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Abstract: A hybrid procedure FLT-HPM was proposed in this study, by combining the homotopy perturbation method
(HPM) with Fourier transform and Laplace transform which aimed to find an approximate analytical solution to
the problem of two-dimensional transient natural convection in a horizontal cylindrical concentric annulus bounded
by two isothermal surfaces. The effect of the Grashof number, Prandtl number, and the radius ratio on fluid flow
(air) and heat transfer with different values awreas discussed. Moreover, the velocity distributions and the mean
Nusselt numbers were studied, and the Nusselt numbers were used to represent local and general heat transfer rates.
Finally, the convergence of FLT-HPM was tested theoretically through the proof of some theorems. In addition,
these theorems were applied to the results of the new solutions obtained using FLT-HPM.

Keywords: FLT-HPM; Homotopy perturbation method; Fourier transform; Laplace transform; Natural convection;
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1 Introduction

Researchers and scientists have been interested in the heat transfer theory of natural convection recently because
of its wide applications in various science and technology fields, including aircraft cabin insulation, nuclear reactors,
solar collector sensors, heat storage systems, power transmission cables, cooling of electronic components, etc [1–5].
Two-dimensional transient natural convection between two concentric circular horizontal cylinders is one of the most
famous problems of natural convection, and has attracted the attention of quite a few researchers. Among the first
researchers to provide experimental solutions to this problem, Crawford and Lemlich [6] carried out a numerical
study and succeeded in approximating the steady-state differential equations with appropriate difference equations.
Moreover, the effect of diameter ratios at 2, 8 and 57 was discussed with 0.7 as the Prandtl number. This study
paved the way for many authors and researchers who succeeded in finding numerical and analytical solutions to the
above problem. For example, Mack and Bishop [7] used the Rayleigh number power series to solve the problem of
natural convection between two concentric horizontal cylinders with slight temperature difference. In their analytical
study, the effect of Prandtl number, Rayleigh number and radius ratio on streamline formation, local heat transfer
rates, velocity and temperature distributions were discussed. Kuehn and Goldstein [2] introduced experimental
and theoretical-numerical studies. In the experimental study, the Mach-Zehnder interferometer was used to locate
temperature distributions and coefficients of local heat-transfer. In addition, the governing invariant property
equations were solved numerically using the finite difference method. The comparisons between experimental
and numerical results under similar conditions illustrated good consistence. Tsui and Tremblay [4] conducted a
theoretical-numerical study, and discussed the effect of both the Grashof number from 7×102 to 9×104 and diameter
ratio variations of 1.2, 1.5 and 2 with 0.7 as the Prandtl number. Pop et al. [8] obtained an approximate analytical
solution to the presented problem. The method of matched asymptotic expansions was used, which obtained the
solutions for three regions (core, inner and outer boundary layers) in a short time. It was found that the solution was
distinct from the steady state solution. Hassan and Al-lateef [9] conducted a numerical study in which the energy
and vorticity equation was solved using the alternating direction implicit (ADI) method, and the stream function
equation was solved using the successive over relaxation (SOR) method. The results of the numerical solutions were
discussed, based on the difference in diameter ratios of 1.2, 1.5 and 2, the effect of the Grashof number ranging from
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102 to 105 and different values of the Prandtl number. Touzani et al. [10] presented a numerical study of natural
convection in a horizontal annulus with two heating blocks, which found that heat transfer increased significantly at
the upper region of the annulus. In addition, it was noted that the block helped improve the heat transfer in general.
Al-Saif and Al-Griffi [11] proposed a new procedure by combining the HPM with Yang transform (YT), which
succeeded in finding analytical approximate solutions to the problem of two-dimensional transient natural convection
in a concentric cylindrical horizontal annulus bounded by two isothermal surfaces. The effect of different values of
the Grashof numbers and the radius ratio on heat transfer and fluid flow (air) with 0.7 as the Prandtl number was
studied.

Many iterative methods have been used to find analytical solutions to non-linear flow problems, especially natural
convection. However, due to high computational operations requiring lots of time and effort, almost most of these
methods have some difficulties to obtain the desired solution, such as HPM [12], Homotopy Analysis Method (HAM)
[13] and Differential Quadrature Method (DQM) [14, 15]. In addition, various integral transformations, such as
Yang transform, Laplace transform, and Fourier transform, can be used to find analytical solutions to linear problems.
But it is often difficult to use these methods to obtain analytical solutions to some non-linear problems. Therefore,
this study aimed to create a new procedure to avoid the above difficulties. In recent years, researchers have noted
that combined integrative transform methods with iterative methods may help address the difficulties arising from
use of an individual method. Moreover, this study proposed to combine the Fourier and Laplace transforms with the
HPM to get a new algorithm FLT-HPM. Apart from the above literature review, no one has used this FLT-HPM to
solve the problems of natural convection, in particular the current problem. This study presented FLT-HPM in order
to find approximate analytical solutions to the two-dimensional transient natural convection problem in a concentric
horizontal cylindrical annulus. Moreover, the problem was divided into three regions, the inner boundary layer
(located near the inner cylinder), the outer boundary layer (located near the outer cylinder), and core region (located
between the two layers). The analytical solutions of those regions were found using the FLT-HPM. In addition, the
convergence analysis of FLT-HPM was studied analytically and experimentally by formulating and proving some
theorems. These theorems were applied to the results of the obtained analytical solutions. Related tables and
graphs showed the necessity, importance and benefit of using FLT-HPM. Finally, the results showed the accuracy
and efficiency of FLT-HPM, which were in consistent with the results of previously published studies [1, 4, 9].

2 HPM

In 1998, researcher He [16, 17] introduced HPM, which was characterized by its ability to solve many linear
and non-linear differential and integral equations. HPM is highly accurate and efficient and has proven effective in
solving many non-linear problems with wide applications in various fields of life. When using HPM, the solution was
assumed as the sum of an infinite convergent series [18]. The general form of the following non-linear differential
equation was used to display the basic idea of FLT-HPM:

A(u)− g(r) = 0, r ∈ Ω (1)

And it was associated with the following boundary conditions:

B

(
u,
∂u

∂n

)
= 0, r ∈ Γ (2)

where, u is the unknown function, g(r) is a known analytic function, A is the general differential operator, B is the
boundary operator, and Γ is the boundary of the domain Ω. The operator A was divided into linear operator L and
non-linear operator N . Moreover, Eq. (1) was rewritten as:

L(u) +N(u)− q(r) = 0 (3)

Based on the basic idea of HPM, the homotopy U(r, p) : Ω× [0, 1] → R was defined by the following formula:

H(U, p) = (1− p) [L(U)− L (u0)] + p[A(U)− g(r)] = 0 (4)

or

H(U, p) = L(U)− L (u0) + pL (u0) + p[N(U)− g(r)] = 0 (5)
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where, p ∈ [0, 1] is the impeding parameter and u0 is an initial solution of Eq. (1), satisfying the boundary conditions
of Eq. (2). It was clear that Eq. (4) or (5) satisfied the conditions of homotopy as follows:

H(U, 0) = L(U)− L (u0) = 0,
H(U, 1) = A(U)− g(r) = 0.

}
(6)

The solution of Eq. (4) or (5) was assumed as a power series for p as follows:

U =

∞∑
j=0

pjUj (7)

By setting p = 1, the approximate solution of Eq. (1) was given as follows:

u = lim
p→1

U =

∞∑
j=0

Uj (8)

3 Basic Algorithm of FLT-HPM

This section aimed to develop the HPM to obtain a more advanced hybrid procedure FLT-HPM, using the Fourier
transform and Laplace transform. The non-linear differential equation was written in the following form to fully
explain FLT-HPM:

∂n

∂rn1

(
∂m

∂rm2
U

)
+R(U) +N(U) = g (r1, r2) , r1, r2 ∈ Ω (9)

where, R and N are the linear and non-linear differential operators respectively, and g (r1, r2) is the source term.
Accordingly, basic steps of this algorithm were as follows:

After applying the Fourier transform to r1 for both sides of Eq. (9), there were:

F
[
∂n

∂rn1

(
∂m

∂rm2
U

)]
+ F [R(U) +N(U)− g (r1, r2)] = 0, r1, r2 ∈ Ω (10)

where, F [g(t)] = F(ω) =
∫∞
−∞ g(t)e−iωtdt.

The differentiation property of the Fourier transform was used, which obtained:

(iω)nF
[
∂m

∂rm2
U

]
+ F [R(U) +N(U)− g (r1, r2)] = 0 (11)

Eq. (11) was rearranged as:

F
[
∂m

∂rm2
U

]
+

1

(iω)n
F [R(U) +N(U)− g (r1, r2)] = 0 (12)

The inverse Fourier transform for both sides of Eq. (12) was taken, which obtained:

∂m

∂rm2
U + F−1

[
1

(iω)n
F [R(U) +N(U)− g (r1, r2)]

]
= 0 (13)

HPM was used, which obtained:

(1− p)

[
∂m

∂rm2
U − ∂m

∂rm2
u0

]
+ p

[
∂m

∂rm2
U + F−1

{
1

(iω)n
F [R(U) +N(U)− g (r1, r2)]

}]
= 0 (14)

After Eq. (14) was rearranged, the following was deduced:

122



∂m

∂rm2
U =

∂m

∂rm2
u0 − p

∂m

∂rm2
u0 − p

[
F−1

{
1

(iω)n
F [R(U) +N(U)− g (r1, r2)]

}]
(15)

The Laplace transform was applied to r2 on both sides of Eq. (15), which obtained:

L
[
∂m

∂rm2
U

]
= L

[
∂m

∂rm2
u0

]
− pL

[
∂m

∂rm2
u0 + F−1

{
1

(iω)n
F [R(U) +N(U)− g (r1, r2)]

}]
(16)

where, L[g(t)] = L(s) =
∫∞
0
g(t)e−stdt.

The differentiation property of the Laplace transform was used, which obtained:

L[U ] =
1

sm

m−1∑
k=0

sm−k−1U (k)(0) +
1

sn
L
[
∂mu0
∂rm2

]
− p

sn
L
[
∂mu0
∂rm2

+ F−1

{
1

(iω)n
F
[
R(U) +N(U)
−g (r1, r2)

]}]
(17)

The inverse Laplace transform for both sides of Eq. (17) was taken, which obtained:

U = L−1

[
1

sm

m−1∑
k=0

sm−k−1U (k)(0)

]
+ L−1

 1
smL

[
∂m

∂rm2
u0

]
− p

smL
[
∂m

∂rm2
u0

]
−

p
smL

{
F−1

[
1

(iω)nF
[
R(U) +N(U)
−g (r1, r2)

]]} 
 (18)

Based on the assumption of HPM, the following was obtained:

U =

∞∑
j=0

pjUj (19)

And the nonlinear terms were decomposed as:

N(U) =

∞∑
j=0

pjHj (20)

where, Hj(U) is the He’s polynomials [19] given by:

Hj (U0, U1, U2, . . . , Uj) =
1

j!

∂j

∂pj

[
N

( ∞∑
i=0

piUi

)]
p=0

, j = 0, 1, 2, 3, . . . (21)

Eqs. (19) and (20) were substituted into Eq. (18), which obtained:

∞∑
j=0

pjUj = L−1

[∑m−1
k=0 s

m−k−1U (k)(0)

sm

]
+ L−1


1
smL

[
∂m

∂rm2
u0

]
− p

smL
[
∂m

∂rm2
u0

]
−

p
smL

{
F−1

[
1

(iω)nF

[
R
(∑∞

j=0 p
jUj)+∑∞

j=0 p
jHj − g (r1, r2)

]]} 
(22)

Coefficients of the same powers of p were compared, which obtained:

p0 : U0 = L−1

[
1

sm

m−1∑
k=0

sm−k−1U (k)(0)

]
+ L−1

[
1

sm
L
[
∂m

∂rm2
u0

]]
(23)

p1 : U1 = L−1

[
− 1

sm
L
[
∂m

∂rm2
u0

]
− 1

sn
L
{
F−1

[
1

(iω)n
F [R (U0) +H0 − g (r1, r2)]

]}]
(24)
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p2 : U2 = L−1

[
− 1

sm
L
{
F−1

[
1

(iω)n
F [R (U1) +H1]

]}]
(25)

pj : Uj = L−1

[
− 1

sm
L
{
F−1

[
1

(iω)n
F [R (Uj−1) +Hj−1]

]}]
(26)

Taking p = 1, then the analytical approximate solution u was given by:

u = lim
p→1

U =

∞∑
j=0

Uj (27)

4 Mathematical Formulation of Governing Equation

The Newtonian fluid was taken into consideration in two concentric horizontal circular cylinders enclosed by
two isothermal surfaces. Figure 1 shows the following: (a) both fluid motion and temperature distribution are
two-dimensional; (b) fluid is incompressible and viscous; (c) the friction heating is almost too slight, and (d) the
properties of fluid are constant except that its density changes with temperature.

Therefore, the governing mathematical equations were presented using the Boussinesq approximation as follows
[4]:

∂Û

∂x̂
+
∂V̂

∂ŷ
= 0 (28)

∂Û

∂t̂
+ Û

∂Û

∂x̂
+ V̂

∂Û

∂ŷ
=

(
−1

ρ

)
∂P̂

∂x̂
+ v̂

(
∂2Û

∂x̂2
+
∂2Û

∂ŷ2

)
(29)

∂V̂

∂t̂
+ Û

∂V̂

∂x̂
+ V̂

∂V̂

∂ŷ
=

(
−1

ρ

)
∂P̂

∂ŷ
+ v̂

(
∂2V̂

∂x̂2
+
∂2V̂

∂ŷ2

)
+ ĝα̂

(
T̂ − T̂o

)
(30)

∂T̂

∂t̂
+ Û

∂T̂

∂x̂
+ V̂

∂T̂

∂ŷ
= k̂

(
∂2T̂

∂x̂2
+
∂2T̂

∂ŷ2

)
(31)

where, Û and V̂ are the components of velocity in x̂ and ŷ directions; T̂ is the temperature, ĝ is the gravity
acceleration, v̂ is the kinematic viscosity, ρ is the density, α̂ is the thermal expansion coefficient, and k̂ is the thermal
diffusivity.

To facilitate the solution of the problem, ŷ in Eq. (29) and x̂ in Eq. (30) were differentiated, with one of
the two equations subtracted, and the definition of vorticity function

(
Ĝ = ∂V̂

∂x̂ + ∂Û
∂ŷ

)
was used with the pressure

omitted, which reduced the two equations to the vorticity-stream form. In addition, the Cartesian coordinate system
was converted to the polar one. Then the dimensionless set was used to convert the problem from dimensional to
non-dimensional form as follows:

U =
Û L̂

v̂
, V =

V̂ L̂

v̂
, ψ =

ψ̂

v̂
, r =

r̂

L̂
, t =

t̂v̂

L̂2
,G =

L̂2Ĝ
v̂
, T =

T̂ − T̂o

T̂h − T̂c
,∇2 = L̂2∇̂2 (32)

The non-dimensional governing equations were given by the following stream-vorticity formulas:

∂G
∂t

+ U
∂G
∂r

+
1

r
V
∂G
∂θ

= Gr

(
cos(θ)

∂T

∂r
− sin(θ)

r

∂T

∂θ

)
+∇2G (33)

124



Figure 1. Physical flow geometry and coordinate system

∂T

∂t
+ U

∂T

∂r
+

1

r
V
∂T

∂θ
=

1

Pr
∇2T (34)

G = −∇2ψ (35)

V = −∂ψ
∂r
, U =

1

r

∂ψ

∂θ
(36)

The above system was subject to the following initial and boundary conditions:

G = ψ = T = 0 (37)

ψ = ∂ψ
∂r = 1

r
∂ψ
∂θ = 0, at r = Ri, r = Ro,

T = 1 at r = Ri,
T = 0 at r = R0.

 (38)

where, L̂ is the gap of annulus, Ri and Ro are the ratios of inner and outer radius to the gap, respectively, Pr is the
Prandtl number, Gr is the Grashof number, U is the radial velocity, V is the tangent velocity, T is the temperature, ψ
is the stream function, G is the vorticity function, subscripts i, o, c and h are inner, outer, cold and hot, respectively.

5 Application of FLT-HPM

To apply FLT-HPM, Eqs. (35) and (36) were first substituted into Eqs. (33) and (34) to get the following system:

∂

∂t

(
∇2ψ

)
+Gr

(
cos(θ)

∂T

∂r
− sin(θ)

r

∂T

∂θ

)
−∇4ψ − 1

r

(
∂ψ

∂r

∂

∂θ

(
∇2ψ

)
− ∂ψ

∂θ

∂

∂r

(
∇2ψ

))
= 0 (39)

∂T

∂T
− 1

Pr
∇2T − 1

r

(
∂ψ

∂r

∂T

∂θ
− ∂ψ

∂θ

∂T

∂r

)
= 0 (40)

∇2 = ∂2

∂r2 + 1
r
∂
∂r +

1
r2

∂2

∂θ2 was substituted into Eq. (39), which obtained:

∂

∂t

(
∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2
∂2ψ

∂θ2

)
+Gr

(
cos(θ)

∂T

∂r
− sin(θ)

r

∂T

∂θ

)
−∇4ψ − 1

r

(
∂ψ

∂r

∂
(
∇2ψ

)
∂θ

− ∂ψ

∂θ

∂
(
∇2ψ

)
∂r

)
= 0

(41)

Eq. (41) was rewritten as:

∂2ψ

∂r∂t
+
∂

∂t

(
∂2ψ

∂r2
r +

1

r

∂2ψ

∂θ2

)
+Gr

(
r cos(θ)

∂T

∂r
− sin(θ)

∂T

∂θ

)
− r∇4ψ −

(
∂ψ

∂r

∂
(
∇2ψ

)
∂θ

− ∂ψ

∂θ

∂
(
∇2ψ

)
∂r

)
= 0

(42)
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Then the basic steps of FLT-HPM were as follows:
The Fourier transform was applied to r for both sides of Eq. (42), which obtained:

F
[
∂2ψ

∂r∂t

]
+ F

 ∂
∂t

(
∂2ψ
∂r2 r +

1
r
∂2ψ
∂θ2

)
+Gr

(
r cos(θ)∂T∂r − sin(θ)∂T∂θ

)
−
(
∇4ψ

)
r −

(
∂ψ
∂r

∂
∂θ

(
∇2ψ

)
− ∂ψ

∂θ
∂
∂r

(
∇2ψ

))
 = 0 (43)

The differentiation property of the Fourier transform was used, which obtained:

F
[
∂ψ

∂t

]
+

1

iω
F

 ∂
∂t

(
∂2ψ
∂r2 r +

1
r
∂2ψ
∂θ2

)
+Gr

(
r cos(θ)∂T∂r − sin(θ)∂T∂θ

)
−
(
∇4ψ

)
r −

(
∂ψ
∂r

∂
∂θ

(
∇2ψ

)
− ∂ψ

∂θ
∂
∂r

(
∇2ψ

))
 = 0 (44)

The inverse Fourier transform for both sides of Eq. (44) was taken, which obtained:

∂ψ

∂t
+ F−1

 1

iω
F


∂
∂t

(
∂2ψ
∂r2 r +

1
r
∂2ψ
∂θ2

)
+Gr

(
r cos(θ)∂T∂r − sin(θ)∂T∂θ

)
−
(
∇4ψ

)
r −

(
∂ψ
∂r

∂
∂θ

(
∇2ψ

)
− ∂ψ

∂θ
∂
∂r

(
∇2ψ

))

 = 0 (45)

The HPM was used for Eqs. (40) and (45), which obtained:

(1− p)

[
∂ψ

∂t
− ψ∗

0

]
+ p

F−1

 1

iω
F


∂ψ
∂t +

∂
∂t

(
∂2ψ
∂r2 r +

1
r
∂2ψ
∂θ2

)
+Gr

(
r cos(θ)∂T∂r − sin(θ)∂T∂θ

)
−
(
∇4ψ

)
r −

(
∂ψ
∂r

∂
∂θ

(
∇2ψ

)
− ∂ψ

∂θ
∂
∂r

(
∇2ψ

))


 = 0 (46)

(1− p)

[
∂T

∂t
− T ∗

0

]
+ p

[
∂T

∂t
− 1

Pr
∇2T − 1

r

(
∂ψ

∂r

∂T

∂θ
− ∂ψ

∂θ

∂T

∂r

)]
= 0 (47)

The above system was rearranged as:

∂ψ

∂t
− ψ∗

0 + pψ∗
0 + pF−1

 1

iω
F


∂
∂t

(
∂2ψ
∂r2 r +

1
r
∂2ψ
∂θ2

)
+Gr

(
r cos(θ)∂T∂r − sin(θ)∂T∂θ

)
−
(
∇4ψ

)
r −

(
∂ψ
∂r

∂
∂θ

(
∇2ψ

)
− ∂ψ

∂θ
∂
∂r

(
∇2ψ

))
 = 0 (48)

∂T

∂t
− T ∗

0 + pT ∗
0 − p

[
1

Pr
∇2T +

1

r

(
∂ψ

∂r

∂T

∂θ
− ∂ψ

∂θ

∂T

∂r

)]
= 0 (49)

The Laplace transform was applied to t on both sides of Eqs. (48) and (49), which obtained:

L[ψ] = 1

s
ψ(0) +

1

s
L [ψ∗

0 ]−
1

s
L

pψ∗
0 + pF−1

 1
iωF


∂
∂t

(
∂2ψ
∂r2

)
r + 1

r
∂
∂t

(
∂2ψ
∂θ2

)
−
(
∇4ψ

)
r

+Gr
(
r cos(θ)∂T∂r − sin(θ)∂T∂θ

)
−
(
∂ψ
∂r

∂
∂θ

(
∇2ψ

)
− ∂ψ

∂θ
∂
∂r

(
∇2ψ

))


 (50)

L[T ] = 1

S
T (0) +

1

S
L [T ∗

0 ]−
1

S
L
[
pT ∗

0 − p

{
1

Pr
∇2T +

1

r

(
∂ψ

∂r

∂T

∂θ
− ∂ψ

∂θ

∂T

∂r

)}]
(51)

After taking the inverse Laplace transform for both sides of Eqs. (50) and (51), the following was deduced:

ψ = L−1

1sψ(0) + 1

s
L [ψ∗

0 ]−
p

s
L

ψ∗
0 + F−1

 1
iωF
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∂
∂t

(
∂2ψ
∂r2

)
r + 1

r
∂
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(
∂2ψ
∂θ2

)
−
(
∇4ψ

)
r

+Gr
(
r cos(θ)∂T∂r − sin(θ)∂T∂θ

)
−
(
∂ψ
∂r

∂
∂θ

(
∇2ψ

)
− ∂ψ

∂θ
∂
∂r

(
∇2ψ

))




(52)
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T = L−1

[
1

s
T (0) +

1

s
L [T ∗

0 ]−
1

s
L
{
pT ∗

0 − p

[
1

Pr
∇2T +

1

r

(
∂ψ

∂r

∂T

∂θ
− ∂ψ

∂θ

∂T

∂r

)]}]
(53)

Based on the assumption of HPM, the following was obtained:

ψ =

∞∑
j=0

pjψj and T =

∞∑
j=0

pjTj (54)

And the nonlinear terms were represented as:

∂ψ

∂θ

∂∇2ψ

∂r
=

∞∑
j=0

pjHj ,
∂ψ

∂r

∂∇2ψ

∂θ
=

∞∑
j=0

pjH∗
j ,
∂ψ

∂θ

∂T

∂r
=

∞∑
j=0

pjGj and
∂ψ

∂r

∂T

∂θ
=

∞∑
j=0

pjG∗
j (55)

Eqs. (54) and (55) were substituted into Eqs. (52) and (53), which obtained:

∑∞
j=0 p

jψj =

L−1

 1
sψ(0) +

1
sL [ψ∗

0 ]−
p
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
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


(56)

∞∑
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pjTj = L−1

[
1

s
T (0) +

1

s
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0 ]−
p

s
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0 ] +
p

s
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1
Pr∇

2
∑∞
j=0 p
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1
r

(∑∞
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jG∗
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) ] (57)

Coefficients of the same powers of p were compared, which obtained:

p0 :

{
ψ0 = L−1

[
1
sψ(0) +

1
sL [ψ∗

0 ]
]

T0 = L−1
[
1
sT (0) +

1
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0 ]
] (58)
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p2 :
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pj :


ψj = L−1

− 1
sL

F−1

 1
iωF

 ∂
∂t

(
∂2ψj−1

∂r2

)
r + 1

r
∂
∂t

(
∂2ψj−1

∂θ2

)
−
(
H∗
j−1 −Hj−1

)
−(

∇4ψj−1

)
r +Gr

(
r cos(θ)

∂Tj−1

∂r − sin(θ)
∂Tj−1

∂θ

) 


T1 = L−1
[
1
sL
{

1
Pr∇

2Tj−1 +
1
r

(
G∗
j−1 −Gj−1

)}] (61)

where,

H0 =
∂ψ0
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∂∇2ψ0
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,H∗

0 =
∂ψ0

∂r
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In the porous annulus, the flow field was segmented into three regions: an inner boundary layer located near the
inner cylinder, an outer boundary layer located near the outer cylinder, and a core region located between the two
layers. Initial solutions found by Pop et al. [8] were used. In addition to the initial and boundary conditions in Eqs.
(37) and (38), the solutions of Eq. (58) in the three regions were given as follows:

ψi0 = 2
√
tTi

(
−η erfc(η) + 1√

π

(
e−η

2

− 1
))

sin(θ), T i0 = Ti erfc(η) (63)
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√
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(
ξ erfc(ξ)− 1√

π

(
e−ξ

2

− 1
))

sin(θ), T o0 = To erc(ξ) (64)

ψc0 =
2
√
t√

π (R2 − 1)

(
(Ti +RTo) r − (To +RTi) r

−1
)
sin(θ), T c0 = 0 (65)

Then, the solutions of Eq. (59) were given in the following forms:
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√
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ψc1 = 0, T c1 = 0 (70)

where, η = r−1
2
√
t
, ξ = R−r

2
√
t
, Ti and To are the inner and outer cylinder temperatures, respectively, and R is the radius

ratio.
Then by setting p = 1, the analytical approximate solutions ψ and T were given by:

ψ = lim
N→∞

 N∑
j=0

ψij +

N∑
j=0

ψoj +

N∑
j=0

ψcj

 (71)

T = lim
N→∞

 N∑
j=0

T ij +

N∑
j=0

T oj +

N∑
j=0

T cj

 (72)
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6 Results and Discussion

FLT-HPM was applied to the problem of two-dimensional transient natural convection in a horizontal cylindrical
concentric annulus bounded by two isothermal surfaces, which obtained analytical results. The impact of the Grashof
number and diameter ratio on the analytical results was discussed in this section.

6.1 Streamline and Isotherm Patterns

Streamlines and isotherm contours were used to illustrate the heat transfer within the cylinders. Figure 2 and
Figure 3 show the comparison results between this study and some previous studies [4, 9, 11], withR = 2,Pr = 0.71
and with 10000 and 38800 as the Grashof number values. As shown in these figures, their analytical results are very
consistent when the Grashof and Prandtl numbers and the radius ratio have the same values.

Figure 2. Comparison results between (a) ADI and SOR [4], (b) ADI and SOR [9], (c) YT-HPM [11] and (d)
FLT-HPM for stream (left) and isotherm (right) with Gr = 10000,Pr = 0.71 and R = 2

Figure 3. Comparison results between (a) ADI and SOR [4], (b) ADI and SOR [9], (c) YT-HPM [11] and (d)
FLT-HPM for stream (left) and isotherm (right), with Gr = 38800,Pr = 0.71 and R = 2

Table 1. Absolute error comparison of ψ(r, θ) between FLT-HPM, YT-HPM and HPM with Gr = 1000, P r = 0.7
and R = 2

θ r
t=0.01 t=0.1

FLT-HPM YT-HPM HPM FLT-HPM YT-HPM HPM

0

1 0.56× 10−4 2.82× 10−1 56.983 0.16× 10−2 8.921 196.254
1.5 0.0000 5.44× 10−4 1.10× 10−1 0.0000 4.775 105.047
2 2.25× 10−12 3.91× 10−12 7.91× 10−10 0.65× 10−2 7.32× 10−1 16.109

3 0
1 0.85× 10−5 5.85× 10−2 11.811 0.24× 10−3 1.463 32.164

1.5 1.85× 10−7 2.09× 10−4 4.23× 10−2 5.87× 10−7 7.54× 10−1 16.574
2 3.46× 10−8 1.02× 10−6 2.08× 10−4 010× 10−2 1.03× 10−1 2.254

6 0
1 0.53× 10−4 2.64× 10−1 53.355 0.15× 10−2 8.472 186.363

1.5 5.73× 10−8 6.10× 10−4 1.23× 10−1 1.81× 10−7 4.544 99.954
2 2.14× 10−7 3.69× 10−7 6.98× 10−5 0.62× 10−2 7.01× 10−1 15.419

9 0
1 0.25× 10−4 1.39× 10−1 28.240 0.93× 10−3 4.071 89.597

1.5 1.68× 10−7 2.30× 10−5 4.55× 10−3 5.31× 10−7 2.152 47.371
2 1.01× 10−7 1.01× 10−6 1.97× 10−4 0.29× 10−2 1.18× 10−1 7.001

1 8 0
1 0.33× 10−4 1.65× 10−1 31.681 0.98× 10−3 5.274 115.973

1.5 1.50× 10−7 6.65× 10−4 1.14× 10−1 4.76× 10−7 2.847 62.603
2 1.35× 10−7 9.24× 10−7 1.79× 10−4 0.39× 10−2 4.48× 10−1 9.837

In subgraphs (a) and (b) and (c) of Figure 4, the Grashof number with range (103 ≤ Gr ≤ 4 × 104), different
radius ratios (R = 1.2, 1.5 and 2.0), and Prandtl number of 0.7 were considered.
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Figure 4. Streamline (left) and isotherms (right) with different values of the Grashof number and Pr = 0.7

According to subgraph (a) of Figure 4, there is no obvious change in the flow pattern and temperature fields with
R = 1.2 and different values of the Grashof number. In this case, the temperature pattern is similar to circles when
the radius ratio is small, indicating the weak effect of thermal currents. When the radius ratio increases to 1.5, the
flow pattern starts with an upward displacement in subgraph (b) of Figure 4. In addition, the temperature pattern
remains similar to circles when the Grashof number ranges from 103 to 104, and starts to deform slightly when the
Grashof number increases to 4×104, indicating the effect of convective currents. Subgraph (c) of Figure 4 illustrates
that there is an obvious change in the flow pattern and temperature domains with R = 2 and different values of the
Grashof number. In this case, the flux gap moves upwards significantly. Moreover, the distortion of the temperature
pattern increases when the Grashof number increases to 4× 104, indicating an increase in the heat convection.

Table 1 and Table 2 show the efficiency and accuracy of the proposed FLT-HPM method in finding approximate
analytical solutions to the current problem.

According to the comparison of absolute errors of the approximate solutions in Table 1 and Table 2, the absolute
errors of FLT-HPM are less than that of YT-HPM and HPM, with Gr = 1000 and Pr = 0.7, which indicates that
FLT-HPM has higher accuracy and efficiency than other methods.

6.2 Velocity Distribution

To study the velocity distribution, the velocity component was used in the θ-direction (the tangent velocity),
which was calculated by differentiating r in Eq. (71). Figure 5 shows the velocity diagram with Gr = 1000,Pr =
0.71, t = 0.01, different values of the radius ratio (R = 1.2, 1.5, 2), and θ = n (30◦), with 1 < n < 5.

Figure 5 shows the effect of radius ratio on the velocity level in all cases (a, b, and c). It is noted that the
absolute maximum values of velocity range from the largest to the smallest when θ is 60◦, 120◦, 150◦, 90◦, and 30◦,
respectively.
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Table 2. Absolute error comparison of T (r, θ) between FLT-HPM, YT-HPM [11] and HPM [11] with
Gr = 1000,Pr = 0.7 and R = 2

θ r
t=0.01 t=0.1

FLT-HPM YT-HPM HPM FLT-HPM YT-HPM HPM

0
1 0.11× 10−5 3.25× 10−3 17.571 0.28× 10−4 3.23× 10−2 3.635

1.5 1.67× 10−7 2.59× 10−5 3.38× 10−3 0.24× 10−4 2.76× 10−2 5.73× 10−1

2 1.34× 10−13 3.73× 10−13 5.59× 10−11 0.21× 10−4 7.01× 10−3 8.58× 10−2

30
1 021× 10−5 1.81× 10−2 318.479 0.13× 10−4 1.586 380.428

1.5 4.96× 10−8 2.58× 10−5 2.95× 10−3 0.28× 10−4 2.81× 10−1 72.411
2 1.34× 10−13 3.73× 10−13 5.59× 10−11 2.08× 10−5 1.55× 10−3 1.183

60
1 1.06× 10−7 3.48× 10−3 115.391 0.27× 10−4 4.85× 10−1 121.08

1.5 1.71× 10−8 2.59× 10−5 3.99× 10−3 0.57× 10−4 6.78× 10−2 22.358
2 1.34× 10−13 3.73× 10−13 5.59× 10−11 0.10× 10−3 5.51× 10−3 2.73× 10−1

90
1 1.15× 10−5 1.22× 10−2 282.258 0.28× 10−5 1.405 342.265

1.5 1.67× 10−7 5.59× 10−5 4.74× 10−3 2.41× 10−5 2.91× 10−1 65.903
2 1.34× 10−13 3.73× 10−13 5.95× 10−11 0.22× 10−4 1.17× 10−2 1.271

180
1 1.06× 10−7 1.40× 10−2 270.701 1.36× 10−5 1.289 311.133

1.5 4.96× 10−8 2.59× 10−5 3.44× 10−3 0.28× 10−4 2.22× 10−1 58.827
2 1.34× 10−13 3.73× 10−13 5.59× 10−11 0.33× 10−5 2.69× 10−3 9.25× 10−1

Figure 5. θ-component of velocity versus radial position, with
θ = n (30◦) , 1 < n < 5,Gr = 1000,Pr = 0.71, t = 0.01, (a) R = 1.2, (b) R = 1.5, and (c) R = 2

6.3 Heat Transfer Rates

Local Nusselt numbers Nui(θ) and Nuo(θ) were used to represent the local heat flow rates per unit area in the
inner and outer cylinders, respectively. In the same way, the mean Nusselt number Nu was used to represent the
total heat flow rate from the inner to the outer cylinder. Moreover, the local Nusselt numbers Nui(θ) and Nuo(θ),
and the mean Nusselt number Nu were defined respectively as follows:

Nui = − ln(R)

[
r
∂T

∂r

]
r=Ri

(73)

Nuo = − ln(R)

[
r
∂T

∂r

]
r=R0

(74)

Nul = − ln(R)

π

∫ π

0

[
r
∂T

∂r

]
r=Ri

dθ (75)

Nuo = − ln(R)

π

∫ π

0

[
r
∂T

∂r

]
r=Ro

dθ (76)

Both mean Nusselt numbers
(
Nul, Nuo

)
vs. the non-dimensional time t were plotted in Figure 6, Figure 7,

Figure 8, Figure 9, Figure 10, Figure 11, and Figure 12, with Pr = 0.7 and different values of the Grashof number

131



and radius ratio. Figure 6, Figure 7, Figure 8 show the mean Nusselt numbers
(
Nul, Nuo

)
, with R = 1.5, Gr =

4850, Gr = 11500 and Gr = 26200, respectively. According to these figures, when the Grashof number increases,
the mean Nusselt numbers

(
Nul, Nuo

)
also increase with 1.5 as the radius ratio. In addition, Figure 9, Figure 10 and

Figure 11 illustrate the mean Nusselt numbers
(
Nul, Nuo

)
, withR = 2,Gr = 1000, Gr = 38800 andGr = 88000,

respectively. According to these figures, the mean Nusselt number increases when the Grashof number increases
with 2 as the radius ratio.

In the above cases in Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, it is noted that when t increases,
the mean Nusselt numbers

(
Nul, Nuo

)
are close to their steady-state values. Furthermore, Figure 12 exhibits the

mean Nusselt numbers
(
Nul, Nuo

)
, with Gr = 732 and R = 1.2, and shows that the mean Nusselt numbers(

Nul, Nuo
)

approach unity when t increases, indicating that convection is almost non-existent at the stated values.

Figure 6. Mean Nusselt number for Gr = 4850,Pr = 0.7, and R = 1.5

Figure 7. Mean Nusselt number for Gr = 11500,Pr = 0.7, and R = 1.5

As shown in Table 3, the results of FLT-HPM are very consistent with that of other studies.

7 Convergence analysis of FLT-HPM

Some basic definitions and theorems were presented in this section, which helped the study of convergence
analysis. Moreover, this section aimed to find the necessary condition for convergence of approximate analytic
solutions using FLT-HPM.
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Figure 8. Mean Nusselt number for Gr = 26200,Pr = 0.7, and R = 1.5

Figure 9. Mean Nusselt number for Gr = 10000,Pr = 0.7, and R = 2

Table 3. Comparison of the mean Nusselt number of FLT-HPM with ADI and SOR [4] and ADI and SOR [9], at
Pr = 0.7 and various values of Gr

R Gr Mean Nusselt number (Nu)
FLT-HPM ADI and SOR [4] ADI and SOR [9]

10000 1.698 1.64 1.658
2 38800 2.203 2.4 2.42

88000 3.06 3.08 2.99

Definition 7.1 Let T : H −→ R be a non-linear mapping, where H is the Banach space, and R is the set of real
numbers, then the sequence of the solutions was written as:
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Figure 10. Mean Nusselt number for Gr = 38800,Pr = 0.7, and R = 2

Figure 11. Mean Nusselt number for Gr = 88000,Pr = 0.7, and R = 2

En+1 = T (En) , En =

n∑
j=0

hj , j = 0, 1, 2, 3, . . . (77)

where, T satisfies the Lipschitz condition, and γ ∈ R, then there were:

∥T (En)−N (En−1)∥ ≤ γ ∥En − En−1∥ , 0 < γ < 1 (78)

Theorem 7.1 The analytical-approximate solution series ψ(r, θ) =
∑∞
j=0 ψj(r, θ), obtained by using FLT-HPM,

converge, if the following condition is proven:

∥En+1 − En∥ → 0 as n→ ∞ for 0 < γ < 1 (79)

134



Figure 12. Mean Nusselt number for Gr = 732,Pr = 0.7, and R = 1.2

Proof of theorem 7.1

∥En+1 − En∥ =

∥∥∥∥∥∥
n+1∑
j=0

ψj −
n∑
j=0

ψj

∥∥∥∥∥∥ =

∥∥∥∥∥∥ψ0 +

n+1∑
j=1

ψj −

ψ0 +

n∑
j=1

ψj

∥∥∥∥∥∥
=

∥∥∥∥∥∥ψ0 +

n+1∑
j=1

L−1
1 [Hj−1]−

ψ0 +

n∑
j=1

L−1
1 [Hj−1]


∥∥∥∥∥∥

=

∥∥∥∥∥∥ψ0 + L−1
1

n+1∑
j=1

[Hj−1]−

ψ0 + L−1
1

n∑
j=1

[Hj−1]


∥∥∥∥∥∥

Since En+1 = T (En), then

∥En+1 − En∥ =

∥∥∥∥∥∥L−1
1 T

n∑
j=0

[Hj−1]− L−1
1 T

n−1∑
j=0

[Hj−1]

∥∥∥∥∥∥ =

∥∥∥∥∥∥L−1
1 T

 n∑
j=0

ψj

− L−1
1 T

n−1∑
j=0

ψj

∥∥∥∥∥∥
≤
∣∣L−1

1

∣∣ ∥∥∥∥∥∥T
 n∑
j=0

ψj

− T

n−1∑
j=0

ψj

∥∥∥∥∥∥ ≤ γ

∥∥∥∥∥∥
n∑
j=0

L−1
1 [Hj−1]−

n−1∑
j=0

L−1
1 [Hj−1]

∥∥∥∥∥∥
≤ γ2

∥∥∥∥∥∥
n−1∑
j=0

L−1
1 [Hj−1]−

n−2∑
j=0

L−1
1 [Hj−1]

∥∥∥∥∥∥
...

≤ γn

∥∥∥∥∥∥
1∑
j=0

L−1
1 [Hj−1]−

0∑
j=0

L−1
1 [Hj−1]

∥∥∥∥∥∥ = γn ∥E1 − E0∥ → 0 as n→ ∞ for 0 < γ < 1.

where,

L−1
1 (·) = L−1

[
−1

s
L
(
F−1

[
1

iω
F(·)

])]
,Hj−1 =

 ∂
∂t

(
∂2ψj−1

∂r2

)
r + 1

r
∂
∂t

(
∂2ψj−1

∂θ2

)
−
(
H∗
j−1 −Hj−1

)
−

r∇4ψj−1 +Gr
(
r cos(θ)

∂Tj−1

∂r − sin(θ)
∂Tj−1

∂θ

)  .
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Theorem 7.2 For the solution series T (r, θ) =
∑∞
j=0 Tj(r, θ), generated by using FLT-HPM, the necessary

condition for their convergence is to fulfill the property represented in Eq. (79):
Proof of theorem 7.2

∥En+1 − En∥ =

∥∥∥∥∥∥
n+1∑
j=0

Tj −
n∑
j=0

Tj

∥∥∥∥∥∥ =

∥∥∥∥∥∥T0 +
n+1∑
j=1

Tj −

T0 + n∑
j=1

Tj

∥∥∥∥∥∥
=

∥∥∥∥∥∥T0 +
n+1∑
j=1

L−1
2

[ ...
Hj−1

]
−

T0 +
n∑
j=1

L−1
2

[ ...
Hj−1

]
∥∥∥∥∥∥

=

∥∥∥∥∥∥T0 + L−1
2

n+1∑
j=1

[ ...
Hj−1

]
−

T0 + L−1
2

n∑
j=1

[ ...
Hj−1

]
∥∥∥∥∥∥

Since, En+1 = T (En), then

∥En+1 − En∥ =

∥∥∥∥∥∥L−1
2 T

n∑
j=0

[ ...
Hj−1

]
− L−1

2 T
n−1∑
j=0

[ ...
Hj−1

]∥∥∥∥∥∥
=

∥∥∥∥∥∥L−1
2 T

 n∑
j=0

Tj

− L−1
2 T

n−1∑
j=0

Tj

∥∥∥∥∥∥ ≤
∣∣L−1

2

∣∣ ∥∥∥∥∥∥T
 n∑
j=0

Tj

− T

n−1∑
j=0

Tj

∥∥∥∥∥∥
≤ γ

∥∥∥∥∥∥
n∑
j=0

L−1
2

[
Ḧj−1

]
−
n−1∑
j=0

L−1
2

[ ...
Hj−1

]∥∥∥∥∥∥ ≤ γ2

∥∥∥∥∥∥
n−1∑
j=0

L−1
2

[ ...
Hj−1

]
−
n−2∑
j=0

L−1
2

[ ...
Hj−1

]∥∥∥∥∥∥
...

≤ γn

∥∥∥∥∥∥
1∑
j=0

L−1
2

[ ...
Hj−1

]
−

0∑
j=0

L−1
2

[ ...
Hj−1

]∥∥∥∥∥∥ = γn ∥E1 − E0∥ → 0 as n→ ∞ for 0 < γ < 1.

where, L−1
2 (·) = L−1

[
1
sL(·)

]
,

...
Hj−1 = 1

Pr∇
2Tj−1 +

1
r

(
G∗
j−1 −Gj−1

)
.

The results of theorems 7.1 and 7.2 were used to calculate the values of the parameter γm by constructing the
following definition.

Definition 7.2 For m = 1, 2, 3, . . .

γm =

{
∥Em+1−En∥
∥E1−E0∥ = ∥hm+1∥

∥h1∥ , ∥h1∥ ≠ 0,m = 1, 2, 3, . . .

0 , ∥h1∥ = 0
(80)

Eq. (80) was used to test the convergence of the analytical solutions to the current problem. Moreover, Table 4
shows the convergence of the approximate analytical solutions obtained using FLT-HPM.

Table 4. Powers of γ using FLT-HPM with Pr = 0.7, t = 0.1 and different values of R and Gr

ψ(r,θ) T (r,θ)
Gr R γ γ2 · · · γ γ2 ..
100 1.5 0.303× 10−2 0.617× 10−3 . . . 0.172× 10−3 0.733× 10−4 ..

1000 0.289× 10−3 0.590× 10−4 · · · 0.165× 10−3 0.699× 10−4 ..
100 2 0.178× 10−2 0.100× 10−3 . . . 0.146× 10−3 0.868× 10−4 ..

1000 0.176× 10−3 0.988× 10−4 . . . 0.146× 10−3 0.875× 10−4 .

The convergence results of the analytical solutions using FLT-HPM and YT-HPM [11] were compared (Table 5).
According to Table 4 and Table 5, γn → 0 as n→ ∞ when 0 < γ < 1. In addition, the difference in convergence

between FLT-HPM and YT-HPM can be observed, which shows that the powers of γ by using FLT-HPM approach
zero faster, compared with YT-HPM in Table 5. Therefore, FLT-HPM represents a better convergence than YT-HPM.
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Table 5. Comparison of powers of γ between FLT-HPM and YT-HPM [11] with Gr = 10,Pr = 0.7, t = 0.1 and
R = 1.5

ψ(r,θ) T (r,θ)
Method γ γ2 · · · Method γ γ2 · · ·

FLT-HPM 0.534× 10−1 0.110× 10−3 · · · FLT-HPM 0.138× 10−3 0.587× 10−4 · · ·
YT-HPM 2.100× 10−1 0.608× 10−2 · · · YT-HPM 0.578× 10−2 0.500× 10−3 · · ·

8 Conclusion

A sophisticated analytical procedure was presented in this study, which combined HPM with the Fourier transform
and Laplace transform, thus providing approximate analytical solutions to the problem of two-dimensional transient
natural convection in a horizontal cylindrical concentric annulus bounded by two isothermal surfaces. The effect
of radius ratio and Grashof number on heat transfer, fluid flow, velocity distribution, and Nusselt number was
investigated. The effect of Grashof number with the range (103 ≤ Gr ≤ 4 × 104) at three different radius ratios
of 1.2, 1.5 and 2 with Pr = 0.7 was discussed. This study showed that the change in the flow pattern and the
temperature fields was almost very slight at Gr = 103 with different radius ratios. In addition, the temperature
pattern looked like circles. When the Grashof number increased, the flow pattern moved up, while the temperature
distribution pattern remained circles when the radius was small. However, the temperature distribution pattern was
distorted with the increase in the radius ratio, clearly indicating the increase in convection. The results obtained
using FLT-HPM were consistent with the previously published results. In addition, by discussing accuracy and
efficiency, it was found that FLT-HPM represented a powerful and effective procedure, which can be used to solve
many convection problems with applications in various branches of science and engineering.
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