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Abstract:  Seed  Quality  is  an  important  area  of  agriculture  and  directly  influences  crop  yield  and  germination percentage.  Visual  examination  forms  the  foundation  of  traditional  seed  testing  techniques,  which  are cumbersome, inflexible, and inefficient for effective assessment. This study proposed an automated approach to seed quality assessment based on physical measurement using machine learning and image processing techniques. 

Snapshots  of  the  new  seeds  were  captured  and  underwent  feature  extraction,  segmentation,  and  image improvement to explore notable morphological attributes, such as size and colour. To tag seeds as "good" or "bad" 

based  on  physical  characteristics,  Support  Vector  Machines  (SVMs)  are  used  as  a  reference  model.  Rather, Convolutional  Neural  Networks  (CNNs)  have  been  utilised  for  deep  feature  extraction  and  classification. 

Experimental  findings  indicate  that  CNNs  perform  better  than  conventional  machine  learning  models,  with  a scalable and highly accurate method of seed quality assessment. Future use will utilise quantum machine learning to improve prediction and facilitate sustainable, precision agriculture. The improved framework, optimised with great care for onion seeds, is a major breakthrough in increasing the agricultural productivity of onion cultivation. 
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A central factor that contributes to crop production, agricultural productivity, and food security is seed quality. 

The demand for effective, precise, and non-destructive techniques of assessing seed quality is growing very fast with  the  growing  technological  trends  in  agriculture.  Conventional  techniques  of  seed  assessment,  such  as  eye inspection or hand testing, are usually labor-intensive, time-consuming, and prone to human error. For this purpose, a good substitute for seed quality assessment through automation based on physical attributes such as size, shape, color, and texture is the combination of Machine Learning (ML) and Image Processing (IP techniques). 

The  research  on  seed  quality  evaluation  through  machine  learning  and  image  processing  techniques  has increased exponentially over the past decade, reflecting a growing recognition of the value of accurate and effective evaluation methods in agriculture. The procedure begins with the study by Saeed et al. (2015), which identifies the application of machine vision to identify not only healthy but also defective canola seeds. This basic work emphasizes the importance of digital image processing tools, such as the Matlab Digital Image Processing toolkit, in performing high-accuracy seed classification, although it admits some shortcomings in the segregation of good and defective seeds. On this foundation, Nkemelu et al. (2018) introduced deep convolutional neural networks (CNNs) as an even more advanced technique for plant seedling classification. Their work, based on a dataset of over  4,000  images,  demonstrates  how  CNNs  can  potentially  revolutionize  farming  automation  and  crop  yield optimization, and hence map out a revolutionary future for machine learning applications in agriculture. ElMasry et al. (2019) push the frontiers of imaging techniques further with a discussion of multispectral imaging for seed phenotyping and quality evaluation. They emphasize the effectiveness and non-destructive methods of imaging as https://doi.org/10.56578/of110103 
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increasingly  favored  when  it comes  to  defining  the quality  parameters  like  purity  and germination potential of seeds. This article illustrates the transition towards using more objective and high-speed test means in seed testing from the yesteryear time-consuming procedures. 

In  2020,  Beck  et  al.  (2020)  investigated  the  marriage  of  machine  learning  and  autonomous  image  tagging systems,  highlighting  the  absolute  need  for  high-quality  training  data  to  develop  efficient  ML  solutions  in agriculture. Based on their research, they lay out the limitation of hand annotation and the ability of other methods like transfer learning to enhance the training data sets on hand for use in CNNs. 

Ahmed et al. (2020) also contributed to this conversation by examining the use of X-ray imaging for watermelon seed inspection. They lay out the argument of the speed and accuracy of this method over conventional quality testing, advocating for the synergy of machine vision and deep learning for practical usage in seed quality testing. 

Margapuri & Neilsen (2021) addressed the problem of data scarcity in training CNNs for seed classification with new techniques like domain randomization and contrastive learning. Their work illustrates the potential of self-supervised learning models to overcome constraints in labeled datasets, a recurring theme in the literature. 

Kulkarni et al.  (2021) shifted focus to plant disease detection and show how image processing and machine learning can be used to identify diseases and prevent yield loss. Their research highlights the efficacy of automated systems  in  monitoring  vast  fields  of  agriculture,  a  general trend  towards  applying  technology  in  the  pursuit  of precision agriculture. Darbyshire et al. (2023) touched on practical weed spraying object detection, emphasizing the  necessity  of  robust  machine  vision  systems  in  precision  agriculture.  They  introduced  metrics  for  field deployment, representing a growing sense of the practicality of using ML solutions within agricultural settings. 

Dericquebourg  et  al. (2022)  explored  the  complexity  of  seed  maturity  estimation  from  UAV  multispectral images, proposing a scheme for automating data labeling to enhance deep learning model accuracy. The research emphasizes  the  importance  of  advanced  imaging  techniques  in  the  realization  of  climate  change  optimized agricultural interventions. Du et al. (2023) proposed a new technique for cotton seed quality detection through an improved ResNet50 model with high levels of accuracy in distinguishing between seed qualities. The research demonstrates  the  advancement  in  machine  vision-based  detection  technology,  which  has  grown  increasingly advanced and trustworthy over the years. 

Chen et al. (2024) offered a comprehensive overview of the use of artificial intelligence in agrifood systems, noting  the  potential  offered  by  machine  learning  approaches  in  crop  quality  assessment  and  grading  process automation. They advocate for the integration of ML with traditional agricultural practices to enhance productivity and efficiency. 

Finally, Opara et al. (2024) highlighted the potential of machine learning technologies for reducing postharvest losses in fresh fruits and vegetables. They indicated a paradigm shift towards mechanizing sorting and grading operations as part of a broader trend of integrating advanced technologies into agriculture. 

The studies as a collection demonstrate an interactive relationship between machine learning, image processing, and farming practices, highlighting the revolutionary capabilities of these technologies in seed quality testing and total agricultural output. 



2. Overview of Seed Quality Assessment 



The good quality of seed is one of the most important factors in the performance of agriculture, which mainly manifests directly by affecting the final crop yield and sustainable management. Conventional methods of seed quality estimation, which are based on size, colour, and shape, and are executed manually, are cumbersome and subject to human judgment. However, the novel developments in machine learning (ML) and image processing allow for the revolution of seed quality analysis with their efficient, accurate, and automated solutions. 



2.1 Machine Learning in Agricultural Applications 



Machine  learning  methods  are  widely  used  in  various  applications  in  the  food  industry,  such  as  detecting diseases, predicting yields, and testing food quality. In particular, supervised learning algorithms, such as Support Vector Machines (SVM), Decision Trees, and Convolutional Neural Networks, are very effective for classification tasks such as determining seed quality. These algorithms study the labelled dataset patterns and then are able to be used in previously revealed data, which is a remarkable base for automated decision-making. 

For example, the study by Santos et al. (2020) has shown that DL can achieve high accuracy in detecting and classifying defects in seeds and fruits when applied to datasets in agriculture. These advancements highlight the potential of integrating machine learning techniques into seed quality analysis. 



2.2 Image Processing Techniques for Seed Analysis 

 

Image processing techniques like segmentation, feature extraction, and morphological analysis are crucial in identifying  seed  characteristics.  These  methods  enable  the  extraction  of  critical  features  like  seed  dimensions, 40

 

shape, and color from digital images. Thresholding and edge detection algorithms are commonly used to segment seeds from the background, while feature descriptors quantify the extracted properties for further analysis. 

Medeiros et al. (2020) discussed the case study with optical sensors combined with machine learning algorithms for seed quality assessment, parameters such as width, height, and detected colour are fundamental indicators. By using these parameters, image processing algorithms can distinguish between good and bad seeds as demonstrated in studies focusing on the quality assessment of grains and legumes. 



2.3 Integration of Machine Learning and Image Processing 



The  integration  of  machine  learning  and  image  processing  creates  a  powerful  pipeline  for  seed  quality assessment. The process typically involves: 

1.  Image Acquisition: Capturing high-resolution images of seeds. 

2.  Preprocessing: Removing noise and enhancing the images for better analysis. 

3.  Feature Extraction: Measuring seed dimensions (e.g., width and height) and detecting color. 

4.  Classification: Using machine learning algorithms to classify seeds as “Good” or “Bad.” 

In this study, images of onion seeds were analyzed using a combination of these techniques. The results showed accurate classification based on seed dimensions and color, validating the effectiveness of this integrated approach. 



2.4 Related Work 



Several  studies  have  demonstrated  the  utility  of  combining  machine  learning  and  image  processing  for agricultural quality assessment: 

1.  Ravichandran et al. (2022) studied rice grain estimation quality parameters: They used SVC, LDA, CNN, and image processing techniques to classify rice grains based on size, shape, and texture. 

2.  Pande et al. (2019) discussed the application of CNNs in fruit sorting: They applied convolutional neural networks  to  classify  fruits  based  on  size,  color,  and  surface  defects,  achieving  high  efficiency  in automated sorting systems. 

3.  Jin et al. (2022) presented a method for seed viability testing: They utilized PCA, LR, and CNN to extract features of seed embryos and applied decision trees to classify them, achieving accurate predictions of seed viability. 



2.5 Comparative Analysis and Review 

 

The  literature  review  highlights  the  advancements  in  seed  quality  assessment  methods,  showcasing  a combination of  machine  learning  and  image  processing  as  a  robust  approach.  Below  is  a  comparative  Table  1 

summarizing key methodologies from related works. 



Table 1. Key work done in seed analysis 



Study 

Technique Used 

Application 

Accuracy 

Key Features 

Ravichandran et al. 

SVC + LDA + 

Rice Grain 

High 

Size, Shape, Texture 

(2022)   

CNN 

Classification 

Size, Color, Surface 

Pande et al. (2019)   

CNN 

Fruit Sorting 

High 

Defects 

Jin et al. (2022) 

PCA + LR + CNN 

Seed Viability Analysis 

High 

Embryo Features 



This study builds on previous research by integrating advanced ML algorithms with precise image processing techniques tailored to onion seed quality assessment. Unlike studies that focus on specific grains or fruits, this work addresses the challenges associated with onion seeds. While methodologies are consistent with state-of-the-art practices, including features like seed width and height with high-resolution imaging sets this study apart. The comparative  analysis  underscores  the  broader  applicability  and  effectiveness  of  these  combined  techniques  in agricultural contexts. 



3. Methodology 



Figure 1 shows the analysis of the seed quality parameter identification, starting with a single image of nine seeds. The previous steps were to convert the image to a standard input size, adjust the pixel values to determine the standard measurement of seed, and use the augmentation technique to increase the data level. 
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Figure 1.  Seed analysis workflow 



After preprocessing, a model is selected that matches the expected seed physical parameters, and the data is divided into training and testing sets for training and evaluating the model. The model’s performance in classifying or  analyzing  seed  quality  is  cross-validated  with  the  seeds'  physical  measurements.  The model  output  helps  in identifying the best seeds (“good seeds”) that can be used as a good farmer saved seeds. Through this systematic approach, a robust and systematic analysis of onion seeds can be provided. 



3.1 Dataset Preparation 



The data set comprised 9 onion seeds harvested from a farm, with an assortment of broken, mid-sized, and big seeds for variability. The seeds were captured under controlled illumination using a 1x magnifying camera in a stationary experimental setup to provide consistent brightness and contrast. The images were transformed into the HSV color space, and an existing mask was used to segment seeds depending on their black color range. Gaussian blur (σ = 9) was applied for noise reduction, then Canny edge detection (50,100) was applied to obtain the contours that were cleaned up using morphological operations (erosion and dilation). The very first contour detected was utilized as a reference object to determine a pixel-to-cm ratio (0.3 cm) for accurate size measurement. The seed dimensions were calculated using Euclidean distance, and their average color was taken for classification. Seeds were labeled as "good" if they had dimensions more than 2.2 mm and "bad" otherwise. The results were finally visualized using bar charts and superimposed contours to evaluate quality. 



3.2 Image Processing 



The prototype code utilizes OpenCV and other libraries to process seed images and extract relevant features (Ghimire et al., 2023): 

1.  Color Segmentation 

The input image is first converted from the RGB color space to the HSV (Hue, Saturation, Value) color space. 

Jin et al. (2022) suggested that the HSV model is more intuitive for color segmentation as it separates chromatic content (hue) from intensity (value). Hue represents the color type, saturation indicates the vibrancy, and value reflects the brightness of the pixel. This conversion ensures that variations in lighting and intensity have minimal impact on the segmentation process. 

Based on predefined thresholds for hue, saturation, and value, Toda et al. (2020) presented a binary mask that is  created  to  isolate  the  regions  corresponding  to  the  seeds.  These  thresholds  are  determined  through  an experimental process where the range of color values corresponding to the seeds is identified. For example, seeds that appear black or dark in color would have specific ranges of low saturation and brightness values. The mask filters out all other regions of the image, retaining only the areas matching the seed color characteristics. 

2.  Morphological Analysis   

Martí

n-Gómez  et  al. (2024)  studied  Morphological  operations  performed  on  the  segmented  binary  mask  to enhance seed detection and extract key geometric features. 

After  applying  the  mask,  contours  are  detected  using  image  processing  techniques  such  as  the  Canny  edge detector or similar contour-finding algorithms. Contours are the boundaries that outline the detected seed regions. 

These boundaries are essential for identifying the seed shapes and locations in the image. 

For each detected seed, the bounding box is computed, which is the smallest rectangle that encloses the contour. 

Using the bounding box, dimensions such as width, height, and aspect ratio are calculated. 

Width is the horizontal size of the bounding box. 



42

 

Height is the vertical size of the bounding box. 

Aspect Ratio is the ratio of width to height, which helps characterize the shape of the seed. 

3.  Color Feature Extraction 

Color is a key feature for identifying seed quality, as healthy seeds often exhibit specific color characteristics. 

For each segmented seed region, the average Red, Green, and Blue (RGB) color intensities are computed. This involves summing the RGB values of all pixels within the seed region and dividing by the total number of pixels. 

The resulting values represent the overall color tone of the seed. 

Haque & Haque (2018) computed RGB values are then mapped to the nearest named color using the Euclidean distance metric. The Euclidean distance is calculated between the RGB values of the seed and a set of predefined RGB values corresponding to standard colors. The named color with the smallest distance is assigned to the seed. 

This mapping allows for an intuitive interpretation of seed color, such as "black," "dark brown," or "gray." 

In our image processing project, we focused on analyzing high-resolution images of onion seeds. We started by converting these images into the HSV color space, which allowed us to apply a specific color mask to isolate the seeds based on their black hues. To enhance the clarity of the images, we used a Gaussian blur with a standard deviation of 9, which helped reduce any unwanted noise. 

Next, we employed Canny edge detection with threshold values set between 50 and 100 to carefully extract the contours of the seeds. To further refine these edges, we applied morphological operations like dilation and erosion, which helped to clean up the results. 

After identifying the first contour, we used it as a reference object to create a pixel-to-centimeter ratio of 0.3 

cm.  This  allowed  us  to  measure  each  seed's  width  and  height  using  Euclidean  distance.  We  also  analyzed  the average color of each seed to classify them according to a predefined color set. 

In our classification process, we labeled seeds as "good" if their dimensions were greater than 2.2 mm and "bad" 

if they fell short of that measurement. Finally, we visualized our findings with bar charts and overlaid contours to clearly showcase the results of our seed classification efforts. This approach helped us better understand the quality of the onion seeds we were analyzing. 



3.3 Feature Selection 



The extracted features included: 

1)  Dimensions: Width and height of seeds (in mm). 

2)  Color: Dominant color category. 

3)  Morphology: Shape attributes such as aspect ratio and area. 



3.4 Classification 



A threshold-based classification was applied for initial quality assessment: 1.  Seeds with dimensions <= 2.2 mm were classified as “bad seeds.” 

2.  Seeds with dimensions > 2.2 mm were classified as “good seeds.” 

For  advanced  prediction,  the  dataset  was  fed  into  machine  learning  algorithms,  including  Yolo,  to  enhance classification accuracy. 



4. Results   



4.1 Prototype Outputs 



1. Segmentation accuracy 

The segmentation step, represented by the illustration in subgraph (b) of Figure 2 as the "Mask" image, performs the task with very good precision in finding the seed regions from subgraph (a) of Figure 2 as the "Original Image". 

The design accurately extracts individual seeding areas and suppresses the noise of the background. 

This accuracy, demonstrated in the segmentation process, acknowledges the strength of the algorithm in the visual detection of the required objects. What is more, the object-oriented mask generation technique was able to remove the confrontation problem of the overlapping, irrelevant areas. This, in turn, guarantees the accuracy of the extracted mask. The ability to segment and distinguish seeds of different sizes and shapes is clear evidence of the flexibility of the method. 

2. Geometrical Measurements 

Innovative guidance to the multistage image segmentation process for  the final analysis of seeds is depicted in subgraph (c) of Figure 2.  Where each seed is surrounded by a bounding box, where its dimensions (length and width) are  annotated on the image directly. For instance, the upper-left seed is 2.6 mm × 2.9 mm, while the center-left  seed  is  3.0  mm  ×  2.3  mm.  The  determined  dimensions  coincide  with  the  observed  footage  and  manual measurements, confirming the  validity of the method used. This approach provides two advantages: it gives us a 43
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way to graph the seed sizes, and it allows us to analyze all our samples uniformly. 

Furthermore, the visualization of the "Seed Size" shown in subgraph (c) of Figure 2 demonstrates the organized output of the geometrical characteristics obtained from the exploration. The prototype automates the process of measuring the file size, thereby  reducing human error while providing the ability to process large datasets much faster, demonstrating its scalability and use in real-world applications. 







Figure 2. Different stages of onion seed 



4.2 Prototype Efficiency 



The results confirm that the images implemented are of various resolutions and complexities. Even in the face of  potential  challenges  like  variations  in  lighting  and  slightly  distorted  original  images,  segmentation  and measurement from the model  provided  are  still robust. An automated approach minimizes the  involvement  of human experts, which significantly improves reproducibility and the time it consumes. This is especially important in applications such as agriculture or food quality control, where large amounts of seeds must often be analyzed. 

This process required precise measurements and evaluations to ascertain the suitability of the seeds for further agricultural use. The  results indicated that the majority of the  seeds met  acceptable  standards; however, a few deviated  from  the  predefined  criteria  because  some  exhibited  irregular  attributes. Although  the  findings  were largely positive, the existence of these anomalies is noteworthy. 



Table 2. Summary of seed quality assessment 



Seed 

Width (mm) 

Height (mm) 

Detected Color 

Seed Quality 

Seed 1 

3 

2.3 

Black 

Good Seed 

Seed 2 

2.6 

2.9 

Black 

Good Seed 

Seed 3 

2.8 

2.5 

Black 

Good Seed 

Seed 4 

2.9 

1.8 

Black 

Good Seed 

Seed 5 

2.3 

2.2 

Black 

Good Seed 

Seed 6 

2.2 

1.8 

Black 

Bad Seed 

Seed 7 

1.8 

2.3 

Black 

Good Seed 

Seed 8 

1.5 

2.2 

Black 

Bad Seed 

Seed 9 

2.1 

2 

Black 

Bad Seed 



Among  the  nine  seeds  analyzed  (Table  2),  six  were  classified  as  Good  Seeds,  as  they  met  the  requisite dimensional  thresholds  and  quality  standards. These  seeds  displayed  consistent  geometrical  properties,  which indicate a notable uniformity and high quality. For instance, Seed 1 (3.0 mm × 2.3 mm), Seed 2 (2.6 mm × 2.9 

mm), and Seed 3 (2.8 mm × 2.5 mm) all exhibited optimal sizes and were thus deemed good. Similarly, Seeds 4, 5, and 7 conformed to the established standards, further underscoring the reliability of the batch. 

However, three seeds were categorized as Bad Seeds due to their suboptimal dimensions, which likely suggest underdevelopment or deformities. For example, Seed 6 (2.2 mm × 1.8 mm) and Seed 8 (1.5 mm × 2.2 mm) had the smallest dimensions among the samples, falling considerably below the acceptable range. Seed 9 (2.1 mm × 

2.0 mm) also slightly failed to meet the threshold, which resulted in its classification as a bad seed. These deviations highlight the necessity of rigorous quality control measures because only high-quality seeds should be selected for further use. 
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4.3 Seed Quality Distribution 



Figure 3 clearly outlines a comparative count comparison of bad seeds and good seeds, where their respective values are displayed. This visualisation proves critical in describing the pattern of distribution within the dataset since the viewer is made to visually comprehend the relative proportions of each type. 







Figure 3. Bar chart comparing good seeds with bad seeds By  adding  numerical  values  or  percentage  values,  the  impact  of  the  visualization  would  be  greater  still, providing a clearer and more precise description of the ratio of the two groups. The additions would not merely facilitate  a  better  understanding  of  the  quantity  of  good  seeds  versus  bad  seeds  but  would  also  assist  in  the identification of trends or outliers in the dataset. 

Figure 4 provides a detailed graphical representation of the seed quality distribution, properly dividing the seeds into two primary categories: "Good Seeds" and "Bad Seeds." Such categorisation is crucial to realising the general quality of the batch of seeds since it identifies the different parameters responsible for seed viability, germination rates, and overall health. 







Figure 4.  Seed quality distribution 



The  "Good  Seeds"  category  generally  consists  of  those  displaying  best-of-their  traits,  like  responsible  size, consistency,  and  wholesomeness,  indicating  a  better  chance  for  optimal  growth.  Conversely,  the  "Bad  Seeds" 

category can consist of those that  are  broken, coloured, or otherwise  fail to meet set  quality requirements. By presenting this clear synopsis, the  figure  allows for improved comprehension of the seed quality and supports decision-making associated with planting and agricultural planning. 
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Figure 5 shows a scatter plot of the distribution of seed sizes. The x-axis of the graph measures seed width in millimeters, covering an approximate range from 2.0 mm to 3.0 mm. The y-axis, on the other hand, is probably reserved for measuring either frequency or density of seeds in given size ranges. This visualization plays a vital role  in  studying  the  variation  of  seed  sizes,  offering  useful  information  for  vital  classification  and  quality assessment processes. 







Figure 5.  Scatter plot of seed size distribution 



Through the observation of the distribution pattern, researchers can discover any trends or irregularities of seed sizes, which might be reflections of genetic variations, environmental impacts, or agricultural and horticultural applications. This high-degree analysis assists with efficient seed improvement and selection policies based on characteristics of size. 



5. Discussion 



One of the observations of interest is the accuracy of classification at 88.89%, which suggests that the model is fairly  good  at  distinguishing  between  good-quality  seeds  and  bad  seeds.  Nevertheless,  note  that  there  can  be classification  mistakes  caused  by  similarity  in  visual  features  between  borderline  examples,  like  seeds  with marginal variation in size or analogous color features that might lie near the established threshold values (e.g., 

≤2.2  mm  width  and  height).  This  restriction  indicates  the  necessity  of  fine-tuning  the  decision  boundaries  or incorporating more features like texture, surface morphology, or 3D shape descriptors to enhance the robustness of the model. 

The bar chart illustrating good and bad seeds shows the dataset to be moderately imbalanced. Most of the seeds plot just above or below the predetermined quality threshold, which can have the effect of introducing bias within classification because it is a hard cutoff. Use of a soft classification margin or probabilistic thresholding might make  this  less  problematic  in  future  development.  The  seed  size  distribution  scatter  plot  further  supports  the existence  of  a  cluster  of  seeds  at  the  2.2  mm  cutoff,  supporting  the notion  that  misclassifications  would  likely result from slight dimensional differences. This plot can also be employed to determine if a more dynamic or data-based threshold would more effectively distinguish the classes. 

Classification by color, also demonstrated by stacked bar charts (which aren't part of existing visualizations), also has its limitations. Because lighting and shadows can influence the appearance of colors, color averaging by itself can be insufficient as a quality measure. A more sophisticated color calibration method or machine learning model  that  learns  the  RGB  histogram  or  the  HSV  color  space  may  better  increase  classification  accuracy. 

Additionally, the model has no adaptive processes to correct misclassifications. The integration of a feedback-driven learning mechanism or confusion matrix analysis would identify patterns where the model repeatedly goes wrong and help drive retraining processes. 
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6. Conclusions 



This  research  introduces  a  vision-based  classifier  method  for  estimating  onion  seed  quality  using  image processing methods based on dimensional and color characteristics. In the experimental work, it was shown that the  model  registered  a  classification  rate  of  88.89%  and  thus  proposed  a  promising  base  for  low-cost,  non-destructive seed quality estimation. 

The  results  validate  that  seed  size—i.e.,  width  and  height  thresholds—can  be  an  effective  measure  for distinguishing between good and bad seeds. Nevertheless, seeds near the decision boundary presented difficulties in correct classification, indicating the requirement of more advanced feature extraction and adaptive thresholding in subsequent work. Furthermore, although color-based features offer complementary information, their sensitivity to  variations  in  lighting  conditions  could  restrict  reliability  unless  sophisticated  preprocessing  or  calibration methods are employed. 

This method provides potential value to agricultural professionals and seed processing industries for automated, scalable,  and  cost-effective  seed  quality  screening  platforms.  However,  potential  future  enhancement  involves incorporating machine learning algorithms, increasing the dataset, and integrating comparative benchmarking with state-of-the-art techniques to improve model generalizability and performance. 

In  short,  the method  presented  here  establishes  a  solid  foundation for  automated  seed  classification  but  also highlights the need for ongoing improvement, particularly in error analysis, adaptive classification methods, and verification against current literature and commercial systems. 
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