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Abstract: Industrial parks represent one of the most significant contributors to carbon emissions, making their
transition toward zero-carbon operations a critical priority. Achieving this goal requires scientific, phased
evaluation tools capable of guiding differentiated emission reduction strategies. This study introduces an integrated
assessment framework that combines interval-valued triangular fuzzy sets, an enhanced CRITIC weighting method,
and matter-element extension theory to provide robust and diagnostic insights into carbon performance. Sensitivity
and comparative analyses confirm the model's reliability and resilience. An empirical application involving five
industrial parks in China’s Yangtze River Delta demonstrates the framework’s effectiveness. The results indicate
that Park C has approached a near-zero-carbon status, while Parks D and E remain in high-emission stages. Notable
disparities are observed among the parks: high-performing parks benefit from strong governance and energy
synergy, whereas underperforming parks face bottlenecks due to weak carbon management and limited adoption
of circular economy practices. The proposed model maintains stable ranking outcomes even under weight
perturbations and aligns closely with alternative evaluation methods. These findings suggest that successful zero-
carbon transformation depends on coordinated progress across multiple dimensions rather than isolated
improvements in specific indicators. This research offers a scientific foundation for targeted, phase-based
decarbonization strategies in industrial parks.

Keywords: Industrial park; Decarbonization process; Evaluation indicator system; Empirical analysis;
Development strategy

1. Introduction

Global warming presents profound challenges to economic and social systems worldwide. According to the
IPCC Sixth Assessment Report, the energy and industrial sectors collectively account for approximately 73% of
global greenhouse gas emissions (Masson-Delmotte et al., 2021). Within these sectors, industrial parks are critical
leverage points for emission reduction due to their intensive energy consumption and concentrated industrial
chains. China’s Dual-Carbon Target underscores that the low-carbon transition of industrial parks is crucial for
achieving the national goals of carbon peak and neutrality. The International Energy Agency (IEA) estimates that,
through systematic strategies—including enhanced energy efficiency, waste heat recovery, renewable energy
integration, and carbon capture, utilization, and storage (CCUS)—industrial parks could cumulatively reduce
carbon emissions by over 20% by 2050 (IEA, 2021). Furthermore, international trade policies, such as the
European Union’s Carbon Border Adjustment Mechanism (CBAM), are elevating carbon management to a critical
factor in global competitiveness (European Union., 2023) compelling industrial parks worldwide to accelerate
their low-carbon transformation.

China’s “14th Five-Year Plan for Industrial Green Development” explicitly advocates for establishing numerous
near-zero and zero-carbon demonstration parks, with phased targets to significantly reduce carbon intensity before

https://doi.org/10.56578/0cs040205
135


https://orcid.org/0009-0005-8304-7625
https://orcid.org/0009-0009-6172-4866
https://crossmark.crossref.org/dialog/?doi=10.56578/ocs040205&domain=pdf

2030. The transition to a zero-carbon park represents a progressive evolution through “low-carbon to near-zero
carbon to zero-carbon” stages (Yu et al., 2018), rather than a mere matter of technological accumulation. Therefore,
accurately determining a park’s current stage of carbon development is a critical prerequisite for formulating
differentiated emission reduction pathways and optimizing policy resource allocation (Zhao et al., 2024). This task
is particularly urgent due to the diverse transformation pathways and complex influencing mechanisms involved
in the transition of industrial parks. From a strategic perspective, Qian et al. (2022) developed an integrated “Land-
Industry-Carbon” (LIC) model to simulate and validate the central role of industrial restructuring in achieving
carbon peak, highlighting the value of multidimensional solutions. Through a comparative multi-case study, Sun
et al. (2024) identified a systematic carbon neutrality pathway encompassing 12 key areas, including energy
substitution and carbon capture. Regarding driving mechanisms, Meng et al. (2024) employed a configurational
analysis based on the Technology-Organization-Environment (TOE) framework. Their analysis revealed that the
effectiveness of green transformation in parks depends on the complex interactions among technological capability,
organizational structure, and environmental factors, rather than on any single linear factor.

While the importance of the low-carbon transition in industrial parks is widely recognized, as evidenced by
previous studies, a systematic assessment of their development levels remains inadequate. Existing evaluation
systems are limited in framework completeness, indicator coverage, and technical application (Huang et al., 2023).
First, universal indicator systems that can adapt to diverse energy structures and industrial characteristics are
lacking. In particular, dynamic inter-indicator mechanisms (e.g., the negative correlation between industrial
agglomeration and emission reduction costs (Langie et al., 2022) and complex interactions among technological,
organizational, and environmental factors (Zhang et al., 2025) have received insufficient attention. Second,
weighting methods have notable shortcomings: subjective weighting is susceptible to expert bias, objective
weighting fails to reflect strategic priorities, and combined weighting methods often rely on simplistic averaging,
which cannot capture the context-dependent dynamics of indicator importance (Huang et al., 2023). Third, most
studies continue to use linear evaluation frameworks, which are ill-suited to capture the nonlinear coupling
characteristics of energy-carbon systems. This limitation is particularly evident in modeling complex feedback
mechanisms, such as carbon flows and energy-waste recycling loops. Finally, the validation of assessment results
is often limited to individual case studies and lacks systematic, cross-regional, or cross-industrial verification,
which undermines the generalizability and reliability of the conclusions (Du et al., 2024; Feng et al., 2018).

To address these limitations, this study proposes an integrated and practically applicable evaluation framework
for assessing the carbon transition stage of industrial parks. This framework integrates interval-valued triangular
fuzzy sets with an enhanced CRITIC weighting model. This integration balances expert knowledge with objective
data characteristics and incorporates a dynamic mechanism to characterize the contextual importance of indicators
for weight determination. We improve the matter-element extension theory to enable phase identification under
multi-indicator, nonlinear, and fuzzy conditions. Furthermore, methods including TOPSIS, grey relational analysis
(GRA), and Kullback-Leibler (KL) divergence are employed for multi-dimensional consistency verification of the
assessment results. Global sensitivity analysis is further applied to test the model's robustness and adaptability.
This approach scientifically determines the carbon development stage of industrial parks, thereby systematically
revealing common shortcomings and key drivers across different park types during their zero-carbon transition. It
provides quantitative evidence for formulating differentiated policies and designing precise transition pathways.
Moreover, it facilitates the effective implementation of zero-carbon park assessments by bridging theoretical
methodology and management practice.

2. Literature Review
2.1 Development Stages of Zero-Carbon Parks

Zero-carbon industrial parks are vital vehicles for addressing climate change and advancing green industrial
transformation. They are typically viewed as evolving through a gradual developmental process. This progression
involves phased transitions from low-carbon to near-zero-carbon and, ultimately, to zero-carbon parks (Zhang et
al., 2024). This evolutionary logic demonstrates global universality. According to a recent International Energy
Agency (IEA) assessment, deep decarbonization of the industrial sector is a central challenge for achieving global
net-zero emissions targets, with industrial parks identified as critical leverage points (IEA, 2021). Globally, diverse
zero-carbon park practices have emerged, ranging from the industrial symbiosis paradigm in the Netherlands
(Eilering et al., 2004) to emission reduction strategic planning for industrial estates in Singapore (Wong et al.,
2008), and integrated hydrogen energy storage exploration in China's Ordos (Zou et al., 2024).

In the low-carbon phase, research and practice focused primarily on enhancing energy efficiency and replacing
fossil fuels with renewable energy sources. Representative measures included energy-efficient building retrofits
(Zhang et al., 2023b), industrial waste heat recovery, and the initial adoption of renewable energy (Adebayo &
Aga, 2022). Although these efforts effectively reduced carbon intensity, they often relied on isolated technological
measures and remained dependent on fossil fuels, thereby creating a ceiling for emissions reduction. Limitations
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in systemic integration were recognized even at this early stage. Early research on eco-industrial parks similarly
focused on enterprise-level clean production and park-level waste exchange models (Chertow, 2000). The
European Union's early promotion of best practices initially focused on energy-saving retrofits of individual
facilities (Feng et al., 2018) and later shifted towards helping park enterprises identify and improve energy
efficiency opportunities (Miskiewicz et al., 2021). This approach parallels the initial practices in China's low-
carbon parks.A case study of Canada's Debert Aerospace Industrial Park exemplifies this shift in perspective (Coté
& Liu, 2016). This pioneering research moved beyond isolated technologies, highlighting the critical importance
of a systemic approach. This approach integrated land use, infrastructure, buildings, energy, vegetation
management, and policy mechanisms to achieve deep emissions reductions within the park.

Amid intensifying emission reduction pressures and accelerated technological advancements, some industrial
parks have progressed to the near-zero carbon development phase. This phase is characterized by the deep
integration of multi-energy systems and information technologies. On one hand, distributed photovoltaics, energy
storage systems, and smart microgrids form the foundation of new energy supply systems (Aziz et al., 2023). On
the other hand, energy-carbon management platforms leveraging IoT and big data provide core support for system
optimization. For instance, Luo et al. (2024) proposed a multi-energy coupling system that utilizes by-product
hydrogen. Through four case studies, they quantified the differences in economic and environmental benefits
among various by-product hydrogen utilization methods, demonstrating the positive impact of multi-energy
coupling on emissions reduction.

Conceptually, this work aligns closely with the energy hub optimization model (Olgyay & Campbell, 2018). In
recent years, integrated with artificial intelligence, this concept has been further developed to solve dynamic
optimal scheduling problems for park-level integrated energy systems (Wang et al., 2024). Furthermore, pilot
"Smart Energy Park" projects, which integrate distributed energy resources through digital technologies to
optimize the overall park energy system, represent advanced practices in the near-zero-carbon stage (Yu & Liu,
2024). Their findings indicate that selecting and optimizing innovative energy utilization approaches is crucial for
enhancing the overall emissions reduction performance of industrial parks. However, it should be noted that near-
zero-carbon industrial parks still face challenges such as immature key technologies like carbon capture and green
hydrogen production, as well as high cost burdens (Irham et al., 2024; Urbina, 2023).

Zero-carbon industrial parks represent the ultimate developmental goal, characterized by achieving net-zero
emissions through complete reliance on carbon-free energy, carbon capture and removal, and cross-industry
circular coupling (Zhang et al., 2024). For example, a German energy industrial park has established a zero-carbon
demonstration model spanning the building, transportation, and industrial energy sectors via the systematic
integration of distributed renewables and energy storage technologies (C6té & Liu, 2016).

It is noteworthy that the exploration of zero-carbon parks is a global endeavor. In developing countries such as
India, Green Industrial Park Initiatives provide infrastructure subsidies to encourage low-carbon technology
adoption. However, the challenges they face differ markedly from those in developed countries, focusing more on
financing access, technology acquisition, and grid stability (Jain, 2021). This disparity reveals the distinct political-
economic contexts that economies at different development stages face during the zero-carbon transition. China's
Ordos Zero-Carbon Industrial Park and Suzhou Industrial Park have explored integrated pathways for renewables,
energy storage, and hydrogen utilization using a “wind-solar-hydrogen-storage-vehicle” model (Xiao et al., 2018).
These cases demonstrate that zero-carbon park development has progressed from concept validation to large-scale
implementation, although challenges persist in standardization, systemic coordination, and policy incentives.

In summary, the evolution through carbon development stages in industrial parks results from not only
technological accumulation but also the combined influence of policy, market forces, and industrial chains.
Accurately identifying each park's developmental stage facilitates the formulation of tailored transformation
pathways, prevents the inefficacy of one-size-fits-all policies, and optimizes resource allocation across different
park types.

2.2 Evaluation Criteria and Indicator Systems

The scientific identification and quantitative assessment of the carbon development stage in industrial parks
depend on a robust indicator system. Early indicator systems primarily focused on single dimensions, such as
energy consumption and carbon emissions, using conventional static metrics like energy consumption per unit of
industrial output and carbon intensity (Huang et al., 2016). Although these indicators enable macro-level
comparability, they often fail to capture variations in energy structures, industrial characteristics, and technological
levels across different parks, thus providing limited insight into the overall transition process. As research has
advanced, evaluation frameworks have expanded to incorporate multiple dimensions, including energy,
environment, and economy. For instance, Huang et al. (2023) developed a comprehensive evaluation framework
for low-carbon development in industrial parks. This framework includes energy and emission metrics, alongside
indicators such as the clean energy proportion and waste recycling rate, demonstrating an increased emphasis on
industrial circularity and resource efficiency. Similarly, the European Union’s guidelines for low-carbon park
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assessment incorporate institutional and management factors—such as governance mechanisms and policy
implementation effectiveness—highlighting the critical role of management systems in emission reduction efforts

(Fragkos et al., 2021).

Table 1. Indicator system for assessing zero-carbon levels in industrial parks

Specific Source/Basis

. Core' Primary Indicator Secondary Indicators
Dimensions
Distributed Energy Coverage Rate The international RE100 initiative,
(C1) China’s “Pilot Program for Green
Renewable Energy Share of Renewable Energy in Power Trading” (Fait et al., 2022)
Energy Utilization Installed Capacity (C2) & ?
structure and Electricity consumption per unit
efficiency area in public buildings (C3) (Zhang et al., 2023a)
Encrey Efficienc Green Travel Ratio (C4) (Zhang et al., 2024)
o gt}i/mization Y Intelligence Level of Energy China’s Smart Park Construction Guide
P Management Systems (C5) (Wang et al., 2019)
- . ISO 14064 China’s Carbon Emission
Carbon Emission Intensity . o
Reduction Rate (C6) Trading Management Measures (Coté
& Liu, 2016)
Direct Carbon ' ()Praja'patl etal., 2024)
Emissions Conirol Carbon Capture Technology China’s Science and Technology
Adoption Rate (C7) Roadmap for Carbon Peaking and
Carbon Neutrality
Carbon Energy consumption per unit of
management &y p P (Tian et al., 2023)
and emissions . product (C8) - . .
reduction Proportion of Carbon Emissions Standard Specifications: ISO 14067
Offset by Green Certificates (C9) SBTi (Zhu et al., 2025)
Indirect Carbon Comprehensive Energy CDM Administrative Measures for
Emissions Consumption per Unit of China’s CCER (Olgyay & Campbell,
Industrial Value Added (C10) 2018)
Management ., .
. China’s Regulations on the
Carbon Allowance Compliance - . -
Rate (C11) Administration of Carbon Emission
¢ Trading (C6té & Liu, 2016)
Industrial Solid Waste
Comprehensive Utilization Rate GB/T 39198-2020(Fragkos et al., 2021)
Industrial Solid Waste Industrial Water Recycling Rat 1SO 46001 (Roberts, 2004)
Circular Comprehensive (C13)
Utilization Rate . China’s Water Pollution Prevention
economy and Household Waste Sorting )
. and Control Action Plan (Hu et al.,
resource Collection Rate (C14)
utilization 2019)
Green Space Ratio (C15) (Xiao et al., 2018)
Infrastructure Industrial Value Added per Unit of Administrative Measgres for Green
. Product Labels (While & Eadson,
Construction Land (C16)
2022)
China’s “Green Development
Low-Carbon Development Special “Gul.dellnes for Industrial Parks and
Fund Investment Rate (C17) National Low-Carbon Industrial Park
Pilot Implementation Plan” (While &
Policy and Plannin; Eadson, 2022)
y & . TCFD (Task Force on Climate-related
Frequency of Carbon Disclosure . ial Discl K
Governance and (C18) Financial Disc osufes) Eramewor (Lee
innovation et al., 2015; Prajapati et al., 2024)
capabilities Carbon Management System United Nations SDG 11 (Sustainable
P Certification Rate (C19) Cities and Communities)
Digital Carbon Management Guiding OplnlO‘I‘IS on Promotl,r’lg the
Technological Platform Coverage Rate (C20) Development of “Internet Plus” Smart
& & Energy in China (Wang et al., 2019)

Innovation and
Digitalization . .
Carbon Production Audits in

Enterprises (C21)

Implementation Rate of Zero-

China’s 14" Five-Year Plan for Green
Industrial Development (Lee et al.,
2015)

To construct an internationally comparable evaluation system, a systematic review of major global assessment

standards is essential. Currently, widely applied international frameworks can be categorized into three types:
policy-regulated standards, market-driven standards, and certification and reporting standards, including the ISO
14064 series for greenhouse gas accounting, which provide methodologies or certification labels. In recent years,
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indicator systems have evolved toward greater systematicity and dynamic characterization. Scholars have
attempted to integrate life cycle assessment (Zhang et al., 2023a), carbon footprint accounting, and multi-
dimensional composite indicators into a unified framework. This framework incorporates energy supply (Wang et
al., 2019), upstream-downstream industrial synergy (Zhu et al., 2025), digital management, and policy
implementation. While this trend has improved the coverage and refinement of indicator systems, it has also
introduced challenges, including subjective weight allocation and increased complexity in inter-indicator
couplings. For instance, studies have revealed nonlinear trade-offs between energy substitution rates and economic
output. These complex relationships are often oversimplified by the additive weighting methods used in existing
frameworks, which fail to capture their actual dynamic interactions (Adebayo & Aga, 2022).

In summary, although existing research has made substantial progress in identifying developmental stages and
constructing indicator systems for zero-carbon industrial parks, critical limitations persist. To address these gaps,
this study establishes an indicator system across four key dimensions: (1) energy structure and efficiency, (2)
carbon management and emission reduction, (3) circular economy and resource utilization, and (4) governance
and innovation capability. This integrated framework is designed to balance universality with specificity and to
accommodate the characteristics of dynamic, complex systems, as detailed in Table 1 and Figure 1. Consequently,
the proposed system provides a methodological foundation for the scientifically robust assessment of
developmental stages in zero-carbon industrial parks.
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Figure 1. Integrated framework
3. Methodology

To address the challenges of data ambiguity, indicator heterogeneity, and the conflicts between subjective and
objective weighting in assessing the low-carbon performance of industrial parks, this study proposes an integrated
evaluation framework. The framework combines expert-derived weights, interval-valued fuzzy data processing,
and extension-based decision modeling. The overall methodological workflow is illustrated in Figure 2, and the
specific computational procedures are detailed in the following subsections.
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Figure 2. Carbon phase assessment framework for the park
3.1 Expert Weight Quantification Based on Intuitionistic Fuzzy Sets

The accuracy of expert-derived weights directly determines the credibility of the evaluation results. Traditional
methods, which often rely on direct assignment, fail to capture the cognitive uncertainty inherent in expert
judgments. Assessing the low-carbon performance of industrial parks involves multidimensional, heterogeneous
indicators (e.g., energy structure, process-level carbon efficiency, and management policies). This complexity
leads to significant disparities in expert knowledge, especially concerning emerging technologies such as carbon
capture. Although classical fuzzy sets use membership functions to represent degrees of expert endorsement, they
lack mathematical representations of opposition (non-membership) and uncertainty (hesitancy). This limitation
can introduce bias into weight allocation. To overcome these limitations, we introduce intuitionistic fuzzy sets
(IFS). TIFS comprehensively capture the importance assigned by experts through a triple structure (y, v, 7). As an
extension of traditional fuzzy set theory, IFS provides enhanced capabilities for processing fuzzy and imperfect
information.

3.1.1 Relevant definition
Definition 1: Let X be a non-empty universe of discourse. An intuitionistic fuzzy set (IFS) 4 on X is defined as:

A= {(x,uA(x),vA(x))lx € X} (1)

where, p,(x):X — [0,1] denotes the degree of membership of element x in set 4, and v,(x): X — [0,1]
denotes the degree of non-membership, satisfying the condition: 0 < py(x) + v4(x) < 1.
Definition 2: The third parameter of IFS is the hesitancy degree m,(x) calculated by the following Eq. (2):

Ta(x) = 1= py(x) — v, (x) @
A smaller value of m,(x) indicates clearer decision information regarding X. while a larger value reflects

greater uncertainty. When 1,4(x) = 0 the intuitionistic fuzzy set reduces to an ordinary fuzzy set.
3.1.2 Implementation steps
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Step 1: The Delphi method is employed to invite K experts to evaluate each other’s authoritative level using a
five-level intuitionistic fuzzy scale, as shown in Table 2:

Table 2. Linguistic terms for ranking the importance of Decision-Makers (DMs)

Linguistic Terms Intuitionistic Fuzzy Numbers (IFNs)
Very important (0.90,0.10)
Important (0.75,0.20)
Medium (0.50,0.45)
Unimportant (0.35,0.60)
Very Unimportant (0.10,0.90)

Step 2: Determine expert weights

The relative importance among experts is expressed through linguistic terms represented by intuitionistic fuzzy
numbers. Let the evaluation of the k-th expert be denoted as Dy, = [uy, vy, T ] The weight of each expert is then
calculated using the following formula:

. Hi
Hi + Tk (,U.k + Vk>
Wy = — 3)

Dy bt e ()

3.2 Subjective Weighting of Indicators Based on Interval Triangular Fuzzy Numbers

Triangular fuzzy numbers (TFNs), a class of fuzzy sets characterized by convexity and normality, are widely
used to process fuzzy decision information. However, TFNs rely on fixed value boundaries. In contrast, interval-
valued triangular fuzzy numbers allow different experts to define varying membership degree intervals for the
same indicator. This approach better accommodates the data gaps and fluctuations commonly found in industrial
park data. This method not only preserves the integrity of fuzzy decision information but also ensures that its
constituent elements are more readily obtainable than those of trapezoidal fuzzy numbers, as shown in Table 3.

Table 3. The importance and scoring of language terms for each criterion

The Importance of Linguistic Terms Fuzzy Number of Triangular Interval Values
Very low (VL) [(0,0),0,(0.1,0.15)]
Low (L) [(0,0.05),0.1,(0.25,0.35)]
Medium low (ML) [(0,0.15),0.3,(0.45,0.55)]
Medium (M) [(0.25,0.35),0.5, (0.65,0.75)]
Medium high (MH) [(0.45,0.55),0.7,(0.8,0.95))
High (H) [(0.55,0.75),0.9, (0.95,1)]
Very high (VH) [(0.85,0.95),1,(1,1)]

3.2.1. Relevant definitions

Definition 3: Let X be a set of real numbers. An interval triangular fuzzy set A is defined as:
A=x,[pyr(x), pyv ()], x € X, -1, piy~v: X - [0,1] 4

where, Al*(x) and AU¥(x)represent the lower and upper bounds of the interval-valued membership degree,

respectively, satisfying:
Ua~(x) < pg~y(x),vx € X %)
Ha~ (x) = [MA~L(x)' #ANU(x)]lvx EX (6)

An interval triangular fuzzy set can be defined as A = [AY, AY] = [(1F, 2], 355 A*(x)), (13, 28, 33; AU (x))]
where, A and AY denote the lower and upper interval-valued triangular fuzzy numbers, respectively, with

A" < AY. When p,(x) = AV (x) =1 and 2{ = 2§, the interval triangular fuzzy set can be simplified as:
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A= [ah 2] = 115,19, %,, (35, 39)] @

Geometrically, unlike conventional triangular fuzzy numbers with a deterministic membership value, the
membership degree in this representation becomes an interval, allowing more flexible and accurate expression of
fuzzy information.

Definition 4: Based on the definition by Liu et al. (2019) for two interval triangular fuzzy numbers: TIVFNs

A = [A" AY] = [(13,19), x5, (3%,3%)] and B = [BY,BV] = [(12,17), 75, (37,32)] the following arithmetic
operations apply:

A+ B =[(15,19), x5, 35,351 + [(12,12), 3, (32,32)] ®

= [(1F+ 13,17 + 1)), x, + v, (37 + 37,35 + 37))]

;1 - é = [(1xv 15),)62, (Sx' ﬁ)] - [(13/’ 1{)' Y2, (3)7’ 313;)]

= [(1175 - 1{/' 17 - 11},])' X2 — Y2, (317f - 3{'% - 35)]

(€))

Definition 5: The defuzzification of an interval triangular fuzzy number A can be performed using the
following formula to obtain a crisp value:

~ X X X X
h(A) _ (1U+1L)+222+(3L +37) (10)

3.3 Enhanced CRITIC Method

Determining the weight of each evaluation indicator is central to multi-criteria comprehensive evaluation. The
accuracy and objectivity of these weights critically influence the credibility of low-carbon performance
assessments for industrial parks. The entropy weight method determines weights based on indicator variability, is
free from subjective influence, and involves a straightforward computational process. However, for low-carbon
assessment of industrial parks, cost-based indicators exhibit both variability and certain intercorrelations. Relying
solely on the entropy method fails to adequately capture inter-indicator correlations. Therefore, this study
integrates the CRITIC and entropy methods to establish an improved CRITIC-entropy weight fing approach. This
combined method enables a more scientific and comprehensive evaluation of low-carbon performance in industrial
parks.

Assume there are i samples and j indicators, forming an evaluation matrix X:

X111 X127t Xyj
X21 Xz2 vt Xpj
X=|": . . (11)
Xi1 Xzt Xjj
Standardize the indicators using Eq. (12) to obtain the normalized matrix X' = [ij].
Xjj — minx; o
——————  Positive indicator
maxxj - mlnyxj
Xij = (12)

maXX]- - Xij . .
Reverse indicator

maxx; — minxj

Calculate the correlation coefficients between evaluation indicators using the Pearson product-moment
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correlation coefficient, resulting in the correlation matrix:

1 Tz ot Tn
21 T2 0 Top

R=[n .= & .. % (13)
Twi Th2  Tan

_ Z?:l(xkp - J?p)(xkq - fq)
Tpq = ~ ~
\/Zi=1(xkp —Xp) \/ Zi=1(xkq = Xq)

(14)

where, X, and X, are the average values of the normalized p-th and g-th indicators, respectively; x,, and
Xiq are the normalized values of the p-th and g-th indicators for the k-th industrial park. In general, the

closer 7,, to 1 the stronger the correlation between the indicators.
Compute the information content 7; contained in the cost-based indicators:

n

Ti=uj2(1_|rpi|) (15)

i=1

where, u; is the standard deviation of the j — th cost-based indicator, and Tp; is the correlation coefficient
between the p — th and the p — th cost-based indicators.
Calculate the entropy value s; of the evaluation indicators:

m
= - 2im i %y (16)
Inm

The final improved CRITIC-entropy combined weight W; is obtained as:

j = 17
LY (-5 +T) a7

3.4 Combined Weighting Based on Minimum Deviation Method

Let the subjective weight derived from interval fuzzy sets be denoted as w; and the objective weight from the

improved CRITIC method as w,. The combined weight ® is calculated as:
w=a'w; +f'w, (18)

where, the coefficients a and f satisfy the following constrained optimization problem:

maxF(a,B) = ; (kzzl(aW1 + BW2)> (19)

s.t.a’+p2=1

Using the Lagrange multiplier method under extreme value conditions, the coefficients a and f are computed

as:
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Z:ZIZ‘I,CL:lwlblk
m n 2 m n 2
1=1 &~k=1"1"1k 1=1 &k=1 W20k
\/(Z S wibp)? + (3 TR wyby)
ZTzlzanzbm

\/( 27;1 Yk=1wiby)? + (Zﬁl Lk=1 W2bu)?

(20)

Finally, « and f are normalized to obtain o *and f*

@n

{a* =a/(a+B)
B =B/(a+pB)

3.5 Improved Mater -Element Extension Model

Matter-element extension theory provides a theoretical foundation for handling uncertain and fuzzy information.
By constructing matter-element models, this approach can accurately describe the key characteristics of industrial
parks. Meanwhile, the calculation of correlation degrees quantifies how well indicator values align with different
performance levels. This theoretical approach has been widely adopted in the fields of multi-criteria decision-
making and comprehensive evaluation.

(1) Definition of Classical Domain
For the 21 secondary indicators, four zero-carbon development levels are defined based on international

standards, policy documents, and academic research, as shown in Table 1, Table 4 and Appendix.

Table 4. Evaluation index system for carbon stage in the park

Dimension Secondary Net-zero Near-zero Low zero High
Indicators Carbonization Carbonization Carbonization Carbonization
(1) (1m) (11m) (1v)
Energy structure Cl1 [50%,70%) [30%,50%) [15%,30%) [0,15%)
and efficiency C2 [90%,100%) [50%,90%) [15%, 50%) [0%,15%)
C3 [0.8,1) [0.5,0.8) [0.2,0.5) [0,0.2)
C4 [90%,100%) [80%,90%) [60%,80%) [50,60%)
Cs5 [90,100) [75,90) [60,75) [50,60)
Carbon C6 [6%,7.5%) [4.5%,6%) [3.5%,4.5%) [0%,3.5%)
management and Cc7 [70%,100%) [50%,70%) [30%,50%) [0,30%)
emission reduction C8 [80%,100%) [60%,80%) [40%,60%) [20,40%)
C9 [80%,100%) (60%,70%) (30%,60%) [0%,30%)
C10 [0, 0.35) [0.35,0.5) [0.5,0.7) [0.7,1)
Cll [90%,100%) [80%,90%) [70%,80%) [60,70%)
Circular economy Cl12 [90%,100%) [85%,90%) [50%,85%) [0,50%)
and resource Cl13 [80%,100%) [70%,80%) [0.6%,70%) [50,60%)
utilization Cl4 [90%,100%) [65%,90%) [50%,65%) [35%,50%)
Cl15 [40%,100%) [35%,40%) [30%,35%) [0,30%)
Cl6 [1,1.5) [0.6,1) [0.3,0.6) [0,0.3)
Governance and C17 [7%, 10%) [0.06,0.07) [5%, 6%) [4%,5%)
innovation C18 [3,4) [3,2) [2,1) [0,1)
capabilities C19 [90%,100%) [70%,90%) [50%,70%) [30,50%)
C20 [80%,100%) [50%,80%) [15%,50%) [0,15%)
C21 [90%,100%) [70%,90%) [30%,70%) [0,30%)

The classical domain matter-element matrix is constructed as follows:
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Ni Ei vyl [N, E; [a1; byl
i E a,; by
R; = (N;, B, V) = — ’ [2’: 2/} (22)

En vy E, [an; bnj]

where, N; denotes the j-th evaluation level .E;, E,, -+, E, are the evaluation indicators V1jy Vo) Unj

represent the dimensionless value intervals of the evaluation indicators for the j-th level; and [ayj, by;] is the

threshold interval of indicator E, under level N;.

(2) Definition of Section Domain

The minimum and maximum values of each indicator across all evaluation levels define the section domain

matter-element matrix, as shown in Eq. (23):

N, E; vp
E, vy

R, = (N, Ep, V) = e
En vpn

Here, N, represents all evaluation levels, Ej, Es, -
dimensionless value range of the evaluation indicators; and [@pn
(3) Determining the Matter-Element to be Evaluated

N E
E,
En

lEn

[apn

are the evaluation indicators,
byn]denotes the value interval.

(23)

is the

For a set of m indicators evaluating the zero-carbon level of an industrial park, the matter-element for the 7t/

indicator is given by

R, = (Nt' En, Vt) =

Ey vy
E, vy
En vtn

(24)

where, R.(t=1,2, - m) is the matter-element to be evaluated, and V, represents the actual data of the zero-carbon

indicators.

(4) Data Normalization

To eliminate dimensional differences, R; and R; are normalized using Egs. (25)-(26):

jrt = (N Euij)') =

th = (Nt; En; tIV) =
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(5) Calculation of Indicator Correlation Degree
The correlation degree Hs*(vk]-) between the actual value of each indicator and the classical domain is

calculated as:
1 n
He(vi) = 1~ mz pj(vij)w; (27)
j=1

Here, p(vi, v; j) denotes the distance between the matter-element and the classical domain, computed as:

1 1
p(vivy) = |vi =5 (ay + bi,-)| = (byj +ay)

1 (28)
p(vivip) = |v; — E(aip + bip)| — 5 (bip + aip)

In the equations, p(V;,V;;) represents the distance between V; and the interval V;; ,and p(vivip) represents
the distance between V; and the interval V.

(6) Determining the Evaluation Level

5
_ Hg (W) — =7 (Hs* (V1))
Ay (vy) = ————ml 2 = (29)
max {Hg-(vy)} — min {Hs-(vy;)}
s*=1 s*=1

5 _
S** — ZS;ls_ S (vk]) (30)
%oy Hs:(vij)

In Eq. (30), s** is the variable characteristic value of the matter-element to be evaluated. It determines the

degree of deviation toward adjacent levels and enables the ranking of objects within the same evaluation level.

3.6 Limitations of Model Application

Although the comprehensive evaluation framework proposed in this study offers theoretical advantages, its
practical application requires careful consideration of specific contexts. However, it must be acknowledged that
the model’s effectiveness is highly dependent on the completeness, accuracy, and consistency of the underlying
data. To enhance operational practicality, a tiered application strategy is proposed: (1) For parks with
comprehensive data, the full model can be applied to obtain precise diagnostic results. (2) For parks with partially
missing data, a fuzzy comprehensive evaluation method can be employed to estimate the missing values before
model application. Specifically, interval-valued triangular fuzzy numbers can handle quantitative indicators,
whereas expert scoring or analogy with similar parks is suitable for qualitative indicators. (3) For parks with a
critically inadequate data foundation, the priority should be to monitor core indicators (e.g., C1, C6, C12, C17)
and conduct a qualitative stage assessment.

4 Results and Discussion

Based on geographical distribution and socio-economic development levels, this study selected five industrial
parks in the Yangtze River Delta region as research subjects. Due to the large number of parks in the region,
conducting a comprehensive analysis of all parks would be resource- and time-prohibitive. Therefore, following
the Yangtze River Delta Urban Agglomeration Development Plan and using publicly available geographic
information platforms, we selected five representative parks: one industrial park each in Suzhou, Shanghai, and
Ningbo, and one science park each in Wuxi and Hefei. The evaluation results from these representative parks will
provide insights into the overall regional situation.

4.1 Indicator Weight Calculation
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First, a panel of three experts was assembled to assess and select the most appropriate indicators for evaluating
the low-carbon performance of industrial parks. The relative weight of each expert was determined based on three
criteria: (1) experience and knowledge in low-carbon development, (2) professional and educational background
in relevant fields, and (3) organizational position. The relative weights of the three experts are provided as
linguistic terms in Table 5. These linguistic terms were then converted into intuitionistic fuzzy numbers. Expert
weights were derived from these conversions.

Table 5. The importance and weight of experts

Expert

DM1

DM2

DM3

Language term weight

Important (0.318)

Very important (0.363)

Important (0.318)

Table 6. The index weights are transformed into interval triangular fuzzy numbers and weighted averages

Expert
DM2

DM3

Weighted Average

Indicators
DMI1
Cl [(0.85,0.95),1, (1,1)]
C2 [(0.55,0.75),0.9,(0.95,1
C3 [(0.45,0.55),0.7,(0.8,0.9
C4 [(0.55,0.75),0.9,(0.95,1
C5 [(0.85,0.95),1, (1,1)]
Co6 (0.55,0.75),0.9,(0.95,1

[
c7 [(0.25,0.35), 0.5, (0.65,0.
c8 [(0.45,0.55),0.7, (0.8,0.9
C9 [(0.45,0.55),0.7, (0.8,0.9
C10 [(0,0.15), 0.3, (0.45,0.55]
cll [(0.85,0.95),1, (1,1)]

c12 [(0.55,0.75), 0.9, (0.95,1
c13 [(0.45,0.55),0.7, (0.8,0.9
Cl4 [(0.45,0.55),0.7, (0.8,0.9
C15 [(0.25,0.35), 0.5, (0.65,0.
Cl16 [(0.25,0.35), 0.5, (0.65,0.

C17 [(0.85,0.95),1, (1,1)]
C18 [(0.45,0.55),0.7, (0.8,0.9
C19 [(0.85,0.95), 1, (1,1)]
C20 [(0.45,0.55),0.7, (0.8,0.9
c21 [(0.85,0.95),1, (1,1)]

[(0.45,0.55),0.7, (0.8,0.9
[(0.45,0.55),0.7, (0.8,0.9
[(0.25,0.35), 0.5, (0.65,0.
[(0.45,0.55),0.7, (0.8,0.9
[(0.45,0.55),0.7, (0.8,0.9
[(0.85,0.95),1, (1,1)]
[(0,0.15),0.3, (0.45,0.55’
[(0.45,0.55),0.7, (0.8,0.9
[(0.85,0.95),1, (1,1)]
[(0.25,0.35), 0.5, (0.65,0.
[(0.25,0.35), 0.5, (0.65,0.
[(0.45,0.55),0.7, (0.8,0.9
[(0.45,0.55),0.7, (0.8,0.9
[(0.25,0.35), 0.5, (0.65,0.
[(0.45,0.55),0.7, (0.8,0.9
[(0.45,0.55),0.7, (0.8,0.9
[(0.85,0.95),1, (1,1)]
[(0.85,0.95),1, (1,1)]
[(0.45,0.55),0.7, (0.8,0.9
[(0.45,0.55),0.7, (0.8,0.9
[(0.45,0.55),0.7, (0.8,0.9

[(0.85,0.95),1, (1,1)]
[(0.55,0.75), 0.9, (0.95,1)]
[(0.55,0.75), 0.9, (0.95,1)]
[(0.45,0.55),0.7,(0.8,0.95)]
[(0.55,0.75), 0.9, (0.95,1)]

[(0.85,0.95),1, (1,1)]

[(0.85,0.95),1, (1,1)]
(0.45,0.55),0.7, (0.8,0.95)]
(0.45,0.55),0.7, (0.8,0.95)]
(0.45,0.55),0.7, (0.8,0.95)]
(0.45,0.55),0.7, (0.8,0.95)]

[(0.85,0.95),1, (1,1)]
[(0.45,0.55),0.7,(0.8,0.95)]
[(0.45,0.55),0.7, (0.8,0.95)]

[(0.85,0.95),1, (1,1)]
[(0.45,0.55),0.7,(0.8,0.95)]

[(0.85,0.95),1, (1,1)]
[(0.45,0.55),0.7, (0.8,0.95)]

[(0.85,0.95),1, (1,1)]
[(0.45,0.55),0.7, (0.8,0.95)]
[(0.45,0.55),0.7, (0.8,0.95)]

—_ — — =

[(0.704,0.804), 0.89, (0.926,0.9¢
[(0.513,0.677), 0.827, (0.895,0.S
[(0.409,0.540), 0.69, (0.792,0.8¢
[(0.481,0.613),0.763, (0.847,0.
[(0.609,0.740), 0.858, (0.911,0.S
[(0.754,0.885), 0.967, (0.983,0.€
[(0.35,0.468), 0.586, (0.688,0.7¢
[(0.450,0.549), 0.699, (0.799,0.S
[(0.595,0.695)0.808, (0.872,0.9¢
[(0.234,0.350), 0.5, (0.633,0.74¢
[(0.504,0.604), 0.722, (0.808,0.S
[(0.609,0.740), 0.858, (0.911,0.S
[(0.450,0.549), 0.699, (0.799,0.S
[(0.377,0.477),0.627, (0.745,0.€
[(0.513,0.613),0.731, (0.815,0.
[(0.386,0.486), 0.636, (0.752,0.€
[(0.849,0.949),0.999, (0.999,0.S
[(0.595,0.695), 0.808, (0.872, .9¢
[(0.704,0.84),0.890, (0.926,0.9¢
[(0.450,0.549), 0.699, (0.799,0.S
[(0.577,0.677),0.795, (0.863,0.S

The subjective weights of the indicators were calculated according to the procedures described in Sections 3.1

and 3.2. The expert weights, determined using intuitionistic fuzzy sets, were applied to transform the linguistic
evaluations of indicator importance into interval-valued triangular fuzzy numbers. The resulting data are
summarized in Table 6.

The subjective weights were obtained by defuzzifying the triangular fuzzy weighted averages of the indicators.
The objective weights were determined using the improved CRITIC method described in Section 3.3. Using the
maximum-minimum deviation method, the optimal combination coefficients for the subjective and objective
weighting methods were determined as 0.533 and 0.467, respectively. This determination was based on the
principles of maximizing deviation from the ideal solution and minimizing the worst-case deviation. These
coefficients were then substituted into Egs. (20)-(21) to calculate the combined weights, as shown in Table 7.

Table 7. The weight results of the secondary indicators in three cases

Target Layer Secondary Triangular Interval Fuzzy Improve Combined
g ¥ Indicators Function CRITIC Weight
Cl 0.055 0.028 0.041
The C"g}’;’ﬁ‘epﬁf level C2 0.050 0.040 0.045
p C3 0.043 0.043 0.043
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C4 0.047 0.036 0.041

Cs5 0.053 0.063 0.058
C6 0.059 0.039 0.048
C7 0.037 0.053 0.046
C8 0.044 0.062 0.054
C9 0.050 0.045 0.047
C10 0.032 0.040 0.037
Cl1 0.046 0.054 0.050
Cl12 0.053 0.044 0.048
Cl13 0.044 0.055 0.050
Cl4 0.040 0.067 0.054
C15 0.046 0.049 0.048
Cl6 0.041 0.081 0.062
C17 0.061 0.065 0.063
C18 0.050 0.054 0.052
C19 0.055 0.044 0.049
C20 0.044 0.016 0.029
C21 0.050 0.023 0.035

As shown in Table 7, the improved CRITIC method captures information through the comparative strength and
conflict among indicators. This approach highlights the influence of highly variable and strongly correlated
indicators—such as carbon emission intensity and energy structure—on the parks’ low-carbon performance.
Indicators such as the smartness level of energy management systems, comprehensive utilization rate of industrial
solid waste, and value-added output per unit of construction land typically receive higher weights. This tendency
may bias the evaluation results toward the high-carbon end of the spectrum. Therefore, weighting based on
triangular fuzzy functions within the intuitionistic fuzzy set framework was employed. This method incorporates
experts' degrees of hesitation and membership regarding indicator importance by using triangular fuzzy numbers
to represent semantic judgments. This approach makes the weights more representative of the parks' actual low-
carbon operational characteristics. The combined weights fall between those derived from the individual methods,
indicating that the weighting scheme has been moderated through integration. This integration mitigates biases
inherent in any single method and enhances the objectivity and robustness of the low-carbon performance
evaluation.

4.2 Comprehensive Evaluation and Level Diagnosis
Through field investigations and literature reviews, current values for each low-carbon indicator were collected

and calculated. By integrating the evaluation criteria with Eq. (22), Egs. (25)-(26), the normalized matter-element
matrix for the classical domain of the evaluated subjects was constructed as follows:

N, C, 028 Ny €, 047 N, ¢, 068
NE = C: 015\ yp _ C, 0.:12 NE = C:z 0_:28 o
C,y 056 Cp 064 . 077
Ny € 072 Ny, C; 058
NE = Gz 0-f¥0 NE = C:2 o.:35 -
Cy 080 C, 060

The correlation coefficients for each indicator across all grades were calculated using the methodology described
in Section 3.5. The correlation coefficient values for each indicator and the comprehensive evaluation results for
the five parks were determined based on the maximum correlation principle, as shown in Figure 3.
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Figure 3. The correlation degree and evaluation grades of the index layers of each park

As can be seen from Figure 3, the index correlation graph of the five parks clearly reveals the imbalance in their
internal development, which directly supports the core finding of this paper regarding the bottleneck effect. The
proportions of indicators rated at Level III or above were 71.43%, 80.95%, 19.05%, 90.48%, and 95.24% for Parks
A through E, respectively. Parks A, B, D, and E exhibited relatively weaker overall indicator performance, whereas
Park C demonstrated consistently stronger performance across most indicators. Further analysis revealed that
although Parks E and D met Level I standards for key indicators (e.g., C1, C8, C19), they lacked clearly defined
and systematic net-zero carbon pathways. Parks B and A were in transition from high-carbon to low-carbon
development. Park B showed potential for improvement in process efficiency indicators such as C4 and C15. Park
A demonstrated strong performance in end-of-pipe emission control indicators (e.g., C7, C10), indicating a current
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focus on downstream measures rather than process optimization and systemic coordination. Park C maintained
most indicators at Level I1I or above, with particularly strong performance in foundational metrics such as C3 and
C21. This indicates advantages not only in distributed energy technologies but also in management systems,
transparency, and public engagement. These visualized data strongly demonstrate that the zero-carbon
transformation of the park is not a simultaneous improvement of all indicators, but rather a process of overcoming
shortcomings in key dimensions.

Table 8. The relevance of each park for each level

Net-Zero Near-Zero Low-Carbon High
Park Carbonization Carbon Standards Carbonization

Standard Standard Standard

A 0.804 0.971 1.002 0.836

B 0.778 0.943 0.987 0.863

C 0.925 0.943 0.847 0.708

D 0.676 0.826 0.903 0.937

E 0.642 0.793 0.896 0.931

Based on the comprehensive correlation scores for each level in Table 8, the development levels of the parks
were calculated using Egs. (29)-(30) and ranked by their s** values, as shown in Table 9. For example, Park E's

s** value of 3.199 indicates a relatively low level of low-carbon development, while Park D’s s** value of 3.174
suggests above-average carbon emissions, albeit lower than Park E's.

Table 9. Comprehensive correlation and ranking of each park

Park S’ Evaluation Results s Rank
A 1.002 Low-Carbon Park 2.660 2
B 0.987 Near-Zero Carbon Park 2.824 3
C 0.943 Near-Zero Carbon Park 1.868 1
D 0.937 High-Carbon Park 3.174 4
E 0.931 High-Carbon Park 3.199 5

From a dimensional perspective, all parks demonstrated relatively strong performance in governance and
innovation capabilities, suggesting established policy support and social consensus. However, significant
disparities emerged in the dimensions of carbon management and emission reduction, as well as circular economy
and resource utilization. This finding suggests that the current low-carbon transformation remains primarily
technology-driven, with market mechanisms and resource circulation coordination not yet fully leveraged.

4.3 Sensitivity Analysis

To ensure the reliability of the conclusions derived from the combined weights determined by the maximum-
minimum deviation method, a sensitivity analysis was conducted. This analysis tested the robustness of the
evaluation results against variations in the subjective-objective weight allocation ratio. A sensitivity coefficient A
was introduced, varying within the range [0,1] with an increment of A1 = 0.2, to generate different combined
weighting schemes. The comprehensive scores were recalculated for each scheme, yielding new ranking sequences
as shown in Table 10 and Figure 4.

The sensitivity analysis results presented in Figure 4 provide critical evidence for the robustness of the
evaluation conclusions in this study. The results demonstrate that when A varies across [0,1], simulating scenarios
from complete reliance on objective data to complete reliance on expert judgment—the comprehensive scores
exhibit minor fluctuations. However, the final ranking order (C > A > B > D > E) remains unchanged. This
indicates that the evaluation results are robust and insensitive to the choice of weight allocation strategy. This
finding is significant because it demonstrates that the disparities in park development levels identified in this study
originate not from the arbitrary choice of subjective weighting schemes, but from objective, structural performance
gaps across multiple indicators.

Table 10. The comprehensive correlation degree of the combined weights under different interval coefficients

Interval [0.1] [0.2,0.8] [0.4,0.6] [0.6,0.4] [0.8,0.2] [1,0]
A 2.562 2.567 2.572 2.578 2.583 2.589
B 2.883 2.879 2.874 2.869 2.864 2.858
C 1.822 1.815 1.809 1.804 1.798 1.793
D 3.251 3.252 3.253 3.254 3.255 3.256
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E 3.255 3.259 3.262 3.266 3.270 3.274

Park ranking under weight changes
123
T

[0,1] ' [0.2,0.8] ' [0.4,0.6] ' [0.604] [0.8,0.2] ' [1,0]

Weight interval value

Figure 4. Sort after the weight interval changes

The robustness of these results fundamentally originates from the inherent structural disparities in net-zero
carbon development levels among the parks. As previously discussed, Parks D and E have achieved Level III or
higher for over 90% of their indicators, establishing a comprehensive leading advantage. Conversely, Park C
remains at Level III or below for over 80% of its indicators, indicating systemic developmental lag.

This fundamental heterogeneity implies that the excellence of high-performing parks derives from synergistic
improvements across multiple indicators, not from outstanding performance in isolated metrics. Similarly, the
shortcomings of lagging parks manifest as multidimensional, concurrent challenges. Consequently, weight
reallocation can only induce minor fluctuations in the internal score structures of individual parks; it cannot
overturn their inherent hierarchical ranking determined by comprehensive performance. The reliability of this
study's evaluation conclusions is rooted not in the specific weighting scheme, but in the objectively existing,
fundamental developmental gradient among the research subjects.

4.4 Comparative Analysis

To verify the robustness of this study's conclusions at the model framework level, the GRA-KL-TOPSIS
integrated model was selected as a benchmark for comparison. This choice is scientifically justified by the
fundamental theoretical differences between the models. The matter-element extension model, based on extension
set theory, achieves grade diagnosis through correlation functions and represents an absolute evaluation paradigm.
In contrast, the GRA-KL-TOPSIS model integrates grey relational analysis with the ideal solution method,
performing rankings by measuring relative closeness to the ideal solution, and represents a relative evaluation
paradigm. The specific algorithmic steps of the GRA-KL-TOPSIS model are as follows:

Step 1: Calculate the weighted normalized matrix Z.by multiplying the normalized matrix P by the weight vector
w. Then, determine the positive ideal solution (Z*) and the negative ideal solution (Z~) from the alternatives.

Z = (Zij)txz = WiPi) txz (33)

Zij € Z+,7'niinzij | Zij € Z_} = {12, 23_ li} (34)

i A—
J¥ = {miaxzij |

]E = {miinzij |Zij € Z+,mquzij Zij € Z_} = {15, ZE li} (35)

where, jZ denotes that a larger value is better for the j-th indicator (benefit-type), and jZ denotes that a smaller
value is better (cost-type).

Step 2: Calculate the grey correlation coefficients i ji and ij¢ between the value of the j -th indicator for the i-
th alternative and jZ or jZ, respectively.
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where, p is the distinguishing coefficient, set to 0.5 based on research experience.
Step 3: Calculate the grey correlation degrees i¥ and ¥ for the i-th alternative with respect to jZ and jZ.

n
= wijl (38)
=1
n
vi= ) wift (39)
=

Step 4: Calculate the Kullback - Leibler (KL) divergence i¢ and i? from the indicator values of the evaluated
object to the positive and negative ideal solutions of matrix F.

n
.f .f
d_ oIy _F 1-j4
if E [J+lgﬁj+(1 J+)lgl_fij] (40)
j=1
n
if —if
. E: J2 . 1-j2
i4= {Zl —+ 1 —-jH } 41
J gfz]- J gl_fi]_ (41)
j=1

Step 5: Determine the comprehensive relative closeness Cr; for each evaluation target.

rd
Cri=—— (42)
g4 d

The model comparison results presented in Figure 5 verify the reliability of this study from a methodological
perspective and reveal the inherent value orientations of different modeling approaches.

Although the matter-element extension model and the GRA-KL-TOPSIS model differ in their theoretical
foundations—the former focuses on absolute grade evaluation, whereas the latter emphasizes relative ranking—
they exhibit a high degree of consistency in the overall ranking (Spearman’s p = 0.8). This consistency cross-
validates the objectivity of the differences in the carbon development stages among the industrial parks. It is worth
noting that slight differences exist in the rankings of Parks A and C between the two models. Specifically, the
GRA-KL-TOPSIS model ranked Park A first due to its highest proximity to the ideal solution (0.5720). In contrast,
the matter-element extension model ranked Park C first, based on its more balanced overall development and
superior comprehensive score (1.868), as detailed in Table 11. Furthermore, except for Park E, the adjusted
rankings of the other parks exhibit a fluctuating trend in the line chart in Figure 5. This observed volatility provides
valuable insights.
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Figure 5. Comparison of matter-element extension and TOPSIS evaluation results

The TOPSIS model is more sensitive to exceptionally performing indicators, whereas the matter-element
extension model places greater emphasis on the overall balance of the indicator system. This contrast highlights a
key advantage of using the matter-element extension model for “diagnosis” over simple “ranking”: it can
effectively identify parks that achieve high comprehensive scores yet retain critical weaknesses. This capability
provides deeper insights for formulating targeted policies. Collectively, the results from multiple perspectives
confirm that inherent disparities in the development levels of industrial parks are the dominant factor determining
the evaluation conclusions. The choice of research methodology does not alter this fundamental conclusion but
reveals its characteristics from different dimensions.

Table 11. The comprehensive Posting progress and ranking under comparative analysis

Park i4 i4 Cr; Rank
A 0.1966 0.1471 0.5720 1
B 0.1498 0.1981 0.4036 4
C 0.2009 0.1568 0.5616 2
D 0.2499 0.2128 0.5402 3
E 0.2027 0.3032 0.4006 5

The fundamental cause of these discrepancies is the uneven development of carbon management levels across
industrial parks. The TOPSIS method tends to over-reward outstanding strengths, whereas the matter-element
extension model over-penalizes weaknesses. The ultimate goal is to guide all parks toward a balanced, high-quality
low-carbon development model that addresses all aspects, rather than pursuing excellence in any single metric.

5. Conclusion

Accurately assessing the zero-carbon development stage of industrial parks is fundamental for formulating
effective emission reduction strategies. This study constructs a comprehensive evaluation model that integrates
interval-valued triangular fuzzy sets, an improved CRITIC method, and matter-element extension theory. This
model enables a methodological shift from traditional "ranking" to precise "diagnostics." An empirical analysis of
five industrial parks in the Yangtze River Delta revealed that Park C has entered a near-zero-carbon stage, whereas
Parks D and E remain in a high-carbon stage, with significant disparities observed across all parks.

The advantages of leading parks stem from the synergy between governance innovation and energy structure
optimization. In contrast, bottlenecks in lagging parks are concentrated in dimensions such as carbon management
and the circular economy. Consequently, the zero-carbon transition of industrial parks must follow differentiated
pathways. For high-carbon parks, the immediate priority is to consolidate data and management foundations. This
involves prioritizing the deployment of a comprehensive carbon accounting system, initiating energy-saving
retrofits for key high-consumption equipment, and rapidly installing distributed photovoltaic systems and solid
waste disposal facilities. For near-zero- and low-carbon parks, the focus shifts to systemic coordination and value
capture. Deep decarbonization can be achieved by establishing carbon performance incentive mechanisms,
developing smart microgrids with multi-energy coordination, and managing supply chain carbon footprints. At the
policy level, we recommend implementing park-specific carbon budget management and differentiated
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performance evaluation based on this assessment framework. Market mechanisms should be leveraged to drive
cost-effective emission reductions.

Methodologically, this study demonstrates the model's robustness and interpretability. Sensitivity analysis
confirmed that perturbations in weight assignments did not alter the ranking outcomes. Furthermore, a comparative
analysis with the GRA-KL-TOPSIS model revealed a high degree of consistency. This indicates that the robustness
of the conclusions stems not from arbitrary weight allocation but from intrinsic structural development disparities
among the parks—reflecting fundamental differences rather than methodological bias.

The primary contributions of this study are threefold: (1) proposing a robust and diagnosable framework for
assessing the carbon development stage of industrial parks; (2) empirically identifying and explaining bottleneck
patterns in zero-carbon transformation; and (3) offering differentiated transformation pathways based on
diagnostic findings. For parks with leading advantages, strengths in governance and energy should be extended to
carbon management and circular economy dimensions. For high-carbon parks, foundational capabilities must be
prioritized to prevent the amplification of bottleneck effects. It should be noted that the conclusions are derived
from a sample in the Yangtze River Delta; thus, their generalizability requires further validation in resource-based
and heavy industrial parks. Future research should expand this framework to multiple types of industrial parks,
compare and simulate their differentiated low-carbon transition paths. Furthermore, the ultimate goal of industrial
park diagnosis is to promote the transformation of the management paradigm from post-hoc evaluation to real-
time decision-making. Therefore, future studies should explore the construction of a carbon management platform
based on digital twins and artificial intelligence, to realize real-time perception, predictive early warning, and
adaptive optimization of carbon flows, thereby providing intelligent decision support for industrial parks
throughout the entire life cycle of planning, construction, and operation.
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Appendix A:

Table Al. The Definition and Quantification of Indicators for Carbon Development Stages in Industrial
Parks

Indicator Definition & Quantification Method Threshold Rationale

Cl1 The proportion of energy-consuming units equipped
with distributed energy systems. Formula:C; =
(Number of units with distriln%ted systems) % 100%
Total number of units

Aligned with the development goals outlined in
China's "14th Five-Year Plan for Modern Energy
Systems" and benchmarked against practical targets
(e.g., >50% for large-scale application) from leading
parks like Suzhou Industrial Park and Shanghai
Jingiao Export Processing Zone.

C2

The percentage of total installed electricity capacity
derived from renewable sources. Formula: C, =

Derived from the International Energy Agency's
(IEA) "Net Zero by 2050: A Roadmap for the Global
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Indicator Definition & Quantification Method Threshold Rationale
( Inst'alled Tenewabl_e _Capacity' )XIOO%. Energy Sector", which recommends that renewable
Total installed electricity capacity generation shares reach 60% by 2030 and nearly
90% by 2050 in advanced economies. Thresholds are
adapted for the Chinese context.
C3 The electricity consumption per unit area of public Directly based on the mandatory national standard
buildings relative to the industry benchmark. GB/T 51161. A ratio of 1.0 indicates compliance,
Formula: C; = (P arkrs building energy intensity while a ratio below 0.5 represents a "leading"
Benchmark value performance level.
100%). The benchmark is the "constraint value"
specified for the corresponding climate zone and
building type in the Chinese national standard
“Standard for energy consumption of
building"(GB/T 51161-2016).
C4 The percentage of trips made using low-carbon References the EU's Sustainable Urban Mobility
modes (walking, cycling, new energy vehicles, Plans (SUMPs), which set a target of 70-80% or
public transport). Formula: higher for green travel modal share in core cities as a
C, = (N umber of low=carbon ml’s)x 100%. key indicator of sustainability
Total number of trips

C5 A score (0-100) evaluating the level of system According to the "Smart Park Construction Guide", a
intelligence, determined by expert assessment based score above 75 signifies an "Integrated and

on guidelines such as China's "Smart Park Optimized" level, and above 90 represents an
Construction Guide". "Innovation and Leadership" level.

Cco6 The average annual reduction rate of CO2 emissions | Based on China's "Action Plan for Carbon Dioxide
per unit of industrial added value compared to a base | Peaking Before 2030", which mandates a reduction
year (e.g., the final year of the 13th Five-Year Plan). | of over 18% during the 14th Five-Year Plan period

I : . and over 15% in the 15th, translating to an average
Formula: Cg = |1 - (E) *x100% .Where I; current | annyal reduction rate of 4-4.5%. A threshold of 4.5%
year carbon intensity I, base year n is the number is set as an ambitious target.
of years.
Cc7 The proportion of fossil fuel CO2 emissions Based on the IEA's "Energy Technology
captured by CCUS technology. Formula: Perspectives" report, which indicates that CCUS
C7 = (Annual CO2 captured by CCUS / Total fossil | application rates in industry need to scale up from
fuel CO2 emissions) x 100%. This indicator is around 10% by 2030 to nearly 40-70% by 2050 to
particularly relevant for high-emission parks (e.g., achieve net-zero goals.
chemical, steel).
C8 The carbon emissions per unit of product relative to The methodology is aligned with the benchmark
an industry benchmark. Formula: approach core to China's national Emissions Trading
_( Product carbon intensity Scheme (ETS), an internationally recognized method
8~ Industry benchmark value for ensuring fairness and efficiency. Thresholds
directly reflect carbon efficiency competitiveness
within the sector.
Cc9 The proportion of the park's total carbon emissions | The reliance on off-site mitigation instruments like
offset by purchasing Green Electricity Certificates GECs is expected to increase as decarbonization
(GECs). Formula: deepens, making this a key indicator for advanced
9= (Emlsswn reduction equ.lva'lent of GECs ) x 100% stages.
Total park emissions
C10 The park's energy consumption per unit of industrial | Using a relative value helps benchmark the park's
added value relative to the average of its host performance against its regional peers, reflecting
province/municipality. Formula: achievements in both technological and structural
C10 = (— Parkrs energy intens}ity —) x 100% energy savings.
Regional average energy intensity
Cl1 he percentage of enterprises covered by the While 100% compliance is the legal requirement per
emissions trading system that fully and timely China's "Interim Regulations on Carbon Emissions
surrender their carbon quotas. Formula: Trading", a Tier I threshold of 90% acknowledges
Cl1=( Number of compliant enterprises y |  the high national compliance rate (>99.5% in the
Total number of enterprises obligated to comply” | firgt cycle) while allowing for minor, non-systemic
% 100% del
elays.
C12 The proportion of industrial solid waste that is Based on China's "Standard for National Eco-

comprehensively utilized. Formula:
Cl2=

Amount utilized

( )%

Amount generated + previous years’ stockpiles

100%

industrial Demonstration Parks" (HJ 274-2015) and
the "Indicator System for 'Zero-Waste City'
Construction”, which identify a utilization rate
exceeding 90% as an international advanced level.
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Indicator Definition & Quantification Method Threshold Rationale
C13 The proportion of water reused in industrial The World Business Council for Sustainable
processes. Formula: Development's (WBCSD) "Water Tool" considers an
C13 = (Volume of water reused / Total water industrial water recycling rate above 80% as "best
intake)*100% practice".
Cl4 The proportion of domestically generated waste that None
is separately collected at source. Formula:
Cl4= Amount of separately collected waste )>< 100%
Total amount of waste transported
C15 The percentage of construction land area dedicated | References China's "Urban Greening Planning and
to green space. Formula: Construction Indicators" and standards for eco-
C15 = (Green space area / Total construction land industrial parks.
area) x 100%
Cl6 The economic output density, measured as industrial Benchmarked against world-class parks like
added value generated per unit area of construction | Singapore's Industrial Estate and Japan's Kawasaki
land. Formula: Eco-Town, which demonstrate significantly higher
Cl16= (mdusmal added value )x100% land productivity through intensive development.
Construction land area
C17 The share of the park administration's budget Reflects the level of financial commitment and
allocated specifically to low-carbon development resource allocation by the park management
initiatives. authority towards the green transition, often
influenced by local government support intensity.
C18 The frequency of carbon-related information Aligned with the Task Force on Climate-related
disclosure. Scored ordinally: 0=None, 1=Annual, Financial Disclosures (TCFD) recommendation for
2=Semi-annual, 3=Quarterly, 4=Monthly/Near-real- more frequent and timely disclosure, as well as
time. Assessed via park websites, sustainability guidance from bodies like the Shanghai Stock
reports, or public platforms. Exchange on environmental disclosure frequency.
C19 The proportion of enterprises that have established Consistent with China's policy direction of
and operate a certified carbon management system. | promoting carbon management system construction
Formula: in key enterprises.
Cl19=
Number of certified enterprises
(Total number of enterprises targeted for certification )
% 100%.
C20 The percentage of key emission sources (as defined | Emphasizes the foundational role of digital platforms
by the park based on energy consumption/emission for transparency and precision in carbon
levels) connected to a unified digital carbon management, as highlighted by initiatives like the
management platform. Formula: WEF's Global Lighthouse Network. .
_ Number of connected sources o
C20 (Total number of key sources /) * 100%.
C21 The proportion of enterprises that have conducted | Such audits are a standardized starting point for deep

zero-carbon production audits or in-depth energy
conservation diagnostics. Formula:
C21 = (Number of enterprises conducting audits /
Total number of enterprises) x 100%.

decarbonization at the enterprise level, promoted by
organizations like the World Resources Institute
(WRI) under frameworks for carbon footprint
accounting and reduction planning.
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