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Abstract: Given the geometric nonlinearity of the piezoelectric cantilever beam, this study establishes a 

distributed parameter model of the nonlinear bi-stable cantilever piezoelectric energy harvester, following the 

generalized Hamilton variational principle. The analytical expressions of the dynamic response were obtained for 

the energy harvesting system using Galerkin modal decomposition and the multi-scale method. The investigation 

focuses on how the performance of the energy harvesting system is influenced by the gap distance between 

magnets, external excited amplitude, mechanical damping ratio and external load resistance. The calculation 

results were compared with those obtained neglecting the geometric nonlinearity of the beam. The results show 

that the system responses contain jump and multiple solutions. The consideration of the geometrical nonlinearity 

significantly amplified the peak displacement and peak output power of the intra-well and inter-well motions. 

There is an evident hardening effect of the inter-well motion frequency response curve. By reasonable adjusting 

the parameters, it is possible to improve the output power of the piezoelectric energy harvesting system and 

broaden the operating frequency of the system. 
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1. Introduction

Piezoelectric energy harvesting technology has advanced quickly in recent years due to the widespread

application of wireless sensor networks in industries like architectural structures and health surveillance. Because 

of its limited operating frequency range, the early linear piezoelectric energy harvesting system [1, 2] was unable 

to efficiently capture the vibration energy present in the environment.  

A bi-stable piezoelectric energy harvester was developed by Erturk et al. [3, 4] using a ferromagnetic cantilever 

beam and two permanent magnets. The nonlinear mechanical properties of the system were investigated through 

numerical simulation and experiments. Stanton et al. [5, 6] adopted harmonic balancing and numerical simulation 

to analyze how different system factors affect the performance of a bi-stable piezoelectric energy harvester. Lan 

and Qin [7] improved the bi-stable piezoelectric cantilever beam to reduce the potential barrier and shallow

the potential well. They also the performance of the energy harvester under random excitation.  

Liu et al. [8, 9] attempted to optimize the parameters of the bi-stable piezoelectric energy harvesting system. 

Panyam et al. [10] measured the influence of three key design parameters on the effective bandwidth of the bi-

stable piezoelectric energy harvesting system. Yang and Towfighian [11] presented a new bi-stable

piezoelectric energy harvester capable of generating internal resonance, established the mechanical model of the 

system, and derived the analytical solution. Kim et al. [12] designed a magneto-piezo-elastic vibration energy 

harvester with reversible hysteresis, and relied on different methods to analyze its resonant response, according to 

the strength of external excitation.  

Firoozy et al. [13] established a complete model for the distributed parameters of the bi-stable piezoelectric 

cantilever beam, and analyzed the dynamics of the beam numerically. Zhang et al. [14] studied how the hysteresis 

properties of materials and external excitation affect bi-stable piezoelectric energy harvesters. Zhao et al. [15] 
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designed a new bi-stable piezoelectric energy harvester, and demonstrated that the output performance of the 

system can be improved by increasing the weight mass block and decreasing the cantilever beam stiffness. Through 

simulations, Song et al. [16] found that the energy harvesting rate in the bi-stable energy harvester system can be 

greatly improved by adjusting the position of the beam under external excitation.  

Singh et al. [17] accurately modeled a bi-stable sensor based on a nonlinear vibration energy harvester, and 

proved the validity of the model. Through finite-element analysis, Kumar et al. [18] found that the bi-stable 

variable-width piezoelectric energy harvester is better than the uniform-width piezoelectric energy harvester, and 

carried out harvester optimization accordingly. Yao et al. [19] improved the L-shaped piezoelectric cantilever 

beam, and experimentally verified the bi-stability of the improved beam. Yao et al. [20] created a novel bi-stable 

piezoelectric-electromagnetic energy harvester, designed mono-stable and bi-stable piezoelectric cantilever beams, 

and analyzed the beam performance through experiments. 

Wang et al. [21] proposed a bi-stable piezoelectric energy harvester with an elastic magnifier. Experimental 

results show that their harvester is more efficient in energy harvesting than the conventional bi-stable piezoelectric 

energy harvester. Zhou et al. [22] proposed a new quad-stable energy harvester with higher energy harvesting 

efficiency than the bi-stable energy harvester. Zhou et al. [23] designed a new quadratic energy harvester that can 

change the position of the magnets and the distance between the magnets. This new harvester overcomes the low 

energy conversion rate, a common problem of bi-stable energy harvesters under random excitation. Udani et al. 

[24] investigated the effect of laminates with different design parameters on bi-stable energy harvesters.

This paper develops a distributed parameter model of the nonlinear bi-stable piezoelectric cantilever energy

harvesting system based on the Euler Bernoulli beam hypothesis and geometric nonlinearity of a piezoelectric 

beam, using the nonlinear magnetic force model and Hamilton variational equation. Galerkin modal decomposition 

and the multi-scale technique were used to produce analytical representations of the system dynamic response. 

The relevant data were then obtained by numerically simulating the system performance. This study focuses on 

how the nonlinear bi-stable cantilever piezoelectric energy harvester system performs as a function of the distance 

between magnets, damping ratio, external excited amplitude, and external load resistance. 

2. Theoretical Model

As shown in Figure 1, the nonlinear bi-stable piezoelectric cantilever energy harvester with magnetic coupling 

consists of a piezoelectric cantilever beam and two magnets (denoted as A and B). The piezoelectric cantilever 

beam, which is fixed at the base, is composed of a metal base and a pair of piezoelectric layers (PZTs). Two 

identical PZTs are tightly bonded on the upper and lower surfaces of the base. The two PZTs have opposite 

polarities in the thickness direction and are electrically connected in series with an equivalent load resistance (R), 

which represents a low-power electronic device. Magnet A is attached at the tip of the cantilever beam, while 

magnet B is fixed at the frame. The horizontal gap between the two magnets is denoted by d. In addition, l and b 

denote the length and width of the beam, respectively; hs and tp denote the thickness of the metal base and the 

PZTs, respectively; e denotes the eccentricity of the tip magnet. 

Figure 1. Model of bi-stable piezoelectric cantilever energy harvester 
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Let 𝑣𝑏(𝑡) be the vibration displacement of the base; 𝑣(𝑠, 𝑡) be the displacement of the beam at s relative to its 

fixed end. Then, the nolinear constitutive equations of the piezoelectric beam can be established as: 
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where, T is stress; S is strain; Y is Young's modulus; D3 is electric displacement; E is electric field strength; d31 is 

piezoelectric constant; 𝜀33
𝑇  is the dielectric constant of piezoelectric materials when constant stress is unchanged; 

the superscripts s and p represent the parameters related to the base layer and the piezoelectric layer, respectively; 

the subscripts 1 and 3 represent the x and y directions, respectively; 𝐸3 = −𝑉(𝑡)/2𝑡𝑝, with 𝑉(𝑡) being the voltage. 

Considering the geometric nonlinearity of the beam [25], the nonlinearity between stress and strain can be 

expressed as: 
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The Lagrange function of the system can be expressed as: 
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where, Tk is the kinetic energy; Ue is the potential energy; We is the electrical energy; Um is the magnetic potential 

energy. The kinetic energy can be solved by: 
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where, 𝑚 = 2𝜌𝑝𝑡𝑝𝑏 + 𝜌𝑠ℎ𝑠𝑏 , with ρp and ρs being the density of the piezoelectric layer and the base layer, 

respectively; Mt and J are mass and the rotary inertia of the tip mass, respectively. The potential energy can be 

solved by: 
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where, ℎ =
ℎ𝑠

2
; YI =

2

3
[𝑌𝑠𝑏ℎ

3 + 𝑌𝑝𝑏(3ℎ
2𝑡𝑝 + 3ℎ𝑡𝑝

2 + 𝑡𝑝
3)]. 

Under a constant stress, the strain dielectric constant satisfies 𝜀33
𝑆33

𝑇31
2

𝑝

. The electrical energy can be solved by: 
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Using the Galerkin method, the displacement 𝑣(𝑠, 𝑡) can be expressed as a linear combination of the first n-

order modal vibration functions: 
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where, 𝜑𝑟(𝑠)  and 𝜂𝑟(𝑡)  are the r-order mode shape function and the generalized mode coordinates of the 

cantilever beam, respectively. Then, we have: 
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where, 𝛿𝑟𝑠  is the Kronecker delta; 𝜔𝑟 = 𝜆𝑟
2√𝑌𝐼 (𝑚𝑙4⁄ ) is the resonance frequency of the r-th mode; 𝜆𝑟  is the 

eigenvalue. The values 𝜑𝑟(𝑠) and 𝜆𝑟 can be calculated by the methods of Stanton et al. [6]. 

The magnetic potential energy can be solved by: 
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where, 𝑘0 =
2𝜅

𝑑
; 𝑘1 =

𝜅(12𝜑1(𝑙)
2+2𝑑2𝜑1

′ (𝑙)2+6𝑑𝜑1(𝑙)𝜑1
′ (𝑙))

𝑑5
; 𝑘2 =

12𝜅(3.75𝜑1(𝑙)
4+0.25𝑑4𝜑1

′ (𝑙)4+𝑑2𝜑1(𝑙)
2𝜑1

′ (𝑙)2+0.5𝑑3𝜑1(𝑙)𝜑1
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3𝜑1
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𝑑7
; 𝜅 =

𝜇0𝑀𝐴𝑉𝐴𝑀𝐵𝑉𝐵

4𝜋
. 

Only considering the first order mode, Eq. (3) can be substituted with the following Lagrange variational 

equation under the normalization condition of mode function: 
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where, 𝐹1(𝑡) = −2𝜉1𝜔1𝜂̇1(𝑡) is the generalized dissipation force; 𝜉1 is the damping ratio; 𝑄̇(𝑡) = −𝑉(𝑡)/𝑅 is the 

generalized output charge. Based on Eq. (11), the electro-mechanical coupling equation of the piezoelectric energy 

harvesting system can be derived as: 
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Next, the base incentive is configured as 𝑣̈𝑏(𝑡) = 𝑣̄𝑏 𝑐𝑜𝑠(𝜔𝑒𝑡), where 𝑣̄𝑏  is the amplitude of acceleration 

excitation, and 𝜔𝑒 is the circular frequency of excitation. Through a dimensionless transform: 𝑥 = 𝜂1/𝑙, 𝑉̄ = 𝑉/𝑒, 

𝑒 = 𝑙𝜃1/𝐶𝑝, and 𝜏 = 𝜔1𝑡, we have: 
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3. Multi-Scale Method 

 

The potential energy of the target system totals: 
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Figure 2 shows the potential energy curves of the system with different distances between the two magnets. 

When 1 − 𝐾1 > 0 and 𝐾2 = 0, the potential energy curve has only one potential well, making the system linear 

and monostable. When 1 − 𝐾1 > 0 and 𝐾2 ≠ 0, the system belongs to the nonlinear monostable state. When 1 −
𝐾1 < 0 and 𝐾2 > 0, the potential energy curve has a potential barrier (unstable equilibrium point, coordinate 𝑥𝑠 ) 

and two potential wells (stable equilibrium point, coordinate 𝑥√(𝐾1 − 1)/𝐾2𝑠), making the system bi-state. The 

following analysis focuses on the intra-well and inter-well motions of bi-stable systems. 
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Figure 2. Potential energy curves with different distances between the two magnets 

 

3.1 Intra-Well Motion 

 

By introducing a new variable 𝑥𝑠𝑡  into Eqns. (12) and (13), the motion equations at the point of stable 

equilibrium can be expanded as: 
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where, 𝜔̃1 = √2(𝐾1 − 1) is the natural frequency of linearization of the single potential well; 𝛿 = 3√(𝐾1 − 1)𝐾2 

is the quadratic nonlinear term coefficient; 𝑥𝑡 is the motion trajectory around the nontrivial equilibrium point. The 

remaining coefficients can be described in turn as 𝑞1 = 𝛩2[(𝐾1 − 1)/𝐾2] , 𝑞2 = 2𝛩2√(𝐾1 − 1)/𝐾2 , 𝑞3 =

𝛽[(𝐾1 − 1)/𝐾2], and 𝑞4 = 2𝛽√(𝐾1 − 1)/𝐾2. 

By introducing a small perturbation parameter  , the new independent time variable Tn can be expressed as: 
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Taking the derivative with respect to 𝜏: 
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The displacement and output voltage response of the system can be respectively expressed as: 
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Next, the constant parameters in Eq. (15), namely, nonlinear term coefficients, electro-mechanical coupling 

coefficients, and the excitation force, are scaled to unify the order of the viscous damping effect in the perturbation 

problem. That is, we let 
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If the excitation frequency of the intra-well motion is very close to the natural frequency of a single well, then, 
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where, 𝜎 is the tuning parameter of excitation frequency. 

Substituting Eqns. (19), (20), (21) and (22) into Eqns. (17) and (18), omitting the terms above ε2, and setting the 

coefficients of 𝜀0, 𝜀1 and 𝜀2 as zero, we have: 
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The solutions of Eqns. (22) and (23) are as follows: 
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where, 𝐴(𝑇1, 𝑇2) is a complex-valued function; cc is the complex conjugate of the preceding term. Substituting 

Eqns. (28) and 29) into Eqns. (24) and (25) and eliminating the secular term, we have: 
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On this basis, the solutions of Eqns. (33) and (34) can be expressed as: 
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Substituting Eqns. (28), (29) and (30) into Eq. (26) and eliminating the secular term, we have: 
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Substituting 𝐴 =
1

2
𝑎𝑒𝑖𝜃  and 𝛾 = 𝜎𝑇2 − 𝜃 into Eq. (33) and separating the real part and imaginary part, we have: 
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where, 𝑐1 = 𝜉1 +
(𝛩̃1+𝑞̃1)(1+𝑞3)𝛼

2(𝜔̃1
2+𝛼2)

; 𝑐2 =
𝛽(𝛩̃1+𝑞̃1)𝛼

8(𝜔̃1
2+𝛼2)

+
𝛩̃2(1+𝑞3)𝛼

8(𝜔̃1
2+𝛼2)

+
𝑞̃2𝑞4𝛼

8(4𝜔̃1
2+𝛼2)

; 𝑐3 =
𝛩̃2𝛽𝛼

32(𝜔̃1
2+𝛼2)

+
𝛩̃2𝛽𝛼

32(9𝜔̃1
2+𝛼2)

; 𝑐4 =

𝑓̃

2𝜔̃1
; 𝑐5 = 𝜎 −

(𝛩̃1+𝑞̃1)(1+𝑞3)𝜔̃1

2(𝜔̃1
2+𝛼2)

; 𝑐6 =
(𝛩̃1+𝑞̃1)𝛽𝜔̃1

8(𝜔̃1
2+𝛼2)

−
5

12𝜔̃1
(
𝛿̃

𝜔̃1
)
2

+
3

8𝜔̃1
𝐾2 +

𝛩̃2(1+𝑞3)𝜔̃1

8(𝜔̃1
2+𝛼2)

+
𝑞̃2𝑞4𝜔̃1

4(4𝜔̃1
2+𝛼2)

; 𝑐7 =

𝛩̃2𝛽𝜔̃1

32(𝜔̃1
2+𝛼2)

+
3𝛩̃2𝛽𝜔̃1

32(9𝜔̃1
2+𝛼2)

. 

For the steady-state response, setting 𝐷2𝑎 and 𝑎𝐷2𝛾 to zero, squaring Eqns. (36) and (37) and adding up the 

resulting equations, we have: 
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where, a is the amplitude of steady-state displacement response, which can be obtained by Eq. (36). The steady-

state solutions for the displacement and the voltage can then be obtained by: 
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where, 𝜙0 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑐1+𝑐2𝑎

2+𝑐3𝑎
4

𝑐5−𝑐6𝑎
2−𝑐7𝑎

4); 𝜑 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝛼

𝜔̃1
). 

The steady-state output power amplitude of the intra-well motion can be written as: 
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3.2 Inter-Well Motion 

 

For the inter-well motion, the local stiffness near the saddle point (the unstable equilibrium point) is negative 

(1 − 𝐾1 < 0). In this case, the conventional multi-scale method is not applicable. Therefore, the authors set the 

damping and external excitation terms in Eq. (20) and coefficients 𝛽2, 𝛽3 and 𝛽4 as 𝜀-orders [26]. Then, we have: 
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(42) 

 

It is assumed that 𝑥 = 𝐴̄ 𝑐𝑜𝑠(𝜔̃𝜏) is the approximate solution of Eq. (40). Substituting this term into Eq. (40), 

we have: 
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Adding and subtracting the 𝜔2𝑥 term to the left side of Eq. (14), the following can be derived from Eq. (43) 

[26]: 
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where, 𝜀𝜉1 = 𝜉1; 𝜀𝜔̃2 = 𝜔2; 𝜀𝜗 = 1 − 𝐾1; 𝜀𝐾̄2 = 𝐾2; 𝜀𝛩̄1 = 𝛩1; 𝜀𝛩̄2 = 𝛩2; 𝜀𝑓̄ = 𝑓. 

According to the derivation process in Section 3.1, the steady-state solutions for the displacement and the 

voltage of the inter-well motion can then be expressed as 
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where, 𝜙̄0 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑐1̄+𝑐2̄𝑎̄

2+𝑐3̄𝑎̄
4

𝑐5̄−𝑐6̄𝑎̄
2−𝑐7̄𝑎̄

4); 𝜑̄ = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝛼

𝜔
); 𝑎̄ is the amplitude of the steady-state amplitude response 

for the inter-well motion: 
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where, 𝑐̄1 = 𝜉1 +
𝛩̄1𝛼

2(𝜔2+𝛼2)
; 𝑐2̄ =

𝛩̄1𝛽𝛼

8(𝜔2+𝛼2)
+

𝛩̄2𝛼

8(𝜔2+𝛼2)
; 𝑐̄3 =

𝛩̄2𝛽𝛼

32(𝜔2+𝛼2)
+

𝛩̄2𝛽𝛼

32(9𝜔2+𝛼2)
; 𝑐̄4 =

𝑓̄

2𝜔
; 𝑐̄5 =

𝜔̃2

2𝜔
−

𝜗

2𝜔
−

𝛩̄1𝜔

2(𝜔2+𝛼2)
; 𝑐̄6 =

𝛩̄1𝛽𝜔

8(𝜔2+𝛼2)
+

3𝐾̄2

8𝜔
+

𝛩̄1𝜔

8(𝜔2+𝛼2)
; 𝑐̄7 =

𝛩̄2𝛽𝜔

32(𝜔2+𝛼2)
+

3𝛩̄2𝛽𝜔

32(9𝜔2+𝛼2)
. 

The steady-state output power amplitude of the inter-well motion can be expressed as: 
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4. Results and Discussion 

 

This section discusses the analytical expressions of the steady-state response of the intra-well and inter-well 

motion of the bi-stable system developed in the preceding part. The analysis and discussion center on how several 

factors, including load impedance, excitation amplitude, damping ratio, and distance between magnets, affect the 

system performance. The physical parameters of the system were configured as follows: 𝑙 = 50mm, 𝑏 = 20mm, 

ℎmm𝑠 , 𝑡mm𝑝 , 𝑙𝑎 = 5mm, 𝜌kg𝑚3
𝑠
, 𝑌9𝑁𝑚2

𝑠 , 𝜌kg𝑚3
𝑝

, 𝑌9𝑁𝑚2
𝑝 , d31=-3.210-10C/N, 𝜀33

𝑠−8𝐹𝑚 , 𝑀 − 3kg𝑡 , 𝑉𝐴 =

𝑉𝐵 = 1 × 10−6𝑚3, 𝑀𝐴 = 𝑀𝐵 = 1.16 × 106𝐴/𝑚, and 𝜉1 = 0.01. 

 

4.1 Stability Analysis 

 

The multi-scale method may yield many solutions to the intra-well and inter-well steady-state responses, but 

not all of them are stable solutions. Therefore, it is necessary to analyze the stability of the solutions. Taking intra-

well solution as an example, Eqns. (36) and (37) are linearized at (𝑎, 𝛾) to form an autonomous differential 

equation with respect to the perturbations 𝛥𝑎 and 𝛥𝛾 [27]: 
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Using Eqns. (36) and (37) to eliminate 𝛾 in the above formula, the feature equation can be obtained as: 
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Expanding the determinant, we have: 
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Following the Routh-Hurwitz criterion, the root of the above algebraic equation has a negative real part under 

the following condition: 
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According to the Lyapunov theory, the solutions of Eqns. (36) and (37) are stable. The stability of the inter-well 

motion solution can be determined by the same method. 

 

4.2 Influence of Different Parameter Changes on System Response 

 

In the following figures on calculation results, the stable and unstable solutions are represented by solid and 

dotted lines, respectively. 

 

 
(a) (b) 

 

Figure 3. Displacement and power frequency response curve with different distances between two magnets 

 

Figure 3 shows the frequency response curves of the system displacement and output power at the resistance 

𝑅 = 200𝑘𝛺, f=0.0021 and different distances between magnets (d=[12mm, 14mm, 16mm]). Figure 3 reveals that 

the inter-well motion's frequency response curve is inclined to the high frequency band, exhibiting hardening 

features, while the intra-well motion's frequency response curve is inclined to the low frequency band, exhibiting 

softening features. While the frequency band width of the inter-well motion diminishes as the distance between 

the magnets increases, the displacement and peak output power of the motion rise. As the distance between the 

magnets grows, the frequency band of the frequency response curve of the intra-well motion shifts to the lower 

frequency band. In addition, Figure 3 contrasts the calculation results of the two models, which considers and 

ignores geometric nonlinearity, respectively. The results demonstrate that: when geometric nonlinearity is taken 

into account, the inter-well motion's displacement, output power peak, and frequency band width all significantly 

increase, and the frequency response curve is skewed toward the high frequency band, exhibiting more hardening 

features. The displacement and peak output power of the intra-well motion do not significantly change, but the 

frequency response curve is pushed to the high frequency band. 

Figure 4 shows the frequency response curves of the system displacement and output power at the resistance 

𝑅 = 200𝑘𝛺, d=16mm and different excitation force amplitudes (f=[0.0017,0.0021,0.0027]). The results show that 

the displacement, peak output power and frequency band width of the inter-well motion increased greatly with the 

growing excitation amplitude. The displacement and peak output power of the intra-well motion increased with 

the excitation amplitude, but the increase was very small. 
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(a)                                                                                    (b) 

 

Figure 4. Displacement and power frequency response curves with different excitation amplitudes 

 

 
(a)                                                                                      (b) 

 

Figure 5. Peak displacement and peak power of inter-well motion at different distances between two magnets 

along with changing excitation amplitude 

 

Figure 5 shows the variation of the peak displacement and peak output power for inter-well motion with 

excitation force amplitudes, at resistance 𝑅 = 200𝑘𝛺 and with different distances between magnets (d=[12mm, 

16mm]). It can be seen that There is a critical excitation force amplitude for the inter-well motion; when this 

critical value is reached, the displacement peak and output power peak of the inter-well motion are both small, and 

little changes occur as the excitation force amplitude increases; The displacement peak and output power peak of 

the inter-well motion rapidly increase when the excitation force amplitude exceeds the critical value, and they 

continue to rise as the excitation force amplitude rises. The critical value of the inter-well motion's excitation force 

amplitude can be decreased by shortening the distance between magnets. But this also results in decreased peak 

displacement and peak output power. It can also be seen that, when geometric nonlinearity is taken into account, 

the critical value of the inter-well motion excitation force amplitude decreases. This is demonstrated by comparing 

the calculation results of the two models considering geometric nonlinearity and ignoring geometric nonlinearity. 

Figure 6 shows the frequency response curves of the system displacement and output power at the resistance 

𝑅 = 200𝑘𝛺, d=16mm, f=0.0033, and with different damping ratios (𝜉1=[0.01,0.02,0.05]). It can be seen that 

reducing the damping ratio of the system can effectively broaden the inter-well motion’s frequency band of the 

system. By contrast, the intra-well motion is not sensitive to the change of damping ratio. 

Figure 7 shows the variation of the peak displacement, peak output power, and frequency band width of the 

inter-well motion at different distances between the magnets (d=[12mm,14mm,16mm]), along with changes in the 

load impedance when f=0.0021. As shown in Figures 7(a) and 7(c), the peak displacement and frequency band 

width of the inter-well motion first decreased and then increased with the rising load impedance. The growing rate 

of peak displacement picks up speed, and that of the band width slows down, with the increase of the magnet 

spacing. Comparing the calculation results of the two models considering geometric nonlinearity and ignoring 
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geometric nonlinearity, it is clear that the deviation of peak displacement and frequency band width calculated by 

the two models decreases with the load impedance. As suggested in Figure 7(b), as the load impedance increases, 

a load impedance appears in the short-circuit and open-circuit states, respectively. As a result, the output power of 

the inter-well motion reaches the maximum. Hence, increasing the distance between the magnets can significantly 

increase the optimal load impedance in the open circuit state, but has little effect on the optimal load impedance 

in the short circuit state. 

 

 
(a)                                                                                        (b) 

 

Figure 6. Displacement and power frequency response curves with different damping ratios 
 

 
(a) 

 
(b)                                                                                         (c) 

 

Figure 7. Peak displacement, peak power and bandwidth of inter-well motion at different distances between the 

two magnets along with changing load resistance 
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5. Conclusions 

 

The geometric nonlinearity of the beam is taken into account to produce the electromechanical coupling 

equations of the nonlinear bi-stable cantilevered piezoelectric energy captive system based on the Euler-Bernoulli 

beam assumption. The Galerkin modal decomposition approach and the multi-scale method are also used to reach 

the analytical solution of the equation. The following conclusions are reached after comparing and analyzing how 

the piezoelectric material affect system performance in the two situations of considering and ignoring geometric 

nonlinearity:  

(1) As the distance between two magnets increases, the intra-well and inter-well motion's displacement and peak 

output power both rise, while the inter-well motion's frequency bandwidth narrows. The inter-well motion 

frequency response curve's hardening effect is evident, and the peak values of displacement and output power of 

the intra-well and inter-well motions taking geometric nonlinearity into account are obviously larger than those of 

the model disregarding geometric nonlinearity. The operational frequency band can be expanded and the output 

power of the inter-well motion can be increased by varying the distance between the two magnets.  

(2) The inter-well motion has a critical exciting force amplitude. The displacement peak and output power peak 

of the inter-well motion grow obviously with the increase in the excitation force amplitude when it exceeds the 

critical value. As the distance between two magnets grows, so does the amplitude of the critical excitation force. 

(3) To maximize the output power of the inter-well motion, there is an ideal load impedance that may be changed 

by adjusting the distance between two magnets. 
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