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Abstract: Seed Quality is an important area of agriculture and directly influences crop yield and germination 

percentage. Visual examination forms the foundation of traditional seed testing techniques, which are 

cumbersome, inflexible, and inefficient for effective assessment. This study proposed an automated approach to 

seed quality assessment based on physical measurement using machine learning and image processing techniques. 

Snapshots of the new seeds were captured and underwent feature extraction, segmentation, and image 

improvement to explore notable morphological attributes, such as size and colour. To tag seeds as "good" or "bad" 

based on physical characteristics, Support Vector Machines (SVMs) are used as a reference model. Rather, 

Convolutional Neural Networks (CNNs) have been utilised for deep feature extraction and classification. 

Experimental findings indicate that CNNs perform better than conventional machine learning models, with a 

scalable and highly accurate method of seed quality assessment. Future use will utilise quantum machine learning 

to improve prediction and facilitate sustainable, precision agriculture. The improved framework, optimised with 

great care for onion seeds, is a major breakthrough in increasing the agricultural productivity of onion cultivation. 
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1. Introduction

A central factor that contributes to crop production, agricultural productivity, and food security is seed quality.

The demand for effective, precise, and non-destructive techniques of assessing seed quality is growing very fast 

with the growing technological trends in agriculture. Conventional techniques of seed assessment, such as eye 

inspection or hand testing, are usually labor-intensive, time-consuming, and prone to human error. For this purpose, 

a good substitute for seed quality assessment through automation based on physical attributes such as size, shape, 

color, and texture is the combination of Machine Learning (ML) and Image Processing (IP techniques). 

The research on seed quality evaluation through machine learning and image processing techniques has 

increased exponentially over the past decade, reflecting a growing recognition of the value of accurate and effective 

evaluation methods in agriculture. The procedure begins with the study by Saeed et al. (2015), which identifies 

the application of machine vision to identify not only healthy but also defective canola seeds. This basic work 

emphasizes the importance of digital image processing tools, such as the Matlab Digital Image Processing toolkit, 

in performing high-accuracy seed classification, although it admits some shortcomings in the segregation of good 

and defective seeds. On this foundation, Nkemelu et al. (2018) introduced deep convolutional neural networks 

(CNNs) as an even more advanced technique for plant seedling classification. Their work, based on a dataset of 

over 4,000 images, demonstrates how CNNs can potentially revolutionize farming automation and crop yield 

optimization, and hence map out a revolutionary future for machine learning applications in agriculture. ElMasry 

et al. (2019) push the frontiers of imaging techniques further with a discussion of multispectral imaging for seed 

phenotyping and quality evaluation. They emphasize the effectiveness and non-destructive methods of imaging as 
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increasingly favored when it comes to defining the quality parameters like purity and germination potential of 

seeds. This article illustrates the transition towards using more objective and high-speed test means in seed testing 

from the yesteryear time-consuming procedures.  

In 2020, Beck et al. (2020) investigated the marriage of machine learning and autonomous image tagging 

systems, highlighting the absolute need for high-quality training data to develop efficient ML solutions in 

agriculture. Based on their research, they lay out the limitation of hand annotation and the ability of other methods 

like transfer learning to enhance the training data sets on hand for use in CNNs. 

Ahmed et al. (2020) also contributed to this conversation by examining the use of X-ray imaging for watermelon 

seed inspection. They lay out the argument of the speed and accuracy of this method over conventional quality 

testing, advocating for the synergy of machine vision and deep learning for practical usage in seed quality testing. 

Margapuri & Neilsen (2021) addressed the problem of data scarcity in training CNNs for seed classification 

with new techniques like domain randomization and contrastive learning. Their work illustrates the potential of 

self-supervised learning models to overcome constraints in labeled datasets, a recurring theme in the literature. 

Kulkarni et al. (2021) shifted focus to plant disease detection and show how image processing and machine 

learning can be used to identify diseases and prevent yield loss. Their research highlights the efficacy of automated 

systems in monitoring vast fields of agriculture, a general trend towards applying technology in the pursuit of 

precision agriculture. Darbyshire et al. (2023) touched on practical weed spraying object detection, emphasizing 

the necessity of robust machine vision systems in precision agriculture. They introduced metrics for field 

deployment, representing a growing sense of the practicality of using ML solutions within agricultural settings. 

Dericquebourg et al. (2022) explored the complexity of seed maturity estimation from UAV multispectral 

images, proposing a scheme for automating data labeling to enhance deep learning model accuracy. The research 

emphasizes the importance of advanced imaging techniques in the realization of climate change optimized 

agricultural interventions. Du et al. (2023) proposed a new technique for cotton seed quality detection through an 

improved ResNet50 model with high levels of accuracy in distinguishing between seed qualities. The research 

demonstrates the advancement in machine vision-based detection technology, which has grown increasingly 

advanced and trustworthy over the years. 

Chen et al. (2024) offered a comprehensive overview of the use of artificial intelligence in agrifood systems, 

noting the potential offered by machine learning approaches in crop quality assessment and grading process 

automation. They advocate for the integration of ML with traditional agricultural practices to enhance productivity 

and efficiency. 

Finally, Opara et al. (2024) highlighted the potential of machine learning technologies for reducing postharvest 

losses in fresh fruits and vegetables. They indicated a paradigm shift towards mechanizing sorting and grading 

operations as part of a broader trend of integrating advanced technologies into agriculture. 

The studies as a collection demonstrate an interactive relationship between machine learning, image processing, 

and farming practices, highlighting the revolutionary capabilities of these technologies in seed quality testing and 

total agricultural output. 

 

2. Overview of Seed Quality Assessment 

 

The good quality of seed is one of the most important factors in the performance of agriculture, which mainly 

manifests directly by affecting the final crop yield and sustainable management. Conventional methods of seed 

quality estimation, which are based on size, colour, and shape, and are executed manually, are cumbersome and 

subject to human judgment. However, the novel developments in machine learning (ML) and image processing 

allow for the revolution of seed quality analysis with their efficient, accurate, and automated solutions. 

 

2.1 Machine Learning in Agricultural Applications 

 

Machine learning methods are widely used in various applications in the food industry, such as detecting 

diseases, predicting yields, and testing food quality. In particular, supervised learning algorithms, such as Support 

Vector Machines (SVM), Decision Trees, and Convolutional Neural Networks, are very effective for classification 

tasks such as determining seed quality. These algorithms study the labelled dataset patterns and then are able to be 

used in previously revealed data, which is a remarkable base for automated decision-making. 

For example, the study by Santos et al. (2020) has shown that DL can achieve high accuracy in detecting and 

classifying defects in seeds and fruits when applied to datasets in agriculture. These advancements highlight the 

potential of integrating machine learning techniques into seed quality analysis. 

 

2.2 Image Processing Techniques for Seed Analysis 

 

Image processing techniques like segmentation, feature extraction, and morphological analysis are crucial in 

identifying seed characteristics. These methods enable the extraction of critical features like seed dimensions, 
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shape, and color from digital images. Thresholding and edge detection algorithms are commonly used to segment 

seeds from the background, while feature descriptors quantify the extracted properties for further analysis. 

Medeiros et al. (2020) discussed the case study with optical sensors combined with machine learning algorithms 

for seed quality assessment, parameters such as width, height, and detected colour are fundamental indicators. By 

using these parameters, image processing algorithms can distinguish between good and bad seeds as demonstrated 

in studies focusing on the quality assessment of grains and legumes. 

 
2.3 Integration of Machine Learning and Image Processing 

 
The integration of machine learning and image processing creates a powerful pipeline for seed quality 

assessment. The process typically involves: 

1. Image Acquisition: Capturing high-resolution images of seeds. 

2. Preprocessing: Removing noise and enhancing the images for better analysis. 

3. Feature Extraction: Measuring seed dimensions (e.g., width and height) and detecting color. 

4. Classification: Using machine learning algorithms to classify seeds as “Good” or “Bad.” 

In this study, images of onion seeds were analyzed using a combination of these techniques. The results showed 

accurate classification based on seed dimensions and color, validating the effectiveness of this integrated approach. 

 
2.4 Related Work 

 

Several studies have demonstrated the utility of combining machine learning and image processing for 

agricultural quality assessment: 

1. Ravichandran et al. (2022) studied rice grain estimation quality parameters: They used SVC, LDA, CNN, 

and image processing techniques to classify rice grains based on size, shape, and texture. 

2. Pande et al. (2019) discussed the application of CNNs in fruit sorting: They applied convolutional neural 

networks to classify fruits based on size, color, and surface defects, achieving high efficiency in 

automated sorting systems. 

3. Jin et al. (2022) presented a method for seed viability testing: They utilized PCA, LR, and CNN to extract 

features of seed embryos and applied decision trees to classify them, achieving accurate predictions of 

seed viability. 

 
2.5 Comparative Analysis and Review 

 

The literature review highlights the advancements in seed quality assessment methods, showcasing a 

combination of machine learning and image processing as a robust approach. Below is a comparative Table 1 

summarizing key methodologies from related works. 

 
Table 1. Key work done in seed analysis 

 
Study Technique Used Application Accuracy Key Features 

Ravichandran et al. 

(2022)  

SVC + LDA + 

CNN 

Rice Grain 

Classification 
High Size, Shape, Texture 

Pande et al. (2019)  CNN Fruit Sorting High 
Size, Color, Surface 

Defects 

Jin et al. (2022) PCA + LR + CNN Seed Viability Analysis High Embryo Features 

 
This study builds on previous research by integrating advanced ML algorithms with precise image processing 

techniques tailored to onion seed quality assessment. Unlike studies that focus on specific grains or fruits, this 

work addresses the challenges associated with onion seeds. While methodologies are consistent with state-of-the-

art practices, including features like seed width and height with high-resolution imaging sets this study apart. The 

comparative analysis underscores the broader applicability and effectiveness of these combined techniques in 

agricultural contexts. 

 
3. Methodology 

 
Figure 1 shows the analysis of the seed quality parameter identification, starting with a single image of nine 

seeds. The previous steps were to convert the image to a standard input size, adjust the pixel values to determine 

the standard measurement of seed, and use the augmentation technique to increase the data level. 
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Figure 1. Seed analysis workflow 

 

After preprocessing, a model is selected that matches the expected seed physical parameters, and the data is 

divided into training and testing sets for training and evaluating the model. The model’s performance in classifying 

or analyzing seed quality is cross-validated with the seeds' physical measurements. The model output helps in 

identifying the best seeds (“good seeds”) that can be used as a good farmer saved seeds. Through this systematic 

approach, a robust and systematic analysis of onion seeds can be provided.  

 

3.1 Dataset Preparation 

 

The data set comprised 9 onion seeds harvested from a farm, with an assortment of broken, mid-sized, and big 

seeds for variability. The seeds were captured under controlled illumination using a 1x magnifying camera in a 

stationary experimental setup to provide consistent brightness and contrast. The images were transformed into the 

HSV color space, and an existing mask was used to segment seeds depending on their black color range. Gaussian 

blur (σ = 9) was applied for noise reduction, then Canny edge detection (50,100) was applied to obtain the contours 

that were cleaned up using morphological operations (erosion and dilation). The very first contour detected was 

utilized as a reference object to determine a pixel-to-cm ratio (0.3 cm) for accurate size measurement. The seed 

dimensions were calculated using Euclidean distance, and their average color was taken for classification. Seeds 

were labeled as "good" if they had dimensions more than 2.2 mm and "bad" otherwise. The results were finally 

visualized using bar charts and superimposed contours to evaluate quality. 

 

3.2 Image Processing 

 

The prototype code utilizes OpenCV and other libraries to process seed images and extract relevant features 

(Ghimire et al., 2023): 

1. Color Segmentation 

The input image is first converted from the RGB color space to the HSV (Hue, Saturation, Value) color space. 

Jin et al. (2022) suggested that the HSV model is more intuitive for color segmentation as it separates chromatic 

content (hue) from intensity (value). Hue represents the color type, saturation indicates the vibrancy, and value 

reflects the brightness of the pixel. This conversion ensures that variations in lighting and intensity have minimal 

impact on the segmentation process. 

Based on predefined thresholds for hue, saturation, and value, Toda et al. (2020) presented a binary mask that 

is created to isolate the regions corresponding to the seeds. These thresholds are determined through an 

experimental process where the range of color values corresponding to the seeds is identified. For example, seeds 

that appear black or dark in color would have specific ranges of low saturation and brightness values. The mask 

filters out all other regions of the image, retaining only the areas matching the seed color characteristics.  

2. Morphological Analysis  

Martín-Gómez et al. (2024) studied Morphological operations performed on the segmented binary mask to 

enhance seed detection and extract key geometric features. 

After applying the mask, contours are detected using image processing techniques such as the Canny edge 

detector or similar contour-finding algorithms. Contours are the boundaries that outline the detected seed regions. 

These boundaries are essential for identifying the seed shapes and locations in the image. 

For each detected seed, the bounding box is computed, which is the smallest rectangle that encloses the contour. 

Using the bounding box, dimensions such as width, height, and aspect ratio are calculated. 

Width is the horizontal size of the bounding box.  
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Height is the vertical size of the bounding box. 

Aspect Ratio is the ratio of width to height, which helps characterize the shape of the seed. 

3. Color Feature Extraction 

Color is a key feature for identifying seed quality, as healthy seeds often exhibit specific color characteristics. 

For each segmented seed region, the average Red, Green, and Blue (RGB) color intensities are computed. This 

involves summing the RGB values of all pixels within the seed region and dividing by the total number of pixels. 

The resulting values represent the overall color tone of the seed. 

Haque & Haque (2018) computed RGB values are then mapped to the nearest named color using the Euclidean 

distance metric. The Euclidean distance is calculated between the RGB values of the seed and a set of predefined 

RGB values corresponding to standard colors. The named color with the smallest distance is assigned to the seed. 

This mapping allows for an intuitive interpretation of seed color, such as "black," "dark brown," or "gray."  

In our image processing project, we focused on analyzing high-resolution images of onion seeds. We started by 

converting these images into the HSV color space, which allowed us to apply a specific color mask to isolate the 

seeds based on their black hues. To enhance the clarity of the images, we used a Gaussian blur with a standard 

deviation of 9, which helped reduce any unwanted noise. 

Next, we employed Canny edge detection with threshold values set between 50 and 100 to carefully extract the 

contours of the seeds. To further refine these edges, we applied morphological operations like dilation and erosion, 

which helped to clean up the results. 

After identifying the first contour, we used it as a reference object to create a pixel-to-centimeter ratio of 0.3 

cm. This allowed us to measure each seed's width and height using Euclidean distance. We also analyzed the 

average color of each seed to classify them according to a predefined color set. 

In our classification process, we labeled seeds as "good" if their dimensions were greater than 2.2 mm and "bad" 

if they fell short of that measurement. Finally, we visualized our findings with bar charts and overlaid contours to 

clearly showcase the results of our seed classification efforts. This approach helped us better understand the quality 

of the onion seeds we were analyzing. 

 

3.3 Feature Selection 

 

The extracted features included: 

1) Dimensions: Width and height of seeds (in mm). 

2) Color: Dominant color category. 

3) Morphology: Shape attributes such as aspect ratio and area. 

 

3.4 Classification 

 

A threshold-based classification was applied for initial quality assessment: 

1. Seeds with dimensions <= 2.2 mm were classified as “bad seeds.” 

2. Seeds with dimensions > 2.2 mm were classified as “good seeds.” 

For advanced prediction, the dataset was fed into machine learning algorithms, including Yolo, to enhance 

classification accuracy. 

 

4. Results  

 

4.1 Prototype Outputs 

 

1. Segmentation accuracy 

The segmentation step, represented by the illustration in subgraph (b) of Figure 2 as the "Mask" image, performs 

the task with very good precision in finding the seed regions from subgraph (a) of Figure 2 as the "Original Image". 

The design accurately extracts individual seeding areas and suppresses the noise of the background. 

This accuracy, demonstrated in the segmentation process, acknowledges the strength of the algorithm in the 

visual detection of the required objects. What is more, the object-oriented mask generation technique was able to 

remove the confrontation problem of the overlapping, irrelevant areas. This, in turn, guarantees the accuracy of 

the extracted mask. The ability to segment and distinguish seeds of different sizes and shapes is clear evidence of 

the flexibility of the method. 

2. Geometrical Measurements 

Innovative guidance to the multistage image segmentation process for the final analysis of seeds is depicted in 

subgraph (c) of Figure 2. Where each seed is surrounded by a bounding box, where its dimensions (length and 

width) are annotated on the image directly. For instance, the upper-left seed is 2.6 mm × 2.9 mm, while the center-

left seed is 3.0 mm × 2.3 mm. The determined dimensions coincide with the observed footage and manual 

measurements, confirming the validity of the method used. This approach provides two advantages: it gives us a 
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way to graph the seed sizes, and it allows us to analyze all our samples uniformly. 

Furthermore, the visualization of the "Seed Size" shown in subgraph (c) of Figure 2 demonstrates the organized 

output of the geometrical characteristics obtained from the exploration. The prototype automates the process of 

measuring the file size, thereby reducing human error while providing the ability to process large datasets much 

faster, demonstrating its scalability and use in real-world applications. 

 

 
 

Figure 2. Different stages of onion seed 

 
4.2 Prototype Efficiency 

 
The results confirm that the images implemented are of various resolutions and complexities. Even in the face 

of potential challenges like variations in lighting and slightly distorted original images, segmentation and 

measurement from the model provided are still robust. An automated approach minimizes the involvement of 

human experts, which significantly improves reproducibility and the time it consumes. This is especially important 

in applications such as agriculture or food quality control, where large amounts of seeds must often be analyzed. 

This process required precise measurements and evaluations to ascertain the suitability of the seeds for further 

agricultural use. The results indicated that the majority of the seeds met acceptable standards; however, a few 

deviated from the predefined criteria because some exhibited irregular attributes. Although the findings were 

largely positive, the existence of these anomalies is noteworthy. 

 
Table 2. Summary of seed quality assessment 

 
Seed Width (mm) Height (mm) Detected Color Seed Quality 

Seed 1 3 2.3 Black Good Seed 

Seed 2 2.6 2.9 Black Good Seed 

Seed 3 2.8 2.5 Black Good Seed 

Seed 4 2.9 1.8 Black Good Seed 

Seed 5 2.3 2.2 Black Good Seed 

Seed 6 2.2 1.8 Black Bad Seed 

Seed 7 1.8 2.3 Black Good Seed 

Seed 8 1.5 2.2 Black Bad Seed 

Seed 9 2.1 2 Black Bad Seed 

 
Among the nine seeds analyzed (Table 2), six were classified as Good Seeds, as they met the requisite 

dimensional thresholds and quality standards. These seeds displayed consistent geometrical properties, which 

indicate a notable uniformity and high quality. For instance, Seed 1 (3.0 mm × 2.3 mm), Seed 2 (2.6 mm × 2.9 

mm), and Seed 3 (2.8 mm × 2.5 mm) all exhibited optimal sizes and were thus deemed good. Similarly, Seeds 4, 

5, and 7 conformed to the established standards, further underscoring the reliability of the batch.  

However, three seeds were categorized as Bad Seeds due to their suboptimal dimensions, which likely suggest 

underdevelopment or deformities. For example, Seed 6 (2.2 mm × 1.8 mm) and Seed 8 (1.5 mm × 2.2 mm) had 

the smallest dimensions among the samples, falling considerably below the acceptable range. Seed 9 (2.1 mm × 

2.0 mm) also slightly failed to meet the threshold, which resulted in its classification as a bad seed. These deviations 

highlight the necessity of rigorous quality control measures because only high-quality seeds should be selected for 

further use.  
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4.3 Seed Quality Distribution 

 

Figure 3 clearly outlines a comparative count comparison of bad seeds and good seeds, where their respective 

values are displayed. This visualisation proves critical in describing the pattern of distribution within the dataset 

since the viewer is made to visually comprehend the relative proportions of each type. 

 

 
 

Figure 3. Bar chart comparing good seeds with bad seeds 

 

By adding numerical values or percentage values, the impact of the visualization would be greater still, 

providing a clearer and more precise description of the ratio of the two groups. The additions would not merely 

facilitate a better understanding of the quantity of good seeds versus bad seeds but would also assist in the 

identification of trends or outliers in the dataset. 

Figure 4 provides a detailed graphical representation of the seed quality distribution, properly dividing the seeds 

into two primary categories: "Good Seeds" and "Bad Seeds." Such categorisation is crucial to realising the general 

quality of the batch of seeds since it identifies the different parameters responsible for seed viability, germination 

rates, and overall health.  

 

 
 

Figure 4. Seed quality distribution 

 

The "Good Seeds" category generally consists of those displaying best-of-their traits, like responsible size, 

consistency, and wholesomeness, indicating a better chance for optimal growth. Conversely, the "Bad Seeds" 

category can consist of those that are broken, coloured, or otherwise fail to meet set quality requirements. By 

presenting this clear synopsis, the figure allows for improved comprehension of the seed quality and supports 

decision-making associated with planting and agricultural planning.  
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Figure 5 shows a scatter plot of the distribution of seed sizes. The x-axis of the graph measures seed width in 

millimeters, covering an approximate range from 2.0 mm to 3.0 mm. The y-axis, on the other hand, is probably 

reserved for measuring either frequency or density of seeds in given size ranges. This visualization plays a vital 

role in studying the variation of seed sizes, offering useful information for vital classification and quality 

assessment processes.  

 

 
 

Figure 5. Scatter plot of seed size distribution 

 

Through the observation of the distribution pattern, researchers can discover any trends or irregularities of seed 

sizes, which might be reflections of genetic variations, environmental impacts, or agricultural and horticultural 

applications. This high-degree analysis assists with efficient seed improvement and selection policies based on 

characteristics of size. 

 

5. Discussion 

 

One of the observations of interest is the accuracy of classification at 88.89%, which suggests that the model is 

fairly good at distinguishing between good-quality seeds and bad seeds. Nevertheless, note that there can be 

classification mistakes caused by similarity in visual features between borderline examples, like seeds with 

marginal variation in size or analogous color features that might lie near the established threshold values (e.g., 

≤2.2 mm width and height). This restriction indicates the necessity of fine-tuning the decision boundaries or 

incorporating more features like texture, surface morphology, or 3D shape descriptors to enhance the robustness 

of the model. 

The bar chart illustrating good and bad seeds shows the dataset to be moderately imbalanced. Most of the seeds 

plot just above or below the predetermined quality threshold, which can have the effect of introducing bias within 

classification because it is a hard cutoff. Use of a soft classification margin or probabilistic thresholding might 

make this less problematic in future development. The seed size distribution scatter plot further supports the 

existence of a cluster of seeds at the 2.2 mm cutoff, supporting the notion that misclassifications would likely 

result from slight dimensional differences. This plot can also be employed to determine if a more dynamic or data-

based threshold would more effectively distinguish the classes. 

Classification by color, also demonstrated by stacked bar charts (which aren't part of existing visualizations), 

also has its limitations. Because lighting and shadows can influence the appearance of colors, color averaging by 

itself can be insufficient as a quality measure. A more sophisticated color calibration method or machine learning 

model that learns the RGB histogram or the HSV color space may better increase classification accuracy. 

Additionally, the model has no adaptive processes to correct misclassifications. The integration of a feedback-

driven learning mechanism or confusion matrix analysis would identify patterns where the model repeatedly goes 

wrong and help drive retraining processes. 
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6. Conclusions 

 

This research introduces a vision-based classifier method for estimating onion seed quality using image 

processing methods based on dimensional and color characteristics. In the experimental work, it was shown that 

the model registered a classification rate of 88.89% and thus proposed a promising base for low-cost, non-

destructive seed quality estimation. 

The results validate that seed size—i.e., width and height thresholds—can be an effective measure for 

distinguishing between good and bad seeds. Nevertheless, seeds near the decision boundary presented difficulties 

in correct classification, indicating the requirement of more advanced feature extraction and adaptive thresholding 

in subsequent work. Furthermore, although color-based features offer complementary information, their sensitivity 

to variations in lighting conditions could restrict reliability unless sophisticated preprocessing or calibration 

methods are employed. 

This method provides potential value to agricultural professionals and seed processing industries for automated, 

scalable, and cost-effective seed quality screening platforms. However, potential future enhancement involves 

incorporating machine learning algorithms, increasing the dataset, and integrating comparative benchmarking with 

state-of-the-art techniques to improve model generalizability and performance. 

In short, the method presented here establishes a solid foundation for automated seed classification but also 

highlights the need for ongoing improvement, particularly in error analysis, adaptive classification methods, and 

verification against current literature and commercial systems. 
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