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Abstract: The rice crisis represents a significant threat to food security and economic stability in Southeast Asia, a region where rice serves as the primary staple for the majority of the population. This crisis is exacerbated by a confluence of factors, including climate change, crop failures, and restrictive export policies, as exemplified by the El Niño phenomenon and India’s 2023 rice export ban. Rising rice prices have been linked to increased social unrest, with the potential to trigger widespread demonstrations across affected nations. To proactively address this issue, the restlessness indicator was introduced as a predictive tool, integrating key variables such as rice prices, consumption  patterns,  and  per  capita  income.  This  study  employs  a  Spatio-Temporal  Autoregressive  (STAR) model to forecast restlessness values across six Southeast Asian countries—Indonesia, the Philippines, Thailand, Vietnam,  Malaysia,  and  Cambodia—from  2024  to 2028.  The  STAR  (5,1)  model  was  identified  as  the  optimal framework, achieving a Mean Absolute Percentage Error (MAPE) of 15.1%. The forecasting results indicate that none of the analyzed countries are projected to enter a state of unprecedented restlessness during the specified period, suggesting that no severe rice crisis is anticipated within this timeframe. These findings provide critical insights for policymakers and stakeholders, enabling the development of preemptive strategies to mitigate potential food  security  challenges.  The  study  underscores  the  utility  of  the  restlessness  indicator  as  a  robust  tool  for monitoring and forecasting rice-related crises, contributing to the broader discourse on sustainable food systems in Southeast Asia. 
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1. Introduction

1.1 Background 

The majority of the world's population, especially in developing countries such as Indonesia, relies on rice as their  primary  food  source  to  meet  daily  nutritional  needs  (Rahmawati,  2006).  According  to  the  data  from  the Foreign Agricultural Service (FAS) of the United States Department of Agriculture (USDA), rice consumption in Asia accounts for 80% of the total global rice consumption. Figure 1 shows the comparison of rice consumption between Asia and the world. 

In 2023, most regions in Asia experienced dry conditions or droughts accompanied by a drastic reduction in rainfall. This phenomenon, known as El Niño, is a major climate disturbance that occurs every two to eight years in the equatorial Pacific Ocean (Soni & Singh, 2022). The impact of El Niño results in increased rainfall in Latin America  (Scaife  et  al., 2019),  while  the  opposite  occurs  in  Australia  and  Asia.  Although  not  all  parts  of  Asia experience drought, some regions receive excessive rainfall due to El Niño, such as northern and southwestern India. 

Extreme climate change contributes to crop failures, notably in India. High rainfall in India has caused flooding in several regions, including major rice-producing areas. According to reports from India's Ministry of Agriculture, 49.8 million hectares of land (approximately 15.2% of India's total area) were flooded, with a significant portion https://doi.org/10.56578/of110102 
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being  rice  fields.  Figure  2  shows  the  rainfall  pattern  related  to  El  Niño  across  various  areas  worldwide (International Research Institute for Climate & Society,  2016). 







Figure 1. Comparison of rice consumption between Asia and the world Figure 2. Rainfall pattern related to El Niño across various areas worldwide Source: International Research Institute for Climate & Society (2016) Due to crop failures, India officially imposed a rice export ban starting from July 20, 2023, leading to a surge in rice prices (inflation) across Asia. According to Consumer News and Business Channel (CNBC), the price of rice in Indonesia as of September 2023 reached IDR 14,290/kg, marking a 14.5% increase from IDR 12,480/kg in September of the previous year. Based on observations from Kompas, the number of regions experiencing rice price increases rose from 300 districts/cities in the first week of September 2023 to 341 districts/cities in the second week of September 2023. According to the Voice of America (VOA), the President of the Philippines implemented price controls on September 5, 2023, after rice prices reached their highest point in 14 years. According to Nation Thailand (2023), in Thailand, rice prices reached a 17-year high in September 2023, prompting the government to urge farmers to plant only one rice crop to conserve water amid limited rainfall. 

A  rice  crisis  can  have  far-reaching  consequences  across  various  levels  of  society,  particularly  affecting impoverished populations, government policies, and global trade dynamics. For impoverished populations, rice is 14
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often a staple food and a primary source of calories. A shortage or sharp increase in rice prices can lead to food insecurity, malnutrition, and heightened poverty levels. Families may be forced to allocate a larger portion of their income to purchasing rice, leaving less for other essential needs such as healthcare and education. This situation can exacerbate inequality and deepen the vulnerability of already marginalized groups (FAO, 2023). According to BBC News, in February 2024, many low-income households in Indonesia opted to buy subsidized rice (SPHP) due to high rice prices. People queued from early morning to obtain subsidized rice distributed by Bulog, which ran  out  within  an  hour,  leaving  many  without  access  due  to  limited  supply.  In  some  areas,  frustration  and dissatisfaction  over  rising  rice  prices  led  to  protests.  According  to  CNBC  Indonesia,  workers  staged  a demonstration on Jalan Merdeka Barat on September 25, 2023, due to continuously rising rice prices. Students in Sukabumi also protested in front of the DPRD building in March 2024 over skyrocketing rice prices in the region. 

At the governmental level, a rice crisis often prompts immediate policy responses to stabilize supply and prices. 

Governments may implement export bans, subsidies, or price controls to protect domestic consumers. However, such measures can sometimes backfire, leading to market distortions, reduced incentives for farmers, and strained international trade relations. For instance, export restrictions by major rice-producing countries can disrupt global supply chains, further inflating prices and creating tensions among trading partners. Additionally, governments may need to increase spending on social safety nets, such as food aid or cash transfers, which can strain national budgets and divert resources from other critical areas like infrastructure or education. 

On a global scale, a rice crisis can disrupt international trade and geopolitical stability. The crisis can intensify competition for resources, leading to potential conflicts or alliances formed around securing food supplies. Thus, the ripple effects of a rice crisis extend beyond immediate food shortages, influencing economic, political, and environmental systems worldwide. 

Climate change, crop failures, and export restrictions can make rice less accessible or cause shortages in rice-consuming countries like Indonesia. If left unchecked, this situation could lead to a rice crisis. The unpredictable factors that can harm nations and communities can be mitigated if governments anticipate potential scenarios and implement  appropriate policies.  Forecasting  rice  conditions  in  each  country (especially  in  Asia)  can  serve  as  a consideration  for  the  Ministry  of  Foreign  Affairs  of  the  Republic  of  Indonesia  in  formulating  policies.  These policies could include exporting rice to countries in need to generate economic benefits or imposing import or export  restrictions  to  ensure  domestic  rice  availability.  Given  the  aforementioned  factors,  forecasting  rice conditions  using  the  restlessness  indicator  as  a  strong  predictor  of  a  national  rice  crisis  is  essential  for  policy formulation. 

Restlessness (R) is an indicator that reflects a country's rice situation, derived from rice prices, rice consumption, and per capita income (Hidayat et al.,  2021). An increase in the restlessness value in a given year signifies greater difficulty in securing rice during that period. 







Figure 3. Restlessness value in Southeast Asia in 2011 
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Based on Figure 3,  the restlessness value in Southeast Asia in 2011 suggests a spatial effect, where neighboring countries tend to exhibit similar restlessness values. For example, the restlessness values of countries bordering Cambodia are similar (indicated by dark colors). Thailand and the Philippines, which are close to Malaysia, also show similar restlessness values to Malaysia. This phenomenon aligns with Tobler's First Law, which states that 

"everything is related to everything else, but near things are more related than distant things." 

Figure  4  shows  the  temporal  trend  of  restlessness  values  in  Southeast  Asian  countries  from  1992  to  2023. 

Indonesia, Brunei, the Philippines, Malaysia, and Thailand exhibit similar and stationary trends, while Cambodia shows fluctuations between 1995 and 2000. These fluctuations in Cambodia result from the country's economic and political dynamics. The per capita income used to calculate restlessness in Cambodia dropped significantly between 1995 and 2000, leading to a spike in restlessness values. Figure 5 shows the temporal trend of restlessness values in Southeast Asian countries from 1992 to 2023 (excluding Cambodia and Vietnam). 

Given the suspected spatial and temporal effects in restlessness values, a forecasting method that accounts for both  spatial  and  temporal  dependencies  is  required.  Therefore,  this  study  forecasts  restlessness  values  across multiple locations using the STAR model, a spatio-temporal approach. The forecast restlessness values were used to determine unprecedented restlessness in this study, which can indicate a potential rice crisis. 







Figure 4. Restlessness values in Southeast Asia (1992-2023) 





 

Figure 5. Restlessness values in Southeast Asian countries (1992-2023, excluding Cambodia and Vietnam) 16

1.2 Research Assumptions 



The assumptions of this study state that the autoregressive coefficient of the STAR model remains constant for each location, meaning that the temporal pattern in Indonesia, the Philippines, Thailand, Vietnam, Malaysia, and Cambodia is considered homogeneous. 



2. Methodology 



2.1 Data Source 



The data used in this study is secondary data sourced from the websites of the Food and Agriculture Organization (FAO) of the United Nations, the FAS, and the World Bank. This data consists of annual time-series data for six Southeast  Asian  countries  (Indonesia,  Philippines,  Thailand,  Vietnam,  Malaysia,  and  Cambodia)  spanning  32 

years, from 1992 to 2023. The key variables include: 

a)  Producer rice price 

The producer price for rice refers to the price received by farmers for their primary harvest collected at the initial selling point (the price paid at the farm gate). This data is expressed in $US/kg, with each year’s value representing the average price received by farmers throughout that year.  Producer rice price data can be accessed through the link: (https://www.fao.org/faostat/en/#data/PP). 

b)  Income per capita 

Income per capita, expressed in $US/person, represents the average income earned by an individual in a country over a specific period. This value is calculated by dividing the total national income (or GDP) by  the  total  population.  Income  per  capita  data  can  be  accessed  through  the  link: (https://data.worldbank.org/indicator/NY.GDP.PCAP.CD). 

c)  Rice consumption per capita 

Rice consumption per capita, expressed in kg/year, indicates the average amount of rice consumed per person  throughout  the  year  in  a  given  country.  Rice  consumption  per  capita  data  can  be  accessed through the link: (https://apps.fas.usda.gov/psdonline/app/index.html#/app/home). 



2.2 Restlessness 



The variable used in this study is restlessness. Restlessness is an indicator used to predict future rice crises. It can be understood as unease, anxiety, or uncertainty in the context of rice availability. The significant increase in rice prices from year to year characterizes a significant increase in restlessness. Restlessness is obtained by dividing the rice price (USD/kg) by income per capita (USD/person) and then multiplying it by the rice consumption of each country. Meanwhile, unprecedented restlessness serves as a strong indicator of a rice crisis. The presence of unprecedented restlessness indicates an impending rice crisis in a country, and its absence suggests stability in rice availability. The formula for calculating restlessness is as follows (Hidayat et al., 2021): P

 R =

 C    

(1) 

 I



where,  R is the restlessness value,  P is the producer rice price ($US/kg),  I is the income per capita ($US/person), and  C is the rice consumption (kg/year). 

This function is based on the idea that a rice crisis cannot be observed solely from price movements. High rice prices in a given year do not necessarily indicate a crisis if the per capita income also increases proportionally, as people can still afford their basic food needs. However, if rice prices rise while per capita income remains stagnant or decreases, the burden on consumers increases, leading to heightened restlessness. 

Additionally, the consumption variable ( C) accounts for population growth trends. If rice consumption is low in a particular year, the level of anxiety regarding rice availability is also reduced (Mustafa et al.,  2015). Therefore, restlessness serves as an early warning indicator for potential rice crises, providing policymakers with insights to take preventive measures before unrest occurs. Unprecedented restlessness is determined using a control chart, where values exceeding the Upper Control Limit (UCL) indicate a crisis scenario. 



2.3 Data Preprocessing 



Missing data points were addressed using spatial interpolation via the Inverse Distance Weighting (IDW). The IDW method estimates missing values based on data similarity between neighboring countries. The principle of IDW is that points closer to the missing data location have a greater influence than those farther away. The IDW 

formula (Lu & Wong, 2008) is given as follows: 17
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where,  𝑦0  is the estimated value at the missing data location,  𝑦𝑖  is the observed value at location  I,  𝜆𝑖  is the weight  assigned  to  location   I,  𝑑𝛼

0𝑖  is  the  geographical  distance  between  location  0  (missing  data  location)  and location  i with the power of  α. 

The  𝛼  parameter is specified as a geometric form for the weight, while other specifications are possible. This specification implies that if  𝛼  is larger than 1, the so-called distance-decay effect will be more than proportional to an increase in distance, and vice versa. Thus, small  𝛼  tends to yield estimated values as averages of  𝑦𝑖  in the neighborhood, while large  𝛼  tends to give larger weights to the nearest points and increasingly down-weights points farther away. In this study,  𝛼  = 1 was used to balance the weighting effect between nearby and farther locations. 



2.4 Data Analysis 



2.4.1 STAR 

A spatio-temporal model is a model that integrates spatial and temporal dependencies into a time-series dataset. 

The STAR model is a statistical model used for forecasting spatio-temporal time series data, developed by Pfeifer and  Deutsch  in  1979.  This  model  is  designed  to  capture  the  relationship  between  time-series  data  recorded simultaneously across multiple locations while accounting for both spatial and temporal dependencies (Ruchjana, 

2019).  The  STAR  model  is  an  extension  of  the  Vector  Autoregressive  (VAR)  model,  which  only  considers temporal dependencies. The STAR ( p,  λk) model is expressed by the following equation (Pfeifer & Deutsch,  1980): 
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where,  𝑧(𝑡)  is the vector ( N × 1) representing  N locations at time  t,  𝑧(𝑡 − 𝑝)  is the vector ( N × 1) representing N locations at  the  time ( t – p),  λk is the spatial order of the autoregressive model of order   k,  𝜙𝑘𝑙  is the STAR 

model parameter for time lag  k and spatial lag  l,  W( l) is the weight matrix of size ( N ×  N) at spatial lag  l, where the diagonal elements are zero, and each row sums to one; and  𝜖𝑡  is the error vector of size ( N × 1) at time  t. 

The STAR model was chosen over alternative spatio-temporal models such as the Spatio-Temporal Moving Average (STMA) and Spatio-Temporal Autoregressive Moving Average (STARMA) models due to its superior ability to capture complex spatial and temporal dependencies. Unlike STMA, which primarily captures short-term fluctuations through moving averages, STAR explicitly incorporates autoregressive terms. This means that STAR 

accounts  for  how  past  observations  influence  future  values,  making  it  more  suitable  for  forecasting  long-term trends in restlessness values. This autoregressive nature is crucial in economic and agricultural contexts, where effects are often persistent and cumulative rather than transient (LeSage, 2008). Another advantage of STAR over STMA  is  its  improved  forecasting  stability.  The  inclusion  of  autoregressive  components  ensures  greater consistency  in  predictions  compared  to  STMA,  which  can  be  more  sensitive  to  sudden  shocks  and  localized variations. By considering past values in both time and space, STAR provides smoother and more reliable forecasts, which are critical for policy formulation and crisis mitigation. 

While STARMA models incorporate both autoregressive and moving average components in time and space, they tend to be computationally intensive due to the large number of parameters required for estimation (Pfeifer 

&  Deutsch, 1980).  STAR,  on  the  other  hand,  achieves  comparable  predictive  accuracy  with  fewer  parameters, making it more practical for large-scale applications such as monitoring rice crises across multiple countries. The computational efficiency of STAR allows for quicker and more reliable model estimations, which is essential for timely decision-making. 

The selection of STAR in this study is further supported by empirical evidence from the data, which exhibits significant partial autocorrelation in both temporal and spatial dimensions. The presence of nonzero lag effects in the Partial Autocorrelation Function (PACF) suggests that an autoregressive approach is more appropriate than a moving average model like STMA (Hyndman & Athanasopoulos, 2018). This characteristic justifies the use of STAR, as it effectively captures the persistence of restlessness values over time and across regions. 
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2.4.2 Spatial weights 

Spatial  weights  are  a  crucial  component  used  to  capture  spatial  dependencies  between  locations  in  spatio-temporal modeling. Spatial dependencies explain how a variable at one location is influenced by the same variable at other locations. Two common types of spatial weights are contiguity-based and distance-based weights. 

a)  Contiguity-based  weights:  These  weights  are  based  on  physical  proximity  or  shared  borders  between spatial units, such as countries, provinces, or districts. This approach assumes that interactions are strongest among neighboring spatial units that share borders. 

b)  Distance-based weights: These weights use geographical distances between coordinates to determine the strength of spatial relationships. This method is more suitable when spatial units do not share borders but still exhibit interactions based on proximity. 

In  addition  to  weighting  based  on  contiguity  and distance, weighting  can  also use  trade data-based  weights, specifically  inter-country  rice  trade  data,  as  rice  significantly  influences  restlessness  itself.  Trade  data-based weights can be calculated using the following equation: 
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where,  𝑤𝑖𝑗  is the spatial weight between locations  i and  j, and  𝑇𝑖𝑗  is the trade volume from location  i to location j.   

However, there are data limitations for international trade data. Therefore, the use of weights with rice trade data  is  not  possible.  Therefore,  in  this  study,  the  most  appropriate  spatial  weighting  used  is  distance-based weighting. 

The inverse distance weight is the most commonly used spatial weight based on distance. This weighting is applied based on the inverse of the geographical distance between locations. There is a single coordinate point representing the geographical center (centroid) of each research object. The weights can be calculated using the following equation: 
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where,  𝑤𝑖𝑗  is the inverse distance weight between locations  i and  j, and  𝑑𝑖𝑗  is the geographical distance between locations  i and  j. 

The use of IDW is also supported by the strong correlation between distance and the import volume of several countries,  such  as  the  Philippines  (correlation  -0.6484),  which  imports  more  goods  from  closer  countries,  and Cambodia  (correlation  -0.8286).  Additionally,  distance  is  an  important  factor  because  rice  movement  is  also influenced by transportation and logistics. Greater distances can lead to increased transportation time and costs, which in turn can affect rice prices for consumers (Kano et al., 2022). Moreover, the restlessness value is also constructed from the income variable, which is closely related to the economic conditions of the country. Strong economic growth in a country can drive development and prosperity in neighboring countries through trade and investment relationships (Kim, 2024).  



2.4.3 Spatial autocorrelation testing (MoranST) 

Spatial autocorrelation measures the extent to which a variable’s value at one location is related to the values at neighboring locations. Based on Tobler's First Law of Geography,  "everything is related to everything else, but near things are more related than distant things" (Tobler,  1970). Spatial autocorrelation can be detected using the Moran’s I statistic, calculated as (Anderson & Ryan, 2017): 
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where,  𝑦̃  is the average of observed variables from  N spatial units and  T temporal units,  𝑤

̃(𝑖𝑡,𝑗𝑠)  is the elements 

of the weighting matrix for the spatio-temporal autocorrelation between  𝑦𝑖𝑡 and  𝑦𝑗𝑠,  𝑦𝑖𝑡  is the value of observed variables of the  i-th spatial unit and the  t-th temporal unit, and  𝑦𝑗𝑠  is the value of observed variables of the  j-th spatial unit and the  s-th temporal unit. 

The hypotheses for Moran’s I test are: 
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H0: There is no spatial autocorrelation (random spatial distribution). 

H1: There is spatial autocorrelation (non-random spatial distribution). 

Moran’s I ranges from -1 to 1. If the Moran index value is in the range of 0 < I ≤ 1, this indicates positive spatial autocorrelation, meaning that adjacent locations tend to cluster spatially. Conversely, if the Moran index value is in the range of -1 ≤ I < 0, this indicates negative spatial autocorrelation, meaning that adjacent locations tend to be spatially dispersed (Wong & Lee, 2005). 



2.4.4 Stationarity 

a) Temporal stationarity 

Stationarity in a time series means that its statistical properties, such as mean and variance, remain constant over time. A stationarity test was conducted using the Augmented Dickey-Fuller (ADF) test, with hypotheses: H0: The data is not stationary. 

H1: The data is stationary. 

ADF is calculated as: 
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where,  ∆𝑌𝑡   is  the  first  difference,  𝛽   is  the  intercept,  𝛿   is  the  coefficient  of  the  variable  to  be  tested  for 𝑝

stationarity,  Σ

𝛼

𝑖=1

𝑖∆𝑌𝑡−𝑖  is the the sum of the first difference lags to the  𝑝-th lag to capture autocorrelation, and 𝜖𝑡  is the error at time  t. 

If the test statistic is greater than the critical value, H0 cannot be rejected, indicating non-stationary data. To achieve stationarity, differencing was applied (Hyndman & Athanasopoulos, 2018): 
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where,  𝑦′𝑡  is the first-order differencing,  𝑦𝑡  is the observation at time  t, and  𝑦𝑡−1  is the observation at time ( t-

1). 

b) Spatial stationarity 

Stationarity in spatial analysis is an assumption that allows data to be considered as having a uniform level of variation within a region (Oliver & Webster, 2015). There are three types of stationarity in spatial data analysis:   

  Strict stationarity: Distribution remains the same for all spatial locations. 

  Second-order stationarity: Mean remains constant, and covariance depends only on spatial lag. 

  Intrinsic stationarity: The expectation of differences between locations remains constant. 



2.4.5 Identifying the STAR model order 

To determine the order of a spatio-temporal model, the spatio-temporal Autocorrelation Function (STACF) and the  spatio-temporal  Partial  Autocorrelation  Function  (STPACF)  can  be  examined  (Pfeifer  &  Deutsch, 1980). 

STPACF  was  used  to  identify  the  autoregressive  component,  while  STACF  was  used  to  identify  the  moving average  component.  Table  1 shows  the  model  identification  based  on  the  Autocorrelation  Function  (ACF)  and PACF plots. 



Table 1. Model identification based on ACF and PACF plots Model 

STACF 

STPACF 

STAR 

 tail off 

 cut off at lag  p, spatial lag at λ p 

STMA 

 cut off at lag  p, spatial lag at λ p 

 tail off 

STARMA 

 tail off 

 tail off 



2.4.6 Parameters estimation 

The parameters of the STAR model can be estimated using the Maximum Likelihood Estimation (MLE) method by utilizing the probability density function of  ϵ (error), which follows a multivariate normal distribution with a mean of 0 and a constant variance-covariance structure. This was done by defining the likelihood function and identifying the parameter values that maximize the likelihood. 



2.4.7 Model diagnostic checking 

To ensure the validity of the model used in this study, it is essential to perform diagnostic tests on the residuals. 

Residuals  in  a  model  should  satisfy  certain  assumptions  to  confirm  that  the  model  is  correctly  specified  and provides reliable predictions. These assumptions include white noise properties and normality distribution. 

a) Ljung-Box test for white noise residuals 
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The Ljung-Box test was used to check whether the residuals in the model exhibit the characteristics of white noise.  White  noise  residuals  indicate  that  there  is  no  autocorrelation  present  in  the  residuals,  meaning  that  the model has effectively captured the data structure. 

The hypotheses for the Ljung-Box test are as follows: 

H0: The residuals exhibit white noise properties (no significant autocorrelation). 

H1: The residuals do not exhibit white noise properties (presence of autocorrelation). 

The test statistic is given by (Ljung & Box, 1978): Q =  n( n + 2)
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where,  n is the sample size,  𝜌̂2

𝑘   is the autocorrelation at lag  k, and  K is the number of lags tested. 

The  test  follows  a  chi-square  (χ²)  distribution  with   K  degrees  of  freedom.  If  the  p-value  is  greater  than  the significance level ( α), then H0 cannot be rejected, indicating that the residuals satisfy the white noise assumption. 

b) Mardia’s test for multivariate normality 

To verify whether the residuals follow a multivariate normal distribution, Mardia’s test was employed. This test evaluates the skewness and kurtosis of the residuals to assess their normality (Mardia, 1970). The test statistic for skewness is given by: 
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where,  𝑝  is the number of variables in the multivariate data,  𝑛  is the sample size, and  𝑆−1  is the inverse of the covariance matrix. 

The test statistic for kurtosis is given by: 
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The hypotheses for Mardia’s test are: 

H0: The residuals follow a multivariate normal distribution. 

H1: The residuals do not follow a multivariate normal distribution. 

If the p-value is greater than the chosen significance level, H0 cannot be rejected, indicating that the residuals follow a normal distribution. 



2.4.8 MAPE 

MAPE is a statistical measure used to evaluate the accuracy of a forecasting model. It quantifies the percentage error  between  the  actual  and  predicted  values,  providing  insight  into  how  well  the  model  performs.  MAPE  is widely used in time-series forecasting as it offers an intuitive and interpretable measure of prediction accuracy. 

The formula for MAPE is expressed as (Makridakis et al., 1998): n

  PE

 t  1

=

 t

 MAPE =



(15) 

 n
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where,  𝑀𝐴𝑃𝐸  is the mean absolute percentage error value,  𝑃𝐸𝑡  is the percentage error value,  𝑦𝑡  is the actual value in period  t,  𝑓𝑡  is the forecast value in period  t, and  𝑛  is the number of observations. 



2.4.9 Control chart 

In predicting whether a restlessness value is classified as unprecedented or not, this can be determined from the forecast restlessness value that exceeds the UCL on the control chart. The control chart helps in identifying process variability and ensuring that the process remains within the specified control limits. 

In  this  analysis,  the  focus  is  only  on  the  UCL  because  restlessness  values  exceeding  the  UCL  are  the  most relevant in identifying a rice crisis. The Lower Control Limit (LCL) is not a concern because values below the LCL are not considered dangerous or indicative of a risk to rice conditions. The calculation of control limits on the control chart is as follows: 



−

 UCL =  y+  L  

(17) 



−

 CL =  y  

(18) 



−

 LCL =  y−  L  

(19) 



where,  𝑈𝐶𝐿  is the upper control limit,  𝐶𝐿  is the control limit,  𝐿𝐶𝐿  is the lower control limit,  𝑦̅  is the mean of all observations,  𝐿  is the distance for control limits, and  𝜎  is the standard deviation. 



3. Results 



3.1 Missing Data Imputation 



In this study, there were several missing rice price data for some countries. Missing data can affect analysis results, especially in forecasting models that rely on complete data across locations. Therefore, in this section, the imputation process was conducted to fill in the missing data. 

Restlessness values were formed from rice price data, income per capita, and rice consumption. There were no missing data for income per capita and rice consumption, excluding rice price data. 





 

Figure 6.  Rice prices (1992-2023) 
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Figure 7. Rice prices (excluding Brunei) 



Figure 6 presents the rice price plot for seven countries (Indonesia, Brunei, Cambodia, Malaysia, the Philippines, Thailand, and Vietnam). It can be seen that Brunei (red line) has a higher price than the other six countries. Brunei's higher rice price makes the plots for the other countries less viable. Therefore, Figure 7 presents the rice price plot for six countries (excluding Brunei). 

Based on the rice price plot for six Southeast Asian countries (Indonesia, Cambodia, Malaysia, the Philippines, Thailand, and Vietnam), it is evident that the rice price movements in these six countries have relatively similar patterns,  except  for  Indonesia,  where  rice  prices  fluctuated  differently  from  2011  to  2016  compared  to  other countries. Overall, the price trends tend to move in the same direction with closely related fluctuations among countries, indicating a common spatial pattern. 

Therefore,  this  study  performs  imputation  using  spatial  interpolation  with  the  IDW  method,  following  the formula explained in subsection 2.2. This method assigns weights based on the distance between locations, where closer locations have a greater influence on estimating the missing values. 





 

Figure 8. Rice prices for seven countries after imputation 23
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Figure  8  represents  the  rice  price  plot  for  seven  countries  (Indonesia,  Brunei,  Cambodia,  Malaysia,  the Philippines,  Thailand,  and  Vietnam)  after  imputation  using  IDW.  Figure  9  shows  the  rice  price  plot  for  six countries (Indonesia, Cambodia, Malaysia, the Philippines, Thailand, and Vietnam) after imputation. The existing data for Brunei's rice prices consistently show significantly higher values than the other six countries. 







Figure 9. Rice prices for six countries (excluding Brunei) after imputation After spatial imputation, Brunei's imputed rice prices were distorted downward, making the pattern more similar to that of other countries. The distortion of Brunei's rice price imputation may reduce the validity of the analysis results. 







Figure 10. Combined rice price control chart 



Figure 10 displays the control chart for the combined rice prices of each country. Brunei has rice prices that exceed the UCL and significantly differ from those of other countries. This indicates that Brunei's rice prices do not resemble those of other countries and, therefore, cannot be forced into spatial imputation. Consequently, Brunei 24
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was excluded from the main analysis. Special handling is required to impute Brunei's rice prices to ensure more accurate results that align with the actual data characteristics. 



3.2 Descriptive Statistics 



In this study, the data used consists of annual restlessness values from the period of 1992–2023 in Southeast Asia,  covering  six  countries:  Indonesia,  the  Philippines,  Thailand,  Vietnam,  Malaysia,  and  Cambodia.  The summary of central tendency and dispersion measures of the data is presented in Table 2. 



Table 2.  Descriptive statistics of restlessness in each country Country 

Min 

Max 

Median 

Mean 

Variance 

St. Dev. 

Indonesia 

0.0094 

0.0397 

0.025865 

0.0247 

0.0000875 

0.0093588 

Cambodia 

0.0461 

0.13542 

0.0691 

0.0718 

0.0004275 

0.0206764 

Malaysia 

0.0019 

0.004023 

0.0024 

0.0027 

0.0000004 

0.0006470 

Philippines 

0.0125 

0.02630 

0.0192 

0.0188 

0.0000126 

0.0035565 

Thailand 

0.0059 

0.01243 

0.0083 

0.008467 

0.0000025 

0.0015901 

Vietnam 

0.0164 

0.16506 

0.0514 

0.0595 

0.0018961 

0.0435444 



Based on Table 2,  the country with the highest average restlessness value is Vietnam at 0.0595, while the lowest is Malaysia at 0.0027. This indicates that Vietnam has experienced greater fluctuations in rice-related economic and  social  conditions  compared  to  Malaysia.  Furthermore,  Cambodia  has  the  highest  variance  (0.0004275), showing that its restlessness values have fluctuated significantly over time. In contrast, Malaysia has the lowest variance  (0.0000004),  indicating  a  relatively  stable  trend  in  restlessness  values.  The  standard  deviation  values confirm  these  findings,  with  Vietnam  and  Cambodia  having  the  highest  standard  deviations  (0.0435444  and 0.0206764, respectively), reflecting higher unpredictability in their restlessness indices. Conversely, Malaysia and Thailand  have  the  lowest  standard  deviations  (0.0006470  and  0.0015901,  respectively),  indicating  more  stable trends in restlessness over the years. 

To further examine the restlessness phenomenon over time, it is important to analyze how these trends evolve temporally within each country. Thus, the following plots illustrate the time series trends of restlessness values across different countries. 







Figure 11. Restlessness plot 



Figure 11 presents the restlessness plot for six Southeast Asian countries: Indonesia, Cambodia, Malaysia, the Philippines, Thailand, and Vietnam. It reveals a general downward trend in restlessness levels from 1992 to 2023. 

Vietnam  and  Cambodia  initially  exhibited  relatively  high  restlessness  levels  in  the  1990s,  but  these  gradually declined over time. 

As shown in Figure 12,  the Philippines, Indonesia, and Thailand demonstrate relatively stable restlessness levels 25
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throughout  the  observed  period.  Malaysia,  on  the  other  hand,  displays  the  most  stable  and  lowest  restlessness values with minimal fluctuations. Overall, these trends indicate that, despite fluctuations in certain periods, most countries exhibit a declining pattern in restlessness levels over time. 







Figure 12.  Restlessness plot (excluding Cambodia and Vietnam) 3.3 Spatial Weighting 



The  values  of  the  inverse  distance  weights  were  obtained  from  calculations  based  on  the  actual  distances between locations, considering their latitude and longitude coordinates. The latitude and longitude coordinates of each country are presented in Table 3. 

 

Table 3. Latitude and longitude coordinates 



Country 

Latitude 

Longitude 

Indonesia 

-0.789275 

113.921327 

Cambodia 

12.565679 

104.990963 

Malaysia 

4.210484 

101.975766 

Philippines 

12.879721 

121.774017 

Thailand 

15.870032 

100.992541 

Vietnam 

14.058324 

108.277199 



The latitude and longitude coordinates were then converted into kilometers so that the resulting inverse distance weight matrix calculations, using Eq. (5), are displayed in the following matrix: 



 0

0.199 0.246 0.202 0.152

0.201





0.087

0

0.157 0.085 0.274 0.396





0.189 0.276

0

0.115 0.209 0.210  

 W = 



0.214 0.206 0.158

0

0.166 0.256





0.092 0.380 0.166 0.095

0

0.267





0.098 0.439 0.133 0.118 0.213

0 

 

3.4 Spatial Autocorrelation Testing (MoranST) 



At this stage, spatial autocorrelation testing was conducted using MoranST. The output from MoranST with the assistance of R software is shown in Table 4. 
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Table 4.  MoranST spatial autocorrelation test results 



MoranST Value 

p-value 

0.6000271 

0.00990099 



The test results shown in Table 4 include a MoranST value of 0.6000271 and a p-value of 0.00990099. Using a significance level ( α) of 5%, since the p-value < 0.05, the decision taken is to reject H0 in favor of the alternative hypothesis  H1.  This  means  that  there  is  significant  spatial  autocorrelation.  Practically,  this  indicates  that neighboring regions tend to have similar characteristics. 



3.5 Data Training and Testing Split 



In this study, the restlessness data were divided into two parts: in-sample and out-of-sample data. The training data, or in-sample data, was used for model building. Meanwhile, the testing data, or out-of-sample data, was used to evaluate the model’s predictive capability. 

Various splits between training and testing data (in-sample and out-of-sample) were tested to assess the model’s performance in generating optimal forecasts. These variations aim to identify the combination that provides the best results based on the predefined evaluation criteria, in this case, using MAPE as the primary indicator. 

However, due to the large number of tested variations, not all results can be presented in detail in this chapter. 

Therefore,  the  analysis  in  this  chapter  focuses  on  the  data  split  variation  that  yields  the  best  MAPE  value, specifically the 80% in-sample and 20% out-of-sample split. The 80% in-sample data cover the period from 1992 

to 2017 for model training and development. Meanwhile, the 20% out-of-sample data covers the period from 2018 

to 2023 for testing the model’s predictive capability on unseen data. 







Figure 13. In-sample and out-of-sample data division for all analyzed countries Figure 13 shows the plot of the results of dividing the in-sample and out-of-sample data for the six countries analyzed. The solid line represents the in-sample data, which is used to train and build the model, while the dashed line represents the out-of-sample data, which is used to test the predictive ability of the model. Different colors of the lines indicate different country representations. Figure 14 shows the plot of the results of dividing the in-sample and out-of-sample data for each country separately. 
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Figure 14. In-sample and out-of-sample data division for each country separately 3.6 Stationarity Test 



The ADF test results for the training data on restlessness in six countries are as follows: Table 5.  ADF training data for restlessness in six countries ADF Test Before 

ADF Test After 1st 

ADF Test After 2nd 

ADF Test After 3rd 

Country 

Differencing 

Differencing 

Differencing 

Differencing 

p-value 

p-value 

p-value 

p-value 

0.5297 (non-

Indonesia 

0.3403 (non-stationarity) 

0.01 (stationary) 

0.01 (stationary) 

stationarity) 

0.2032 (non-

Cambodia 

0.01098 (stationary) 

0.0916 (non-stationarity) 

0.01 (stationary) 

stationarity) 

0.4488 (non-

Malaysia 

0.01 (stationary) 

0.01 (stationary) 

0.01 (stationary) 

stationarity) 

0.2999 (non-

Philippines 

0.1109 (non-stationary) 

0.0476 (stationary) 

0.01 (stationary) 

stationarity) 

0.2755 (non-

Thailand 

0.01641 (stationary) 

0.01 (stationary) 

0.01 (stationary) 

stationarity) 

0.7064 (non-

Vietnam 

0.2914 (non-stationarity) 

0.0794 (non-stationarity) 

0.02372 (stationary) 

stationarity) 



Based on Table 5, it can be seen that before differencing, the restlessness data for all six countries had a p-value greater than 0.05. If the p-value < 0.05, the significance level, then the null hypothesis is rejected, concluding that the data is stationary. Therefore, the restlessness data of the six countries was non-stationary because the p-value was  greater  than  0.05,  and  differencing  was  necessary  to  remove  trends  or  seasonal  patterns  causing  the  non-stationarity. After performing differencing three times, a p-value < 0.05 was obtained, indicating that the data had become stationary. 



3.7 Identification of the STAR Model Order 



The spatial order used in this study is spatial order 1 because each research location is within the same region, namely Southeast Asia. The identification of the autoregressive and moving average temporal orders was carried out by examining the STACF and STPACF plots generated from differenced data using IDW. 
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Figure 15.  STACF plot 







Figure 16.  STPACF plot 



Based on Figure 15,  the STACF plot shows no significant lag in spatial lag = 1. Therefore, there is no moving average component in this modeling. Furthermore, based on Figure 16,  the STPACF plot indicates significant lags at lags 4, 5, and 8. Hence, the suitable candidate models are STAR models with AR orders of 4, 5, or 8. 
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3.7.1 Selecting the best model 

Next,  the  best  model  was  selected  from  several  candidate  models  by  examining  the  Bayesian  Information Criterion (BIC) value for each model. BIC is a statistical measure used for model selection from a set of candidate models. The BIC value is based on the likelihood value and a complexity penalty. A lower BIC value indicates a lower penalty, making the model preferable. The BIC values for each candidate model are presented in Table 6.  



Table 6.  BIC of candidate models 



Model 

BIC 

AR = 4  -796.1193 

AR = 5  -791.1394 

AR = 8  -678.3848 

Note: AR indicates autoregressive. 



Table 6 shows the BIC values for each candidate model. The lowest BIC value is found in the AR = 4 model with a BIC of -796.1193. However, since the difference between the BIC values of AR = 4 and AR = 5 is small, the next step is to compare the Root Mean Squared Error (RMSE) and Mean Squared Error (MSE) of the residuals for these two models. 



Table 7. RMSE and MSE of candidate models 



Model 

RMSE 

MSE 

AR = 4 

0.0165414 

0.0002736179 

AR = 5  0.01629915  0.0002656623 

Note: AR indicates autoregressive. 



As shown in Table 7,  it can be observed that the model with AR order 5 has lower RMSE and MSE values compared to AR order 4. Therefore, the selected model is STAR (5,1). 



3.8 Parameter Estimation 



Parameter estimation was carried out based on the location weights used. The estimation method employed is MLE. The calculation results, with the assistance of R software, yield the estimated parameter values as follows: 𝜙̂10 =  0.914009,  𝜙̂11 =  0.1508,  𝜙̂20 =  0.051005, 𝜙̂21 =   −0.0839,  𝜙̂30 =  0.117822, 𝜙̂31 =

−0.1703,  𝜙̂40 =   −0.223924,  𝜙̂41 =  0.1057,  𝜙̂50 =  0.073784, and  𝜙̂51 =  0.0163. 



The parameters of the STAR (5,1) model indicate the magnitude of the influence of a location on itself and the effect of a location on its surrounding locations from lag 1 to lag 5. The estimated STAR (5,1) model, constructed using the inverse distance weight matrix, is as follows: 
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0.158

0

0.166 0.256



  Z t −5

 2 (

)

0.092 0.380 0.166 0.095

0

0.267 





  Z t −5

 5 (

)

0.098 0.439 0.133 0.118 0.213

0  



 Z t − 5

 6 (

)

 

3.9 Model Diagnostic Check 



The model evaluation was conducted by examining the white noise assumption and normality of the residuals. 

Table 8 presents the results of the Ljung-Box test. The test results indicate that all p-values are greater than 0.05 

for  each  lag,  meaning  that  the  model  fails  to  reject  the  null  hypothesis  (H0).  In  other  words,  there  is  no autocorrelation among the residuals, confirming that the residuals meet the white noise assumption. 

As shown in Table 9, the p-values for both skewness and kurtosis are greater than 0.05, leading to the conclusion that the residuals follow a multivariate normal distribution, and the model is valid for use. 



3.10 MAPE 

 

Out-of-sample  forecasting  is  useful  for  evaluating  the  model’s  ability  to  predict  future  data.  The  model’s accuracy  was  assessed  using  the  MAPE  metric.  Table  10  presents  the  out-of-sample  forecasting  results  of restlessness values in the six countries. 

It can be observed that the MAPE values for the out-of-sample restlessness data for each country vary. The smaller  the  MAPE  value,  the  more  accurate  the  forecast.  The  overall  MAPE  value  for  all  countries  is  15.1%. 

Vietnam,  Indonesia,  the  Philippines,  and  Thailand  have  excellent  MAPE  values,  all  below  15%.  Meanwhile, Cambodia and Malaysia have slightly higher MAPE values, at 19% and 36%, respectively. Below are the forecast restlessness values using the STAR (5,1) model presented in a time series plot. 
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Table 8. Ljung-Box test 



Lags 

Statistic 

df 

p-value 

1 

43.49246 

36 

0.1825634 

2 

75.22718 

72 

0.3743311 

3 

105.02482 

108 

0.5631022 

4 

132.94437 

144 

0.7354454 

5 

152.27062 

180 

0.9342813 

6 

178.37923 

216 

0.9709345 

7 

199.95495 

252 

0.9932467 

8 

223.65669 

288 

0.9980316 

9 

244.10823 

324 

0.9996806 

10 

265.99832 

360 

0.9999384 

11 

282.3011 

396 

0.9999963 

12 

299.51967 

432 

0.9999998 

13 

314.79817 

468 

1 

14 

328.87819 

504 

1 

15 

339.19039 

540 

1 

16 

350.80068 

576 

1 

17 

360.29296 

612 

1 

18 

364.58606 

648 

1 

19 

367.9071 

684 

1 

20 

369.96748 

720 

1 



Table 9.  Multivariate normality test 



Test 

Statistic 

p-value 

Result 

Mardia skewness 

66.82609927 

0.152515769 

Yes 

Mardia kurtosis 

0.1601768381 

0.8727417743 

Yes 



Table 10.  Out-of-sample forecasting 



Country 

Year 

Actual Value 

Forecast Value 

MAPE 

2018 

0.013690239 

0.01270866 

2019 

0.012292445 

0.01193459 

2020 

0.009925645 

0.01189298 

Indonesia 

7.167575% 

2021 

0.010678892 

0.00995473 

2022 

0.009997526 

0.00943791 

2023 

0.009355219 

0.00959569 

2018 

0.0492267 

0.05408268 

2019 

0.04540735 

0.05061554 

2020 

0.0419276 

0.05119968 

Cambodia 

19.03478% 

2021 

0.03925779 

0.05267709 

2022 

0.03658789 

0.04615783 

2023 

0.03403994 

0.04901998 

2018 

0.002119712 

0.00227947 

2019 

0.002281153 

0.00230061 

2020 

0.002953866 

0.0024535 

Malaysia 

36.11504% 

2021 

0.003152864 

0.00224657 

2022 

0.003411541 

0.00195969 

2023 

0.003641943 

0.00209289 

2018 

0.01301014 

0.01559437 

2019 

0.01250111 

0.01520368 

2020 

0.01244133 

0.01381602 

Philippines 

10.62152% 

2021 

0.01178882 

0.01329812 

2022 

0.01135831 

0.01274531 

2023 

0.0109332 

0.01276547 

2018 

0.006160782 

0.00713233 

2019 

0.006271137 

0.00774868 

2020 

0.006580454 

0.00728447 

Thailand 

13.70015% 

2021 

0.006569694 

0.00793326 

2022 

0.006702965 

0.00760609 

2023 

0.00668659 

0.00759141 
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Country 

Year 

Actual Value 

Forecast Value 

MAPE 

2018 

0.02035355 

0.01967505 

2019 

0.01919096 

0.0197425 

2020 

0.01833697 

0.01829328 

Vietnam 

4.04275% 

2021 

0.01759828 

0.01969642 

2022 

0.01675452 

0.01662018 

2023 

0.01598074 

0.01640847 

Overall MAPE 

15.11364 







Figure 17. Actual vs. out-of-sample forecast data 



Table 11.  Summary of data splitting variations and models MAPE 

No. 

Data Split 

Model 

Diagnostic Check 

In-sample 

Out-of-sample 

1 

60/40 

STAR (10,1) 

Residuals are not normal. 

- 

- 

2 

75/25 

STAR (5,1) 

Residuals are not normal. 

- 

- 

3 

75/25 

STAR (4,1) 

Valid 

15% 

31% 

4 

70/30 

STAR (3,1) 

Valid 

16% 

46% 

5 

80/20 

STAR (5,1) 

Valid 

15.69% 

15.11% 

6 

80/20 

STAR (3,1) 

Valid 

15.60% 

19.30% 

7 

80/20 

STAR (4,1) 

Valid 

15% 

19.19% 

8 

90/10 

STAR (6,1) 

Valid 

17% 

26.22% 



Figure  17 illustrates the forecast values generated by the STAR (5,1) model for the  out-of-sample data. The model’s predictions (blue line) generally follow the pattern of the actual values (red line) fairly well, except for Malaysia. The forecast results for Malaysia exhibit higher errors compared to other countries, as indicated by its 33
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MAPE,  which  is  significantly  higher  at  36%  compared  to  other  countries.  The  out-of-sample  forecasting  for Malaysia shows a trend of increasing restlessness values, whereas the actual values do not exhibit this trend. 

Additionally, Malaysia's restlessness values are much lower, ranging between 0.001 and 0.004, whereas other countries  have  restlessness  values  ranging  from  0.01  to  0.1.  The  STAR  model  that  was  constructed  pulls Malaysia’s forecasts upward due to the higher restlessness values in other countries, as the model assumes all locations to be homogeneous. 

Table 11 is a summary of experiments using different data splits and model orders. 



3.11 Forecasting 



Next, the STAR (5,1) model was used to forecast restlessness values over the next five years, from 2024 to 2028. 

This  forecasting  process  utilizes  all  available  data  without  separating  it  into  in-sample and  out-of-sample data. 

Figure 18 presents the five-year forecasting results of restlessness values. 







Figure 18.  Five-year forecast of restlessness 



Figure 18 illustrates the restlessness forecasts for the six analyzed countries over the next five years. The model’s predictions provide insights into potential future trends in restlessness values, which may be useful for policymaking and crisis-prevention strategies. 



3.12 Control Chart 



Next,  to  determine  whether  a  country  in  a given  year  falls  into  an  unprecedented  condition  or not,  a further analysis was conducted using a control chart. The control chart includes two control limits, namely the UCL and the LCL. The UCL line serves as a threshold to identify the potential rice crisis in the country. If the restlessness value exceeds the UCL line, the country is categorized as experiencing unprecedented restlessness, indicating a high  likelihood  of  a  rice  crisis.  Conversely,  if  the  value  remains  below  the  UCL,  the  restlessness  condition  is considered to be within an acceptable control limit. 

The control chart calculation utilizes the z-score distance for the UCL and LCL. In this study, the control limits were  established  when  the  data  deviated  by  90%  from  the  mean.  Based  on  the  z-score  table,  the  control  limit 34
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distance ( L) for 90% is 1.29. Thus, the calculation of UCL and LCL is as follows: 



−

 UCL =  y+1.29  

(20) 



−

 UCL =  y−1.29  

(21) 







Figure 19. Control chart of restlessness values 



Figure 19 illustrates the control chart for six countries, namely Indonesia, Cambodia, Malaysia, the Philippines, Thailand,  and  Vietnam.  In  each  plot,  the  blue  line  represents  the  actual  restlessness  values,  while  the  red  line represents the predicted restlessness values for the next five years. 

Based on the figure, the forecast values for the next five years in all countries remain below the UCL. Thus, no country is predicted to experience unprecedented restlessness or a rice crisis in the coming five years. 



4. Discussion 



The focus of this research stems from concerns about the rice crisis in Southeast Asia due to various factors such as climate change, strict export policies, and fluctuations in rice prices. One significant event that triggered this study was India's rice export ban in 2023, which caused a surge in rice prices in several countries. With the potential for a future rice crisis, a method is needed to forecast possible crises that may occur. Therefore, this study uses the restlessness indicator, calculated based on rice prices, rice consumption, and per capita income, to assess the potential for food instability. The STAR model was used to forecast restlessness values in six Southeast Asian countries, namely Indonesia, the Philippines, Thailand, Vietnam, Malaysia, and Cambodia, using secondary data from 1992 to 2023. 

Among the various candidate models tested, the STAR (5,1) model was selected as the best model based on model selection criteria such as the BIC, RMSE, and MSE. This model  considers temporal dependencies up to five  years  back  and  spatial  dependencies  up  to  one  level  of  inter-country  relationships.  The  research  data  was divided  into  training  data  (1992-2018)  and  testing  data  (2019-2023)  to  evaluate  the  model's  performance  in forecasting restlessness values. 

To  ensure  the  validity  of  the  model,  diagnostic  tests  were  conducted,  including  the  white  noise  test,  which showed that the residuals of the model met the white noise assumption without systematic patterns in the model's 35
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residual  predictions.  The normality  test  using  Mardia's  test  indicated  that  the  residuals  followed  a  multivariate normal distribution. Additionally, Moran’s I test confirmed that there was a significant spatial relationship in the data, supporting the selection of the STAR model. 

The control chart was used to identify whether unprecedented restlessness occurred, serving as an indicator of a potential rice crisis in the next five years (2024-2028). The analysis results showed that no country experienced unprecedented restlessness during the forecast period. The restlessness values over the next five years remained within control limits, indicating a low potential for a rice crisis. Although there was a slight increase in restlessness in some countries, the values remained within a reasonable range and did not show signs of extreme instability. 

Based on the results of this study, several measures can be taken, including regular monitoring of restlessness. 

Although there is no indication of a crisis in the next five years, restlessness values should continue to be observed to  anticipate  any  significant  increases  early.  Food  source  diversification  is  also  necessary  for  Southeast  Asian countries  to  develop  alternative  food  sources  besides  rice  to  reduce  dependency  on  a  single  commodity. 

Furthermore,  regional  cooperation  in  rice  trade  and  production  can  help  maintain  price  and  supply  stability. 

Improving production efficiency through investments in irrigation technology and precision agriculture can also help secure future rice supplies. 

For the Indonesian government, several aspects of cooperation with the Association of Southeast Asian Nations (ASEAN) countries in the rice sector should be considered: 

First, expanding the export market and diversifying rice-based products with Vietnam. Indonesia and Vietnam can collaborate to create high-value-added rice-based products such as rice flour, cereals, or processed foods. This initiative aims to expand ASEAN and global export markets while enhancing the competitiveness of both countries. 

Second, improving rice logistics efficiency and food diversification in the Philippines. The Philippines can work with Indonesia to establish direct trade routes to lower distribution costs. In non-crisis conditions, both countries can design flexible import and export policies to prevent overstocking and optimize surplus production. 

Third,  developing  agricultural  technology  and  ASEAN  rice  safety  standards  with  Cambodia  and  Malaysia. 

Under  stable  conditions,  Indonesia  can  assist  Cambodia  and  Malaysia  in  developing  digital  agricultural technologies such as the Internet of Things (IoT), drone monitoring, and smart irrigation to improve production efficiency. Additionally, cooperation in establishing ASEAN rice quality standards can be strengthened to position ASEAN as a premium rice exporter in the global market. 

Finally, stabilizing prices and strengthening rice reserves with Thailand. In the absence of a rice crisis threat, both countries can develop a more adaptive price stabilization system and establish regional rice reserve policies to anticipate economic uncertainties or natural disasters that may disrupt future food security. 

This study demonstrates that the STAR (5,1) model is capable of forecasting restlessness values with reasonably good accuracy, as indicated by a MAPE value of 15.1%. The forecast results show no indication of unprecedented restlessness, meaning there are no significant signs of a rice crisis in the next five years. However, the previously mentioned policy measures still need to be implemented to ensure future food stability. 



5. Conclusions 



Based on the results and discussion above, the best-performing model obtained in this study is the STAR(5,1) model. The general form of the STAR model is expressed as: 



 y ( t)

5

1

( l)

=   

  W y t − k  +  t

 k  1

=

 l  0

=

 kl

(

)

( )







(22) 



where,  𝑊(𝑙)  represents the spatial weight matrix,  𝜙𝑘𝑙  is the estimated parameters, and  𝜖  is the error term. The spatial weight matrix used in this study is based on inverse distance, which accounts for the geographical proximity between countries. The estimated parameters indicate that both temporal and spatial dependencies contribute to the variations in restlessness values across Southeast Asian nations. 

The  results  of  the  control  chart  analysis  show  that  no  country  is  classified  as  experiencing  unprecedented restlessness in the five-year forecast period from 2024 to 2028. This suggests that, under current economic and agricultural conditions, the likelihood of a severe rice crisis remains low. While minor fluctuations in restlessness values were observed, they remained within control limits, indicating stable rice market conditions. 

The recommendation for future research is to develop the model by adding a dummy variable that represents the difference in the range of restlessness values for Malaysia. The difference in the range of restlessness values in Malaysia compared to other countries may affect the model's performance in forecasting. By incorporating a dummy variable, the model can be more adaptive in capturing the differences in the range of restlessness values occurring  in  Malaysia,  thereby  improving  the  accuracy  of  predictions  for  the  country.  Additionally,  further development can be carried out by using consumption data without missing values and by seeking consumption data at the consumer level. 

Based on the findings of this research, several policy recommendations can be proposed. Diversification of rice 36

supply sources should be encouraged to reduce reliance on specific suppliers. Strengthening regional cooperation in rice trade and production can enhance supply chain resilience, and investments in agricultural technology and irrigation infrastructure can improve productivity and sustainability. By implementing these strategies, Southeast Asian nations can mitigate potential risks and ensure stability in the rice market. 
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Coatrel Chart: Rice Prices






index-12_1.png
®us) oua sy

o
oz
120
oz
stz
stz
v
stz
st
oz
st
a0
oz
ot
00z
s00z
L0t
900z
so0t
o0z
s00t
w0t
100z
000
a6t
3661
Lést
9661
se61
st
so61
2661

Year

~ Indonesia. ~ Cambodia. = Malaysia - Philppines -~ Thailand - Vietuam





index-14_1.png
0.04000000

003000000

002000000

() ssoussapsay

001000000

000000000

]
2

H
!
i
wm






index-13_1.png
020000000

015000000

0.10000000

) sy

005000000

a0z
oz
120z
otz
etz
|10z
s
otz
stz
| roz
etz
oz
|0z
Jotoz
|00z
s00z
| ooz
| s00z
| s00z
| vooz
| rooe
| 200z

100
| ovoz
| asst
3661
L6t
9661
se6t
st
| esst
2661

000000000

Year

-~ Thailand ~ Vietam

+ Malsysia. = Fil

= Indonesia. = Canbodia





index-15_1.png
015

Restlessiiess.

005

000

10
Time ndes

Dua Type — liSaple = OuSample

— Fi






