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Abstract: Bilinear and bicubic interpolations were often used in digital elevation models (DEMs), image scaling, 

and image restoration, with the aid of spatial transform techniques. This paper resorts to bilinear and bicubic 

interpolations, along with the spatial transform of images, to present the temperature distribution on a plate with a 

circular hole. The Dirichlet boundary conditions were applied, a rectangular grid was created, and the nodal values 

were calculated using the finite difference method (FDM). These methods were also employed to represent the 

mechanical stress distribution on a plate with a circular hole, under the presence of uniaxial stress. In this case, the 

nodal values were calculated using the analytical method. Experimental results show that bicubic interpolation 

generated continuous contours, while bilinear interpolation had a discontinuity in some cases. The results were 

comparative to images for similar cases when solved through ANSYS. 

Keywords: Bilinear interpolation; Bicubic interpolation; Spatial transform; Temperature distribution; Plate with 

a circular hole 

1. Introduction

With the help of interpolation techniques, many software applications eliminate the problem of image pixelation

while zooming. There are various readily available interpolation techniques, ranging from single interpolation to 

multivariate interpolation. When it comes to image scaling, resizing and restoration, bilinear and bicubic 

interpolation methods were commonly and widely used in many fields.  

Using bilinear and Brownian interpolations, Polidori and Chorowicz [1] analyzed digital elevation models 

(DEMs), and compared the two methods on topographic and hydrographic surfaces, under the criteria of maximum 

deviation and texture quality. Similarly, Shi et al. [2] modelled the analytical form for the accuracy of DEMs, and 

measured the accuracy by resolution and terrain slope. Zhang et al. [3] adopted four surface interpolation 

techniques, namely, inverse distance weighted interpolation, ordinary kriging interpolation, radial basis function 

(RBF) interpolation, and cubic spline function interpolation, to plot the contours of the shockwave overpressure 

field of a 7.62mm calibre naval gun, and obtained the relevant values with a sensor array based on the polar 

coordinates. The interpolated data were cross-validated with mean relative error, mean absolute error, and root 

mean square error. Leng et al. [4] proposed a registration-based image interpolation approach, which comprises 

image registration and intensity interpolation. The images were registered with the B-spline vector-based function. 

After that, the intensity was derived through bilinear interpolation or bicubic interpolation.  

Drawing on RBF interpolation, Wang et al. [5] put forward a new sub-pixel mapping method, and applied the 

method on remote sensing images, with the coarse image data as input. Xia et al. [6] applied bilinear interpolation, 

bicubic interpolation and B-spline interpolation to parallel phase-shifting digital holography, and compared the 

results by the quality of the reconstructed images. Through fuzzy error interpolation, Bai and Zhuang [7] identified 

and compensated the position error of the end-effector of a robot, and compared the results of fuzzy error 

interpolation with those of bilinear and cubic spline interpolations through simulation. Gribbon and Bailey [8] 

introduced bilinear interpolation to correct lens distortion, which is a real-time problem with the input coordinates 

of the pixels following a curved path. The coordinates were retrieved by forward and inverse mapping between 
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distorted and corrected images.  

Bozorgmanesh et al. [9] searched for the nanoparticle size in rapid expanding supercritical fluids, using 

Lagrangian bivariate interpolation, and assured that the powder generated by pharmaceutical industries have 

uniform properties. Bhattacharjee and Majumder [10] developed two algorithms on multivariate interpolation. One 

of them consumes a relatively long time yet yields accurate results, while the other works fast but lacks accuracy. 

Inspired by the finite element method, Gopalakrishnan and Korttom [11] developed an algorithm for contour plot 

and interpolation of regularly and irregularly distributed field data. Eltuhamy et al. [12] innovatively utilized 

infrared thermography image analysis to detect and predict the fault features of CIGS PV modules. The novelty of 

their technique manifests in the utilization and analysis of the captured thermal images. Senalp and Ceylan [13] 

drew thermal images of neonates using a high-resolution thermal camera. These images were then downscaled and 

subjected to super-resolution methods, using different data sets based on deep learning. 

The present work resorts to bilinear and bicubic image interpolations to clarify the temperature distribution on 

a rectangular plate with a circular hole. Multiple techniques were employed to mark the contours of the stress 

intensity over the said plate, in the light of the stress concentration factor. This factor has been considered by 

several researchers [14] based on diameter to width ratio. Both bicubic and bilinear interpolations were simulated 

on MATLAB with the same number of iterations. The simulation results were compared with those of FEM on 

ANSYS software, Mechanical APDL Student version 2021 R2. 

 

2. Methodology 

 

Image interpolation using different techniques is an active research area involving researchers from many 

different countries and regions. In the present work, bilinear and bicubic interpolations are compared in different 

scenarios, such as irregular geometry and the combination between Neumann and Dirichlet boundary conditions, 

which are considered to demonstrate the discontinuities in the contours. 

 

2.1 Image Restoration by Spatial Transform 

 

Figure 1 provides a representation of image interpolation. Each node represents a pixel, and the nodal value is 

assigned to the corresponding pixel. The pixel value is illustrated by a significant color (Figure 1(a)). The spatial 

transform is explained in Figure 1(b): each grid is expanded, and null pixels are added between the initial pixels. 

The addition is realized through bilinear and bicubic interpolations (Figure 1(c)), and only takes one single iteration. 

To obtain the contours of the data, however, more iterations are required until the high-resolution image is acquired. 

For the rectangular plate with a circular hole, the irregular boundaries can be addressed with the help of an 

equation for irregular geometry. As shown in Figure 2, the pixel values falling in the equation of that geometry 

must be removed [15].  

 

 
(a) Initial nodal values as pixels 

 
(b) Spatial transform 
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(c) Interpolated image 

 

Figure 1. Representation of image interpolation 

 

 
 

Figure 2. Creating irregular geometry in meshed grid 

 

2.2 Bilinear Interpolation 

 

As shown in Figure 3, the bilinear surface can be represented by: 

 

𝑓𝑓(𝑥, 𝑦) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑥𝑦 (1) 

 

Four points are required to find the four coefficients of the equation by solving the simultaneous Eq. (2) from 

the given points: 

 

[

𝑓(0,0)

𝑓(1,0)
𝑓(0,1)

𝑓(1,1)

] = [

1 0
1 1

0 0
0 0

1 0
1 1

1 0
1 1

] [

𝑎00

𝑎10
𝑎01

𝑎11

] (2) 

 

 
 

Figure 3. Bilinear surface 

 

After obtaining the coefficients (𝑎0, 𝑎1, 𝑎2, 𝑎3)  of Eq. (1), the bilinear interpolation can be simplified by 

computing the midpoint values with the mean values from the four neighbour points (f(0,0), f(1,0), f(0,1), f(1,1)) 

(Figure 4). 
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Figure 4. Bilinear interpolation using mean values 

 

2.3 Bicubic Interpolation 

 

As shown in Figure 5, the bicubic surface can be represented with Eq. (3) with sixteen nodal values equidistant 

from each other: 

 

𝑓(𝑥, 𝑦) = 𝑎00 + 𝑎10𝑥 + 𝑎01𝑦 + 𝑎11𝑥𝑦 + 𝑎20𝑥2 + 𝑎02𝑦2 + 𝑎21𝑥2𝑦 + 𝑎12𝑦2𝑥 + 𝑎22𝑥2𝑦2 + 𝑎30𝑥3

+ 𝑎03𝑦3 + 𝑎31𝑥3𝑦1 + 𝑎13𝑥1𝑦3 + 𝑎32𝑥3𝑦2 + 𝑎23𝑥2𝑦3 + 𝑎33𝑥3𝑦3 
(3) 

 

Substituting the obtained coefficients of Eq. (3), sixteen equations are framed by substituting sixteen nodal 

values in the bicubic equation, and the simultaneous equations represented by Eq. (4) are solved using Gauss Seidel 

or Gauss Jordan methods: 

 
[𝑓]16𝑥1 = [𝑋]16𝑥16 [𝑎]16𝑥1 (4) 

 

The results of Eq. (4) are rearranged to form the Lagrange bivariate interpolation: 

 

𝑓(𝑥, 𝑦) = ∑ ∑ 𝑓(𝑥𝑖 , 𝑦𝑗). 𝐿𝑖𝑗(𝑥, 𝑦)

3

𝑗=0

3

𝑖=0

 (5) 

 

𝐿𝑖𝑗(𝑥, 𝑦) = 𝐿𝑖(𝑥). 𝐿𝑗(𝑦) 

 

where, 

 

 𝐿𝑖(𝑥) = ∏ (
𝑥 − 𝑥𝑠

𝑥𝑖 − 𝑥𝑠

) 

𝑛

𝑠=0,𝑠≠𝑖

 

 

 𝐿𝑗(𝑦) = ∏ (
𝑦 − 𝑦𝑠

𝑦𝑗 − 𝑦𝑠

) 

𝑚

𝑠=0,𝑠≠𝑗

 

 

 
 

Figure 5. Bicubic surface 

 

3. Results and Discussion 

 

Bilinear and bicubic interpolation methods are only applicable to two-dimensional (2D) problems. In this section, 

their results are evaluated and compared in different cases. 
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3.1 Temperature Distribution on Plate with Circular Hole 

 

A circular hole was added to form an irregular grid on the rectangular plate. This paper takes a similar problem 

with boundary conditions, yet without a hole, as a reference [16]. Boundary conditions were applied to maintain 

the constant temperatures on the four edges of the rectangular plate. Figure 6 shows the constant temperature on 

the boundary of the circular hole. The interior nodal values can be calculated by the Laplacian equation: 

 

𝑑2𝑇

𝑑𝑥2
+

𝑑2𝑇

𝑑𝑦2
= 0 (6) 

 

The finite difference method can be represented by: 

 
𝑇𝑖+1,𝑗 − 2𝑇𝑖,𝑗 + 𝑇𝑖−1,𝑗

∆𝑥2
+

𝑇𝑖,𝑗+1 − 2𝑇𝑖,𝑗 + 𝑇𝑖,𝑗−1

∆𝑦2
= 0 (7) 

 

The four nodes near irregular boundaries can be obtained by substituting Eqns. (8a) into Eq. (6): 

 

𝑑2𝑇

𝑑𝑥2
=

2

∆𝑥2
[

𝑇𝑖−1,𝑗 − 𝑇𝑖,𝑗

𝛼1(𝛼1 + 𝛼2)
+

𝑇𝑖+1,𝑗 − 𝑇𝑖,𝑗

𝛼2(𝛼1 + 𝛼2)
] (8a) 

 

𝑑2𝑇

𝑑𝑦2
=

2

∆𝑦2
[

𝑇𝑖,𝑗−1 − 𝑇𝑖,𝑗

𝛽1(𝛽1 + 𝛽2)
+

𝑇𝑖,𝑗+1 − 𝑇𝑖,𝑗

𝛽2(𝛽1 + 𝛽2)
] (8b) 

 

The width (b) = 30mm, height (b) = 30mm, and hole radius (a) = 5mm. 

 

 
(a) 6×6 grid 

 
(b) 12×12 grid 

 

Figure 6. Rectangular plate with circular hole with a constant temperature  

 

As shown in Figure 6(a), the grid of the size 6×6 contains fewer nodes to represent the circular boundary. Thus, 

it was further divided to obtain a 12×12 grid (Figure 6(b)). For the modified grid, there are sixteen nodes falling 

around the boundary of the circular hole. These are sufficient to represent the boundary of a circular hole in the 

spatial transform of an image. There are a total of 121 interior nodes in the modified grid (Figure 6(b)), after 
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neglecting the 13 nodes as boundary conditions (4 nodes on circumference, and 9 nodes at center). These interior 

nodes form a 108×108 matrix, which can be solved by Gauss Seidel or Gauss Jordan methods. Then, both bilinear 

and bicubic interpolation techniques were applied on the calculated data. 

Firstly, simulation results were obtained using MatLab programs for bilinear and bicubic interpolations, While 

the irregular geometries were represented with an equation in the code. Some discontinuous contours were 

observed in the bilinear interpolation, as shown in Figures 7(a) and (b). 

Bicubic interpolation yielded smoother and more accurate contours than bilinear interpolation. The results of 

the two interpolations were compared with those obtained by the finite element method computed using ANSYS 

(Mechanical APDL version 2021 R2), as shown in Figure 7(c). 

According to Figures 7(a)-(c), there were discontinuities in the bilinear interpolation contours, and the results 

of both interpolations were comparable to the ANSYS results. 

 

 
(a) Bilinear interpolation 

 
(b) Bicubic interpolation 

 
(c) ANSYS results 

 

Figure 7. Temperature distribution on rectangular plate with circular hole 

 

3.2 Stress Distribution on Flat Plate with Circular Hole 

 

As shown in Figure 8, a uniaxial load was applied on a flat plate with a circular hole, which is represented as a 

12×12 grid. Nodal values were calculated as follows: 
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The stress along the radial direction can be solved by: 

 

𝜎𝑟𝑟 =
𝜎

2
(1 −

𝑎2

𝑟2
) +

𝜎

2
(1 −

𝑎2

𝑟2
) (1 −

3𝑎2

𝑟2
) 𝑐𝑜𝑠 2𝜃 (9) 

 

The circumferential stress can be solved by: 

 

𝜎𝜃𝜃 =
𝜎

2
(1 +

𝑎2

𝑟2
) −

𝜎

2
(1 +

3𝑎4

𝑟4
) 𝑐𝑜𝑠 2𝜃 (10) 

The shear stress can be solved by: 

 

𝜎𝑟𝜃 = −
𝜎

2
(1 −

𝑎2

𝑟2
) (1 +

3𝑎2

𝑟2
) 𝑠𝑖𝑛 2𝜃 (11) 

 

The above equation was developed from the airy stress function and substituting those values in von-Mises 

equivalent stress: 

 

𝜎𝑒𝑞 = √
(𝜎1 − 𝜎2)2

2
+

(𝜎2 − 𝜎3)2

2
+

(𝜎1 − 𝜎3)2

2
 (12) 

 

The bilinear and bicubic interpolations were applied after obtaining the data for all nodes, using 𝒓𝒊𝒋 to represent 

the stress contours.  The width (b) = 30mm, height (b) = 30mm, hole radius (a) = 5mm, thickness (t) = 1mm, and 

applied load (σ) = 166.67 kPa. 

 

 
 

Figure 8. Flat plate with circular hole under uniaxial loading (12x12 Grid) 

 

The irregular geometry would result in the localization of high stresses, i.e., stress concentration. Considering 

this phenomenon, stress concentration factors were used to calculate the equivalent stresses at nodal points in 

Figure 8. These factors were taken directly from the work of Nagpal et al. [14], and have been considered by many 

researchers. In addition, the results obtained without taking account of the stress concentration factors (Figures 

9(a), (b) and (c)). The results of both bilinear and bicubic interpolations were both smaller than those of ANSYS. 

This is the result of the effect of stress concentration factors. 

 

 
(a) Bilinear interpolation results 
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(b) Bicubic interpolation results 

 
(c) ANSYS results 

 

Figure 9. Stress contours for uniaxial load applied on flat plate with circular hole 

 

3.3 Temperature Distribution on Rectangular Plate with Insulate Edge 

 

Finally, a rectangular plate was maintained with constant temperatures on three edges, and with the remaining 

edge insulated, as shown in Figure 10. The example was taken from Chapra and Canale [16]. The results were 

displayed to show the difference between bilinear and bicubic interpolations, with the aid of temperature contours. 

The purpose is to illustrate the impact of the temperature gradients using both bilinear and bicubic interpolations. 

This problem was also solved by the Laplacian equation Eq. (6) with finite difference scheme Eq. (7).   

The width (b) = 30mm, height (b) = 30mm, and distance (h) = 10mm. 

 

 
 

Figure 10. Rectangular plate with boundary condition 

 

As stated above, the example from Chapra and Canale [16] was cited to check the discontinuities in the contours, 

as well as the difference between both the interpolation methods. As shown in Figures 11, bilinear interpolation 

yielded discontinuous contours, while bicubic interpolation provided smooth contours with accurate results. 
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(a) Bilinear interpolation 

 
(b) Bicubic interpolation 

 
(c) ANSYS results 

 

Figure 11. Temperature distribution on rectangular plate with insulate edge 

 

4. Conclusions 

 

Bilinear and bicubic interpolations were applied after the spatial image transform on the original data of 

calculated nodal values. The present results show that bilinear interpolation yields discontinuous contours, failing 

to capture the variation in some data points. By contrast, the bicubic interpolation provides smooth contours. In 

general, grids can be taken such that the nodes fall on maximum or minimum values and irregular boundaries. 

Besides, bilinear interpolation offers an option to make the computations faster apart from neglecting the accuracy 

in results. Bicubic methods can be applied where the accuracy of results plays an important role, at the cost of 

more computation time. 
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Nomenclature 

 

𝐿𝑖𝑗  Lagrangian interpolation function 

n No.of terms in x-direction 

m No.of terms in y-direction 

𝑥𝑠 x-value at point s 

𝑥𝑖 x-value at point i 

𝑦𝑗 y-value at point j 

𝑦𝑠 y-value at point s 

T Temperature 

𝑇𝑖𝑗  Temperature at point (i, j)  

𝑟𝑖𝑗  Radial distance to point (i, j)  

𝑏 Width / height of rectangular plate 

a Radius of circular hole 
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h Distance of temperature source 

Greek symbols 

 x-distance from irregular boundary

 y-distance from irregular boundary

σ Stress kPa

Subscripts 

rr Radial direction 

ϴϴ Circumferential direction 

rϴ 

eq 

Tangential direction 

Equivalent stress 
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