expert judgment—the comprehensive scores 
exhibit minor fluctuations. However, the final ranking order (C > A > B > D > E) remains unchanged. This 
indicates that the evaluation results are robust and insensitive to the choice of weight allocation strategy. This 
finding is significant because it demonstrates that the disparities in park development levels identified in this study 
originate not from the arbitrary choice of subjective weighting schemes, but from objective, structural performance 
gaps across multiple indicators. 

 
Table 10. The comprehensive correlation degree of the combined weights under different interval coefficients 

 
Interval [0,1] [0.2,0.8] [0.4,0.6] [0.6,0.4] [0.8,0.2] [1,0] 

A 2.562 2.567  2.572  2.578  2.583  2.589  
B 2.883  2.879  2.874  2.869  2.864  2.858  
C 1.822  1.815  1.809  1.804  1.798  1.793  
D 3.251  3.252  3.253  3.254  3.255  3.256  
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E 3.255 3.259 3.262 3.266 3.270 3.274 

Figure 4. Sort after the weight interval changes 
The robustness of these results fundamentally originates from the inherent structural disparities in net-zero 

carbon development levels among the parks. As previously discussed, Parks D and E have achieved Level III or 
higher for over 90% of their indicators, establishing a comprehensive leading advantage. Conversely, Park C 
remains at Level III or below for over 80% of its indicators, indicating systemic developmental lag. 

This fundamental heterogeneity implies that the excellence of high-performing parks derives from synergistic 
improvements across multiple indicators, not from outstanding performance in isolated metrics. Similarly, the 
shortcomings of lagging parks manifest as multidimensional, concurrent challenges. Consequently, weight 
reallocation can only induce minor fluctuations in the internal score structures of individual parks; it cannot 
overturn their inherent hierarchical ranking determined by comprehensive performance. The reliability of this 
study's evaluation conclusions is rooted not in the specific weighting scheme, but in the objectively existing, 
fundamental developmental gradient among the research subjects. 

4.4 Comparative Analysis 

To verify the robustness of this study's conclusions at the model framework level, the GRA-KL-TOPSIS 
integrated model was selected as a benchmark for comparison. This choice is scientifically justified by the 
fundamental theoretical differences between the models. The matter-element extension model, based on extension 
set theory, achieves grade diagnosis through correlation functions and represents an absolute evaluation paradigm. 
In contrast, the GRA-KL-TOPSIS model integrates grey relational analysis with the ideal solution method, 
performing rankings by measuring relative closeness to the ideal solution, and represents a relative evaluation 
paradigm. The specific algorithmic steps of the GRA-KL-TOPSIS model are as follows: 

Step 1: Calculate the weighted normalized matrix Z.by multiplying the normalized matrix P by the weight vector 
𝜔𝜔. Then, determine the positive ideal solution (𝑍𝑍+) and the negative ideal solution (𝑍𝑍−) from the alternatives. 

𝑍𝑍 = (𝑧𝑧𝑖𝑖𝑖𝑖)𝑡𝑡𝑡𝑡𝑡𝑡 = (𝑤𝑤𝑘𝑘𝑃𝑃𝑙𝑙𝑙𝑙)𝑡𝑡𝑡𝑡𝑡𝑡 (33) 

(34) 

𝑗𝑗−𝑧𝑧 = �𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖
𝑧𝑧𝑖𝑖𝑖𝑖 �𝑧𝑧𝑖𝑖𝑖𝑖 ∈ 𝑍𝑍+,𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖
𝑧𝑧𝑖𝑖𝑖𝑖� 𝑧𝑧𝑖𝑖𝑖𝑖 ∈ 𝑍𝑍−� = {1−𝑧𝑧 , 2−𝑧𝑧 … 𝑖𝑖−𝑧𝑧 } (35) 

where, 𝑗𝑗+𝑍𝑍 denotes that a larger value is better for the j-th indicator (benefit-type), and 𝑗𝑗−𝑍𝑍 denotes that a smaller 
value is better (cost-type). 

Step 2: Calculate the grey correlation coefficients 𝑖𝑖𝑖𝑖+
𝜁𝜁and 𝑖𝑖𝑖𝑖−𝜁𝜁  between the value of the 𝑗𝑗 -th indicator for the 𝑖𝑖-

th alternative and 𝑗𝑗+𝑍𝑍 or 𝑗𝑗−𝑍𝑍, respectively. 

𝑗𝑗+𝑧𝑧 = �𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖
𝑧𝑧𝑖𝑖𝑖𝑖 �𝑧𝑧𝑖𝑖𝑖𝑖 ∈ 𝑍𝑍+,𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖
𝑧𝑧𝑖𝑖𝑖𝑖 � 𝑧𝑧𝑖𝑖𝑖𝑖 ∈ 𝑍𝑍−� = {1+

𝑧𝑧 , 2+
𝑧𝑧 … 𝑖𝑖+𝑧𝑧 } 
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𝑖𝑖𝑖𝑖+
𝜁𝜁 =

𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗
�𝑧𝑧𝑖𝑖𝑖𝑖 − 𝑗𝑗+𝑧𝑧� + 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗
�𝑧𝑧𝑖𝑖𝑖𝑖 − 𝑗𝑗+𝑧𝑧�

�𝑧𝑧𝑖𝑖𝑖𝑖 − 𝑗𝑗+𝑧𝑧� + 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗
�𝑧𝑧𝑖𝑖𝑖𝑖 − 𝑗𝑗+𝑧𝑧�

(36) 

𝑖𝑖𝑖𝑖−𝜁𝜁 =
𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗
�𝑧𝑧𝑖𝑖𝑖𝑖 − 𝑗𝑗−𝑍𝑍� + 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗
�𝑧𝑧𝑖𝑖𝑖𝑖 − 𝑗𝑗−𝑍𝑍�

�𝑧𝑧𝑖𝑖𝑖𝑖 − 𝑗𝑗−𝑍𝑍� + 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖
𝑚𝑚𝑚𝑚𝑥𝑥𝑗𝑗�𝑧𝑧𝑗𝑗 − 𝑗𝑗−𝑍𝑍�

(37) 

where, ρ is the distinguishing coefficient, set to 0.5 based on research experience. 
Step 3: Calculate the grey correlation degrees 𝑖𝑖+

𝛾𝛾  and 𝑖𝑖−𝛾𝛾  for the i-th alternative with respect to 𝑗𝑗+𝑧𝑧  and 𝑗𝑗−𝑧𝑧 . 

𝑖𝑖+
𝛾𝛾 = �𝑤𝑤𝑗𝑗𝑖𝑖𝑖𝑖+

𝜁𝜁
𝑛𝑛

𝑗𝑗=1

 (38) 

𝛾𝛾𝑖𝑖 = �𝑤𝑤𝑗𝑗𝑖𝑖𝑖𝑖−𝜉𝜉
𝑛𝑛

𝑗𝑗=1

 (39) 

Step 4: Calculate the Kullback - Leibler (KL) divergence 𝑖𝑖+𝑑𝑑 and 𝑖𝑖−𝑑𝑑 from the indicator values of the evaluated 
object to the positive and negative ideal solutions of matrix F. 

𝑖𝑖+𝑑𝑑 = ��𝑗𝑗+
𝑓𝑓 𝑙𝑙𝑙𝑙

𝑗𝑗+
𝑓𝑓

𝑓𝑓𝑖𝑖𝑖𝑖
+ �1 − 𝑗𝑗+

𝑓𝑓� 𝑙𝑙𝑙𝑙
1 − 𝑗𝑗+

𝑓𝑓

1 − 𝑓𝑓𝑖𝑖𝑖𝑖
�

𝑛𝑛

𝑗𝑗=1

 (40) 

𝑖𝑖−𝑑𝑑 = ��𝑗𝑗−𝑓𝑓 𝑙𝑙𝑙𝑙
𝑗𝑗−𝑓𝑓

𝑓𝑓𝑖𝑖𝑖𝑖
+ (1 − 𝑗𝑗−𝑓𝑓) 𝑙𝑙𝑙𝑙

1 − 𝑗𝑗−𝑓𝑓

1 − 𝑓𝑓𝑖𝑖𝑖𝑖
�

𝑛𝑛

𝑗𝑗=1

 (41) 

Step 5: Determine the comprehensive relative closeness 𝐶𝐶𝐶𝐶𝑖𝑖 for each evaluation target. 

𝐶𝐶𝑟𝑟𝑖𝑖 =
𝑖𝑖+𝑑𝑑

𝑖𝑖+𝑑𝑑 + 𝑖𝑖−𝑑𝑑
(42) 

The model comparison results presented in Figure 5 verify the reliability of this study from a methodological 
perspective and reveal the inherent value orientations of different modeling approaches. 

Although the matter-element extension model and the GRA-KL-TOPSIS model differ in their theoretical 
foundations—the former focuses on absolute grade evaluation, whereas the latter emphasizes relative ranking—
they exhibit a high degree of consistency in the overall ranking (Spearman’s 𝜌𝜌 = 0.8). This consistency cross-
validates the objectivity of the differences in the carbon development stages among the industrial parks. It is worth 
noting that slight differences exist in the rankings of Parks A and C between the two models. Specifically, the 
GRA-KL-TOPSIS model ranked Park A first due to its highest proximity to the ideal solution (0.5720). In contrast, 
the matter-element extension model ranked Park C first, based on its more balanced overall development and 
superior comprehensive score (1.868), as detailed in Table 11. Furthermore, except for Park E, the adjusted 
rankings of the other parks exhibit a fluctuating trend in the line chart in Figure 5. This observed volatility provides 
valuable insights. 
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Figure 5. Comparison of matter-element extension and TOPSIS evaluation results 

The TOPSIS model is more sensitive to exceptionally performing indicators, whereas the matter-element 
extension model places greater emphasis on the overall balance of the indicator system. This contrast highlights a 
key advantage of using the matter-element extension model for “diagnosis” over simple “ranking”: it can 
effectively identify parks that achieve high comprehensive scores yet retain critical weaknesses. This capability 
provides deeper insights for formulating targeted policies. Collectively, the results from multiple perspectives 
confirm that inherent disparities in the development levels of industrial parks are the dominant factor determining 
the evaluation conclusions. The choice of research methodology does not alter this fundamental conclusion but 
reveals its characteristics from different dimensions. 

Table 11. The comprehensive Posting progress and ranking under comparative analysis 

Park 𝒊𝒊+𝒅𝒅 𝒊𝒊−𝒅𝒅 𝑪𝑪𝒓𝒓𝒊𝒊 Rank 
A 0.1966 0.1471 0.5720 1 
B 0.1498 0.1981 0.4036 4 
C 0.2009 0.1568 0.5616 2 
D 0.2499 0.2128 0.5402 3 
E 0.2027 0.3032 0.4006 5 

The fundamental cause of these discrepancies is the uneven development of carbon management levels across 
industrial parks. The TOPSIS method tends to over-reward outstanding strengths, whereas the matter-element 
extension model over-penalizes weaknesses. The ultimate goal is to guide all parks toward a balanced, high-quality 
low-carbon development model that addresses all aspects, rather than pursuing excellence in any single metric. 

5. Conclusion

Accurately assessing the zero-carbon development stage of industrial parks is fundamental for formulating
effective emission reduction strategies. This study constructs a comprehensive evaluation model that integrates 
interval-valued triangular fuzzy sets, an improved CRITIC method, and matter-element extension theory. This 
model enables a methodological shift from traditional "ranking" to precise "diagnostics." An empirical analysis of 
five industrial parks in the Yangtze River Delta revealed that Park C has entered a near-zero-carbon stage, whereas 
Parks D and E remain in a high-carbon stage, with significant disparities observed across all parks.  

The advantages of leading parks stem from the synergy between governance innovation and energy structure 
optimization. In contrast, bottlenecks in lagging parks are concentrated in dimensions such as carbon management 
and the circular economy. Consequently, the zero-carbon transition of industrial parks must follow differentiated 
pathways. For high-carbon parks, the immediate priority is to consolidate data and management foundations. This 
involves prioritizing the deployment of a comprehensive carbon accounting system, initiating energy-saving 
retrofits for key high-consumption equipment, and rapidly installing distributed photovoltaic systems and solid 
waste disposal facilities. For near-zero- and low-carbon parks, the focus shifts to systemic coordination and value 
capture. Deep decarbonization can be achieved by establishing carbon performance incentive mechanisms, 
developing smart microgrids with multi-energy coordination, and managing supply chain carbon footprints. At the 
policy level, we recommend implementing park-specific carbon budget management and differentiated 
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performance evaluation based on this assessment framework. Market mechanisms should be leveraged to drive 
cost-effective emission reductions. 

Methodologically, this study demonstrates the model's robustness and interpretability. Sensitivity analysis 
confirmed that perturbations in weight assignments did not alter the ranking outcomes. Furthermore, a comparative 
analysis with the GRA-KL-TOPSIS model revealed a high degree of consistency. This indicates that the robustness 
of the conclusions stems not from arbitrary weight allocation but from intrinsic structural development disparities 
among the parks—reflecting fundamental differences rather than methodological bias. 

The primary contributions of this study are threefold: (1) proposing a robust and diagnosable framework for 
assessing the carbon development stage of industrial parks; (2) empirically identifying and explaining bottleneck 
patterns in zero-carbon transformation; and (3) offering differentiated transformation pathways based on 
diagnostic findings. For parks with leading advantages, strengths in governance and energy should be extended to 
carbon management and circular economy dimensions. For high-carbon parks, foundational capabilities must be 
prioritized to prevent the amplification of bottleneck effects. It should be noted that the conclusions are derived 
from a sample in the Yangtze River Delta; thus, their generalizability requires further validation in resource-based 
and heavy industrial parks. Future research should expand this framework to multiple types of industrial parks, 
compare and simulate their differentiated low-carbon transition paths. Furthermore, the ultimate goal of industrial 
park diagnosis is to promote the transformation of the management paradigm from post-hoc evaluation to real-
time decision-making. Therefore, future studies should explore the construction of a carbon management platform 
based on digital twins and artificial intelligence, to realize real-time perception, predictive early warning, and 
adaptive optimization of carbon flows, thereby providing intelligent decision support for industrial parks 
throughout the entire life cycle of planning, construction, and operation. 
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Appendix A:  
 

Table A1. The Definition and Quantification of Indicators for Carbon Development Stages in Industrial 
Parks 

 
Indicator Definition & Quantification Method Threshold Rationale 

C1 The proportion of energy-consuming units equipped 
with distributed energy systems. Formula:𝐶𝐶1 =
�𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
� × 100% 

Aligned with the development goals outlined in 
China's "14th Five-Year Plan for Modern Energy 

Systems" and benchmarked against practical targets 
(e.g., >50% for large-scale application) from leading 

parks like Suzhou Industrial Park and Shanghai 
Jinqiao Export Processing Zone. 

C2 The percentage of total installed electricity capacity 
derived from renewable sources. Formula: 𝐶𝐶2 =

Derived from the International Energy Agency's 
(IEA) "Net Zero by 2050: A Roadmap for the Global 
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Indicator Definition & Quantification Method Threshold Rationale 

� 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�×100%. Energy Sector", which recommends that renewable 
generation shares reach 60% by 2030 and nearly 

90% by 2050 in advanced economies. Thresholds are 
adapted for the Chinese context. 

C3 The electricity consumption per unit area of public 
buildings relative to the industry benchmark. 

Formula: 𝐶𝐶3 = �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃′𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

×

100%�. The benchmark is the "constraint value" 
specified for the corresponding climate zone and 

building type in the Chinese national standard 
“Standard for energy consumption of 

building"(GB/T 51161-2016). 

Directly based on the mandatory national standard 
GB/T 51161. A ratio of 1.0 indicates compliance, 

while a ratio below 0.5 represents a "leading" 
performance level. 

C4 The percentage of trips made using low-carbon 
modes (walking, cycling, new energy vehicles, 

public transport). Formula:  
𝐶𝐶4 = �𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
�× 100%. 

References the EU's Sustainable Urban Mobility 
Plans (SUMPs), which set a target of 70-80% or 

higher for green travel modal share in core cities as a 
key indicator of sustainability 

C5 A score (0-100) evaluating the level of system 
intelligence, determined by expert assessment based 

on guidelines such as China's "Smart Park 
Construction Guide". 

According to the "Smart Park Construction Guide", a 
score above 75 signifies an "Integrated and 

Optimized" level, and above 90 represents an 
"Innovation and Leadership" level. 

C6 The average annual reduction rate of CO2 emissions 
per unit of industrial added value compared to a base 
year (e.g., the final year of the 13th Five-Year Plan). 

Formula: 𝐶𝐶6 = �1 − �𝐼𝐼𝑡𝑡
𝐼𝐼𝑜𝑜
�
1
𝑛𝑛�×100% .Where 𝐼𝐼𝑡𝑡  current 

year carbon intensity 𝐼𝐼𝑜𝑜 base year n is the number 
of years. 

Based on China's "Action Plan for Carbon Dioxide 
Peaking Before 2030", which mandates a reduction 
of over 18% during the 14th Five-Year Plan period 
and over 15% in the 15th, translating to an average 

annual reduction rate of 4-4.5%. A threshold of 4.5% 
is set as an ambitious target. 

C7 The proportion of fossil fuel CO2 emissions 
captured by CCUS technology. Formula: 

 C7 = (Annual CO2 captured by CCUS / Total fossil 
fuel CO2 emissions) × 100%. This indicator is 

particularly relevant for high-emission parks (e.g., 
chemical, steel). 

Based on the IEA's "Energy Technology 
Perspectives" report, which indicates that CCUS 

application rates in industry need to scale up from 
around 10% by 2030 to nearly 40-70% by 2050 to 

achieve net-zero goals. 

C8 The carbon emissions per unit of product relative to 
an industry benchmark. Formula: 

𝐶𝐶8 = �
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣� 

The methodology is aligned with the benchmark 
approach core to China's national Emissions Trading 
Scheme (ETS), an internationally recognized method 

for ensuring fairness and efficiency. Thresholds 
directly reflect carbon efficiency competitiveness 

within the sector. 
C9 The proportion of the park's total carbon emissions 

offset by purchasing Green Electricity Certificates 
(GECs). Formula: 

C9 = (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 ) × 100% 

The reliance on off-site mitigation instruments like 
GECs is expected to increase as decarbonization 

deepens, making this a key indicator for advanced 
stages. 

C10 The park's energy consumption per unit of industrial 
added value relative to the average of its host 

province/municipality. Formula:  
C10 = ( 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃′𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
) × 100% 

Using a relative value helps benchmark the park's 
performance against its regional peers, reflecting 
achievements in both technological and structural 

energy savings. 

C11 he percentage of enterprises covered by the 
emissions trading system that fully and timely 

surrender their carbon quotas. Formula: 
C11 = ( 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
) 

× 100% 

While 100% compliance is the legal requirement per 
China's "Interim Regulations on Carbon Emissions 
Trading", a Tier I threshold of 90% acknowledges 
the high national compliance rate (>99.5% in the 

first cycle) while allowing for minor, non-systemic 
delays. 

C12 The proportion of industrial solid waste that is 
comprehensively utilized. Formula: 

 C12 = 
( 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 +  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦′ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 ) × 
100% 

Based on China's "Standard for National Eco-
industrial Demonstration Parks" (HJ 274-2015) and 

the "Indicator System for 'Zero-Waste City' 
Construction", which identify a utilization rate 

exceeding 90% as an international advanced level. 
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Indicator Definition & Quantification Method Threshold Rationale 
C13 The proportion of water reused in industrial 

processes. Formula:  
C13 = (Volume of water reused / Total water 

intake)×100% 

The World Business Council for Sustainable 
Development's (WBCSD) "Water Tool" considers an 

industrial water recycling rate above 80% as "best 
practice". 

C14 The proportion of domestically generated waste that 
is separately collected at source. Formula:  

C14 = (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

)×100% 

None 

C15 The percentage of construction land area dedicated 
to green space. Formula:  

C15 = (Green space area / Total construction land 
area) × 100% 

References China's "Urban Greening Planning and 
Construction Indicators" and standards for eco-

industrial parks. 

C16 The economic output density, measured as industrial 
added value generated per unit area of construction 

land. Formula:  
C16 = (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
)×100% 

Benchmarked against world-class parks like 
Singapore's Industrial Estate and Japan's Kawasaki 
Eco-Town, which demonstrate significantly higher 
land productivity through intensive development. 

C17 The share of the park administration's budget 
allocated specifically to low-carbon development 

initiatives. 

Reflects the level of financial commitment and 
resource allocation by the park management 
authority towards the green transition, often 

influenced by local government support intensity. 
C18 The frequency of carbon-related information 

disclosure. Scored ordinally: 0=None, 1=Annual, 
2=Semi-annual, 3=Quarterly, 4=Monthly/Near-real-

time. Assessed via park websites, sustainability 
reports, or public platforms. 

Aligned with the Task Force on Climate-related 
Financial Disclosures (TCFD) recommendation for 

more frequent and timely disclosure, as well as 
guidance from bodies like the Shanghai Stock 

Exchange on environmental disclosure frequency. 
C19 The proportion of enterprises that have established 

and operate a certified carbon management system. 
Formula:  

C19 = 
( 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 ) 
× 100%. 

Consistent with China's policy direction of 
promoting carbon management system construction 

in key enterprises. 

C20 The percentage of key emission sources (as defined 
by the park based on energy consumption/emission 

levels) connected to a unified digital carbon 
management platform. Formula:  

C20 = (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑘𝑘𝑘𝑘𝑘𝑘 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 /) × 100%. 

Emphasizes the foundational role of digital platforms 
for transparency and precision in carbon 

management, as highlighted by initiatives like the 
WEF's Global Lighthouse Network.。 

C21 The proportion of enterprises that have conducted 
zero-carbon production audits or in-depth energy 

conservation diagnostics. Formula:  
C21 = (Number of enterprises conducting audits / 

Total number of enterprises) × 100%。 

Such audits are a standardized starting point for deep 
decarbonization at the enterprise level, promoted by 

organizations like the World Resources Institute 
(WRI) under frameworks for carbon footprint 

accounting and reduction planning. 
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