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Abstract: Heating, ventilation, and air-conditioning (HVAC) systems have been identified as major contributors to
global energy consumption, underscoring the urgency of optimizing their performance for economic and environ-
mental sustainability. This review presents a comprehensive examination of the thermofluid behavior, mathematical
modeling techniques, and optimization strategies employed in HVAC systems. Particular emphasis is placed on
the development and implementation of dynamic and steady-state models that enable predictive analysis and per-
formance forecasting. The inherently nonlinear and time-varying nature of HVAC systems has necessitated the
adoption of advanced computational approaches, including artificial intelligence (AI), machine learning (ML), ge-
netic algorithm (GA), and simulated annealing (SA), to enhance system responsiveness and occupant comfort. Al-
and ML- based control strategies have been shown to improve adaptability to real-time environmental and occu-
pancy changes, thereby increasing operational efficiency. However, these approaches are often constrained by high
data requirements and computational complexity. Multi-objective optimization frameworks have been proposed to
balance energy efficiency with environmental impact, yet challenges remain regarding precision, scalability, and the
seamless integration of emerging technologies. The application of digital twin technology has recently gained trac-
tion as a viable solution for real-time simulation and virtual testing, offering a non-intrusive means of performance
evaluation and system tuning. It is suggested that the future of HVAC optimization lies in the convergence of clas-
sical thermodynamic and fluid dynamic modeling with intelligent control architectures, enabling the development
of adaptive systems capable of autonomous decision-making. This integrated modeling paradigm is anticipated to
support advancements in energy-aware design, occupant-centric climate control, and sustainable building operation.
Through this synthesis of traditional and data-driven methodologies, new pathways were proposed for achieving
robust, scalable, and intelligent HVAC systems that respond efficiently to evolving environmental and user-specific
demands.

Keywords: Air-conditioning systems; HVAC optimization; Energy efficiency; Mathematical modeling; Machine
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1 Introduction

Such effects as those that air-conditioning systems have on indoor environmental quality and energy consumption
make the refinement in those systems an essential area of research and practical application. It’s no secret that air
conditioning units are an essential part of a building and are responsible for almost a quarter to just over a third of
the total energy use in a building, especially in commercial buildings. Given the increase of urban expansion and
intensification of temperature fluctuations due to climate change, there is increasing demand for effective HVAC
solutions. Thus, such optimization of these systems does not involve only bettering energy efficiencys; it also greatly
contributes to improving occupant comfort and indoor air quality (IAQ). A number of studies have investigated how
HVAC systems can be optimized through conventional optimization techniques like linear programming (LP) and
newer Al-based techniques like Model Predictive Control (MPC). Nonetheless, the area of Al and ML integration
concerning dynamic, real-time optimization of HVAC systems based on changing environmental and occupancy
scenarios has been poorly examined in the literature, creating a knowledge gap that needs to be filled.
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Lately, there has been significant technological development in air conditioning that has resulted in the devel-
opment of related advanced methods that amalgamate the functionality of cooling, heating, humidity control and
purifying air. It suggests a departure from the conventional HVAC ways of operation to more integrated solutions that
value system involvement instead of several one-off systems. Traditionally, conventional HVAC systems are typically
run in individual modes, i.e., heating or cooling without integration to achieve effectiveness and energy conservation.
Integration of modern technologies such as Building Management System (BMS) enables just-right control of HVAC
functions via real-time monitoring and automation of adjustments according to occupancy patterns and environmen-
tal conditions. In addition to optimizing energy use, these innovations make an often-neglected difference, which
significantly improves overall comfort within buildings by ensuring constant temperature. Air-conditioning systems
are part and parcel of the indoor comfort and energy-efficiency story, but they are also responsible on a global scale
for a substantial percentage of energy use. HVAC optimization, thus, is a serious issue in decreasing the operational
cost as well as the environmental harm.

The significant necessity of improving IAQ is the foremost motivation for research in the air conditioning system
optimization. Poor air quality is linked with certain health risks in urban areas, and therefore high pollutant levels in
the urban area emphasize the need for efficient ventilation strategies in HVAC systems to alleviate poor quality of air.
Continuous IAQ indicators (carbon dioxide levels, etc.) can be assessed with innovations such as smart sensors, and
thus be used to fundamentally change the way the airflow rates are delivered into buildings by proactively adjusting
HVAC systems. In both regards, such proactive measures help in maintaining a healthier indoor environment and
improving efficiency of operations. In addition, mathematical modeling is equally important in improving the
performance of HVAC. Prognostic capabilities for the system behavior under different operating conditions are
provided by a variety of models extending from steady-state to dynamic simulation formulations. It is crucial to
select the right model parameters to let the generated predictions accurately inform control strategies. Consistency
of the data produced by models with the process to which models apply is essential and validation techniques are
used for this purpose to ensure that operational tactics can continuously evolve.

Technological progress, and hence optimization strategies, is coming along. Traditional methods are still
effective, but more recent heuristic as well as metaheuristic approaches are increasingly popular because of their
ability to cope with complicated problems that cannot be resolved with conventional methods. The control settings
can be dynamically adjusted with techniques such as GA or reinforcement learning (RL) based on historical data or
real-time interactions with building occupants. Nevertheless, there are challenges in the successful application of
optimization strategies in real life. Often these complexities come in the form of different building layout patterns,
behaviors of the occupants, climatic factors, and operational limitations that complicate the traditional optimization
process. Furthermore, difficulties with data availability, especially regarding the availability of accurate historical
input data, create additional challenges in attempts to realize the complete solution for optimization.

Since the rise of more energy-efficient building practices, several new technologies have come into development
for HVAC optimization. With continued promotion for sustainable construction practices, recent studies have delved
into innovative methodologies such as multi-objective optimization frameworks that take into account energy saving
as well as occupant comfort metrics—every balancing act. This current study attempts to answer the following major
research questions: What are the ways to make HVAC energy-efficient using advanced mathematical models? How
are ML and Al involved in real-time optimization of HVAC systems?

The study of optimum air conditioning intends to explore many parts, from learning basic components and
operational principles to using the advanced technique that will facilitate capable choice-making so that there can
be the best businesses from the outcomes. With advancing research on areas concerning Al, ML, and predictive
controls such as MPC, there is immense potential to not only significantly reduce energy consumption but also to
further enhance occupant experiences while operating in increasingly complex built environments [1-5]. The main
aim of the review is to evaluate the recent trends in optimization methods of HVAC systems concerning the aspect of
integration of predictive controls and Al-based approaches toward the better energy use and comfort of the occupants.

2 Fundamentals of HVAC Systems
2.1 Components of HVAC Systems

The indoor environments can be managed through HVAC systems in the residential, commercial and industrial
premises. Improving performance and energy efficiency of these systems requires that the critical components be
understood. The HVAC components can be categorized into core and ancillary. Thermal energy storage units,
cooling and heating towers, boilers, chillers, heat pumps, etc. generate heating and cooling effects. Chillers extract
heat from indoor air by means of evaporation and condensation processes and release it outside also by using
refrigerants. However, cooling towers are an essential part of a greater chilled water system that cools the excess
heat that water will re-enter chillers or air handling units (AHUs). They rely on evaporation techniques, which make
use of ambient air to saturate a great amount of surface area and cool the water efficiently. Thanks to the thermal
storage systems, thermal energy is captured during off-peak hours for use during peak demand in order to reduce
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operational costs. They are heat pumps that use an already existing refrigeration cycle and reverse the refrigeration
cycle as per the season.

Distributed conditioned air is provided to a building with the aid of ancillary components. Incoming fresh air is
processed through filtration and conditioning by AHUs to be distributed via ductwork. Assuming fans are present,
AHUs can change airflow rates based on occupancy sensors or thermostats monitoring indoor conditions. Heated
or cooled air is moved between different zones by ducts, which are in many shapes and materials according to the
design specification and the minimum airflow resistance. Conditioned airflow is managed through terminal devices
such as diffusers and grilles and they distribute supply air as well as reduce return air by means of return airflow
for reconditioning. The choice of these devices plays a very critical role in comfort level as well as overall energy
efficiency.

Control systems are crucial in modern HVAC installations that set the temperature based upon users’ preferences
and improve system performance. Smart or programmable thermostats can be taught to occupants to save more
energy without hurting comfort. The operation of air conditioning is based on the refrigeration cycle that includes
compressors, evaporators, condensers and devices that transfer refrigerant throughout the system. Evaporators are
used where refrigerant is heated to absorb latent heat, the pressure of the refrigerant being increased by compressors.
Condensers are cooled and the refrigerant condenses back into the liquid form and is allowed to release heat outside.
Variable Air Volume (VAV) system is a unit of an energy-efficient design strategy adopted in HVAC systems to
increase energy efficiency and at the same time maintain the comfort of occupants. Controlling airflow rates in a
VAV system is based on real-time thermal load fluctuations and VAV reduces total energy consumption by orders of
magnitude compared with Constant Air Volume (CAV) control.
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Figure 1. Refrigeration cycle diagram for the HVAC system
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Figure 2. Schematic diagram of the optimization process [1]

Various multifunctional devices that combine the heating, cooling and purification functions have been invented
due to technological improvements for the convenience of users and sustainability. Solar thermal technology,
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geothermal heating solutions and related renewable energy sources also hold the potential of reducing the utilization
of fossil fuels involved in conventional HVAC operation. Overall, by examining each component in an HVAC
system that engineers can design, it becomes apparent that it is possible to optimize performance metrics for the
best performance, which leads to a more sustainable HVAC system where more global energy and environmental
requirements exist [1, 2, 5-7]. Figure 1 and Figure 2 show the refrigeration cycle and the optimization process of
the HVAC system, respectively.

2.2 Operating Principles

Thermodynamics, fluid dynamics, and heat transfer are fundamental principles of HVAC systems, based on
which these systems try to create comfortable indoor environments, in terms of regulated temperature, humidity and
air quality. In the heart of these systems, the refrigeration cycle is made up of four important steps: evaporation,
compression, condensation, and expansion. The refrigeration cycle starts in the evaporator where the refrigerant
picks up heat from indoor air. The increasing thermal energy enters the evaporator coils, which causes the refrigerant
to evaporate into a vapor-liquid state. It then flows to the compressor, where it is compressed, bringing its pressure
and temperature both up while squeezing it into a smaller volume. This energy-intensive process usually involves
electrical power. The second in line is the condenser unit, where the high-pressure gas divests its heat to the
environment. As it cools down, it changes back to a liquid and then goes through an expansion valve or device that
reduces its pressure to a very low level to be drawn into the distribution system. The pressure drop that this causes
sets the refrigerant up to repeat the cycle in the evaporator to its low-pressure state.

Airflow can be managed to optimize the efficiency of HVAC systems. Fans can be designed to work as split
systems or centralized units that circulate air through cooling or heating coils and distribute the air through spaces
that must be climate controlled. The airflow system should work based on which ducts are designed and the fans
that are chosen. To achieve accurate temperature control, the balance between indoor comfort and consumption
of energy must be fine-tuned. Many factors affect a balance of this, such as ambient temperature and humidity
outside of buildings as well as building insulation and occupant behavior. Air-conditioning systems in use react to
fluctuations in the load conditions, such as in the case of changes in the number of people using the building or in
external weather. Now, real-time adjustments based on thermal demands within conditioned spaces are achievable,
even using advanced monitoring technologies. These systems can be enormously more efficient by using sensors that
monitor the occupancy rates or carbon dioxide levels and employing the demand-controlled ventilation strategies.

More specifically, Al is becoming a valuable tool for upgrading the air-conditioning systems, and the HVAC
operations in general. Al-driven systems improve predictions of a building’s cooling requirements by using ML
algorithms to analyze historical data on energy consumption and environmental conditions. Additionally, computa-
tional fluid dynamics (CFD) simulation is used for predicting airflow within a climate-controlled environment with
accounts taken for furnishings layout and/or architectural features that alter the airflow pathways to achieve optimum
system performance during conventional operation situations. In addition to conventional refrigerants such as R-134a
that is currently in widespread use, there is an important endeavor to search for alternative natural refrigerants with
low global warming potential. Enhancing energy efficiency in a wide range of applications from residential to
industrial is one of the transitions to sustainable refrigerants that can impose challenges and opportunities.

In the future, as industries connect their smart grids, the use of controls to adapt air conditioning outputs to
available resource levels and seasonal changes will increase in proportion to adaptive HVAC design. Engineering
professionals are empowered to improve the efficiency of these models and enhance existing frameworks through
an understanding of these operational principles. As our changing relationship to the Earth’s fluctuating climate
patterns—of which we have become increasingly aware—becomes more apparent, sustainability must be prioritized
in this and many other fields. It includes HVAC design engineering solutions that deal with the issues facing the
contemporary world before regulations seek to eliminate those practices that are now beginning to be phased out
in exchange for ecofriendly ones in the coming decades [3, 6, 8—14]. Figure 3 shows the scatter matrix of the
input-output data, including the statistical data distribution.

Coeflicient of performance (COP): COP is a key measure of HVAC efficiency. It can be used to compare the
energy efficiency of heating and cooling systems.

COProing = —Qc;"v““g )

where, Qcooling 18 the heat removed from the space (in watts or BTU), and W is the work input to the system (in watts
or BTU).

Thermal efficiency: The concept of thermal efficiency and energy consumption can also be introduced to quantify
the overall efficiency of the HVAC system.

)= Useful Energy Output < 100 @)
Energy Input
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Figure 3. Scatter matrix of the input-output data, including the statistical data distribution [10]

2.3 System Configurations

Depending on operational and design objectives, various configurations for HVAC systems have been designed.
Energy efficiency and the comfort felt in the conditioned spaces depend on the setup chosen, as this has a major
influence. Because there is a range of environments, building types, and user needs that different configurations
can address, a thorough understanding of their operational principles is necessary. One of the most common
configurations is VAV that varies airflow with the thermal need of different areas in a building. In VAV, AHUs
provide conditioned air at the given temperature and varying flow rates. The VAV box regulating airflow in each
zone is typically just one of these. The energy conservation provided by this method occurs because it eliminates the
need for uninterrupted airflow in all areas and adjusts dynamically according to real-time conditions. Furthermore,
some VAV boxes may have supplementary heating or reheat conventions to condition such spaces as perimeter zones
with large windows.

On the other hand, CAV systems operate by supplying a constant rate of airflow in spite of the changes that might
have to be made at different spaces in terms of temperature. Though CAV systems might be cheaper and simpler to
install than VAV systems, they are less energy efficient, as they cannot adjust air supply with real-time thermal loads.
A second important configuration is the chilled water system used in larger commercial buildings. Chilled water
passes through coils in AHUs or fan coil units and cools the air prior to being passed through ducts into different
rooms. This system also allows for centralized cooling and is capable of dealing with large thermal loads inherent to
large commercial spaces. Split systems separate the functions of heating and cooling to the outdoor and indoor units
where either the outdoor or indoor unit can be run independently for different zones in smaller buildings or rooms.
Because they are easy to install, these systems are also popular in residential settings.

Besides conventional cooling systems, several innovative arrangements, such as desiccant cooling systems, are
also popular for effective management of humidity and cooling. Part of these systems is equipped with desiccants;
thus, materials can dry the air before more cooling takes place. With the integration of modern technologies and
configuration with elements of other traditional configurations, a hybrid configuration can be seen. For instance,
several modern HVAC systems have used various designs, including economizers that utilize outdoor air for cooling
in instances where field exposures permit or incorporate renewable energy and non-mechanical equipment. Several
recent designs have been optimized for the management of airflow within these configurations. The practice
of managing stagnant pockets of warm air while maintaining continuous circulation has been enhanced through
improved vent designs and the use of barriers to guide airflow.

This process relies heavily on CFD to accurately depict the indoor airflow dynamics before “taking to the field.”
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CFD modeling can be used to develop and visualize how different setups will influence the air distribution patterns
depending on a condition, thereby allowing designers to make rational decisions based on component size and
location during the design phase. In addition, advances in control strategies have added to adaptability in such
HVAC arrangements via smart switching procedures that react to variable environmental conditions or occupant
levels. Combining data-driven controls like Al enables system operators to continuously optimize the performance
while minimizing the energy consumption without sacrificing occupant comfort. It is essential to know all options
available regarding the system configuration, from traditional systems such as CAV and VAV ones to more ardent
implementations utilizing desiccants and intelligent controls [13, 15-17]. Table 1 shows the comparison of the two
systems based on the key factors, which will give readers a better idea about which system serves better in various
requirements. Figure 4 shows the typical VAV-based HVAC distribution system.

Table 1. Comparison of the two systems based on the key factors

Parameter VAV CAV
Energy efficiency Higher energy efficiency due to dynamic Less energy efficient; Fixed airflow rate,
adjustment of airflow based on load leading to over- or underconditioning
Offers better comfort as airflow is adjusted Less flexible, can lead to uneven

Comfort level . .
to real-time needs temperatures in some zones

More complex and requires more

Complexit Simpler design and operation
plextty components and controls p g p
Cost Higher initial cost, but more costeffective Lower initial cost but higher long-term
over time due to energy savings operating cost due to inefficiency
. Best suited for large commercial and office Commonly used in small to medium
Applications o o . .
buildings buildings or less dynamic environments

Air Handling Unit (AHU)

VFD : To other
=y Pl VAV box

partially open

Outside ' i Return
ﬂif# tﬂ N :55°F &
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Figure 4. Typical VAV-based HVAC distribution system [17]

3 Mathematical Models in HVAC Systems
3.1 Types of Mathematical Models
3.1.1 Steady-state models

Under a stable condition, steady-state models are necessary for analyzing and improving the HVAC systems
to understand their behavior. However, these models are based on the assumption that system variables will not
change over time, making the analysis easier than that with the dynamic models. With such components, steady-state
principles can be used reliably to predict performance. A major advantage of modeling in the steady state is that it is
simple. Under the assumption of constant input and output conditions, i.e., temperature and pressure, engineers can
propose equations describing relationships without regard for transient fluctuations. In addition, faster simulations
and pertinent information on the system efficiency and capacity under typical operating conditions are obtained.
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In air conditioning applications, most typical are steady-state models based on energy balances. For example,
in the evaporator, energy is absorbed primarily through the refrigerant’s phase transition, accompanied by changes
in internal energy. This balance is important for the correct cooling load estimation as well as for validating heat
exchanger efficiency. In addition, steady-state equations can be easily used to calculate performance indicators such
as COP. Steady-state models of HVAC systems can be developed with various mathematical techniques. Typically,
mass and energy conservation laws are combined with thermodynamic principles of refrigerants’ states. Depending
on the magnitude of available empirical or theoretical data and characteristics of the refrigerants in different phases,
tables or equations may be used to represent the refrigerant characteristics.

Another steady-state modeling approach is based on regression analysis of actual operational data. ANN’s are used
in data-driven methods due to their ability to extract nonlinear relationships between historical performance metrics.
With the absence of knowledge regarding physical mechanisms, ANNs are able to model HVAC components well
with their knowledge of operational patterns. However, steady-state models have limitations. While not accounting
for all complex behaviors like transient situations (e.g., startup and shutdown), dynamic modeling techniques are
required to assess time-varying inputs and outputs at the expense of an increased computational complexity.

However, designing control strategies in HVAC systems aiming at maintaining the comfort indoors while sat-
isfying the aforementioned conditions is nevertheless of major interest and can be supported through steady-state
models. Engineers can determine the optimal thermostat settings and air flow arrangements that would result in the
best possible thermal comfort under different operating scenarios, that is, controlled parameters such as the supply
temperature and humidity. Models with steady-state behaviors are integrated with advanced optimization techniques
to participate in the multi-objective evaluation on the energy side and occupant satisfaction. It enables researchers
to study trade-offs under design constraints that are defined by the operational requirements. Advancements such as
MPC frameworks coupled with steady-state modeling provide real-time optimization that is the future state guiding
the current operations to meet comfort standards. Once developed, these models must be validated. Current system
performance data is crucial in determining their accuracy before being used in big complexes or small buildings in
the commercial or residential sector. Poor operation efficiency and unfavorable indoor climates could be caused by
discrepancies.

While an increasing amount of effort has shifted towards developing model development methodologies from
classic, physics-based approaches to modern, data-driven ones, understanding of a whole gamut of building ty-
pologies and environmental conditions continues to be critical for application and is further needed in spite of
the ongoing global sustainability challenges. Since there is continued research into integrating different fields of
HVAC engineering, like CFD, to improve decision-making and intelligent design, aiming to meet future demands as
efficiently and sustainably as possible [1, 2, 18-21], the next great step in the evolution of the heating and cooling
field would be this.

In HVAC systems, steady-state energy balance equations are often used to analyze the heat flow within the
systems. For example, the energy balance in the evaporator of an air conditioning system can be written as:

Qin = Qout + Qslorage (3)

where, Q);, is the heat input into the systems (e.g., heat absorbed by the evaporator from the room), Qo is the heat
output (e.g., heat rejected to the outdoor environment via the condenser), and Qorage is the heat stored in the systems
(this could be negligible in many cases for steady-state conditions, but it’s considered when dealing with thermal
storage systems).

For an evaporator in steady-state conditions, the heat balance could also be simplified to:

Qin =m:-Cp- (ﬂ - Tout) (4)

where, m is the mass flow rate of air or refrigerant (kg/s), C;, is the specific heat capacity of the fluid (J/(kg-K)), Tin
is the temperature of the air or refrigerant entering the evaporator (°C or K) , and T, is the temperature of the air or
refrigerant leaving the evaporator (°C or K).

In the air-side boundary conditions, the temperature of the incoming air is typically known or specified as a
boundary condition:

Tin = Tambient (fixed boundary condition) 5)

In the refrigerant-side boundary conditions, the properties of the refrigerant, such as its pressure or temperature,
may be fixed at certain points, like at the inlet of the compressor or condenser:

P, = Pynpient (fixed boundary condition) (6)
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Figure 5 is the so-called comparison chart of the model application scope, illustrating the trade-off between
accuracy and computational cost between steady-state and dynamic models. In the steady-state model, the compu-
tational cost is relatively low, whereas the accuracy is high. The dynamic model offers higher accuracy but requires
greater computational effort. This comparison in the figure is useful to explain the benefits and issues related to each
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modeling technique.
Figure 6 gives an overview of how these energy balance equations are used in the different parts of an HVAC
system, like the compressor, evaporator, condenser and expansion valve, in a more generalized steady-state model.
The compressor working on the refrigerant can be expressed as:

Wcompressor =m - hij —hoy @)

where, hj, is the enthalpy of the refrigerant entering the compressor, and h, is the enthalpy of the refrigerant exiting
the compressor.
The rejection of heat to the surroundings in the condenser may be represented as:

Qout =m:- ( how — hin) ®)

3.1.2 Dynamic models

HVAC systems can be understood best by considering dynamic models. Unlike steady-state models, which
assume that variables in the HVAC system are constant, dynamic models can effectively capture transient behaviors
of the systems, which are close to real system responses under different operational cases. An increasing ability
to meet these goals with energy efficiency and compliance with environmental regulations is a reason why this
capability has become essential in HVAC design and operation. One important aspect of the dynamic modeling
is the integration of different physical phenomena in HVAC systems. The phenomena include heat transfer, fluid
dynamics, and thermodynamic processes that may exhibit an apparent change in response to changes in external
ambient conditions and/or internal operational needs. For example, the dynamic models can show how the thermal
storage system reacts in real time under periods of fluctuating thermal loads, such as occupancy changes in a building
or changes in outdoor temperature.

In most cases, such dynamic models are developed from mathematical representations based on fundamental
principles. The core conservation laws governing mass, momentum, and energy in the system are included in this
approach. Such models are often presented as the state space model or the ordinary differential equation (ODE)
based on relationships between different state variables. One example of such a state space model might be for heat
gains due to occupants and equipment vs. heat losses through windows and walls for room temperature. Researchers
have developed an air-conditioning model based on transient simulation of the automotive sector using advanced
simulation tools such as SINDA/FLUINT along with vehicle analysis software such as ADVISOR. Thus, this model
allows adequate prediction of system pressure and temperature and compressor power requirements in all modes of
operation (e.g., from the conditions of startup to the steady-state performance under driving cycles). In the above-
mentioned model, manufacturers can optimize HVAC system designs that have better fuel efficiency and reduced
emissions given component behavior in real-world driving scenarios.

Dynamic models are also very difficult to develop due to their nonlinear nature. Most air conditioners operate
under conditions that cannot be approximated linearly. Such components give rise to nonlinear dynamics such as
variable refrigerant flow (VRF) systems or multi-zone VAV controls that have many interacting inputs affecting output
like temperature and humidity level. Under these challenging conditions, conventional linear control strategies may
have difficulty, since they do not adequately account for time-varying component interactions. In order to confront
these difficulties in dynamic modeling, sophisticated modeling procedures, especially for VAV systems in commercial
buildings, have been combined with a set of novel advanced control strategies like sliding mode control (SMC).
As long as the uncertainties in operational contexts are taken into account through compensation of humidity and
temperature variations into adjustments of fan speeds and refrigerant flow rates, state space approaches taking into
account humidity and temperature variations can lead to robust performance. It allows for energy efficiency at the
cost of occupant comfort that is critical in modern HVAC applications.

Validation is an indispensable component of the development of dynamic models for HVAC systems. Validation
of the modeled behavior against experimental or field data collection has been confirmed to be accurate, and the
modeled behavior matches the actual performance very well. There exist many techniques for validating dynamic
simulations against real-world measurements; one common technique that has been used previously is the comparison
of model outputs to historical data of operational conditions. In addition, a great shift happened in using data-driven
methods to build dynamic models, especially after the rise of ML algorithms that could handle complex input-output
relationships took place in today’s HVAC technologies. Therefore, digital twin methodologies are used for real-time
monitoring and simulation of actual building performance based on empirical data gathered from smart sensors
integrated into the environmental infrastructures.

These digital representations are ideal decision-making tools to evaluate system performance based on detected
anomalies vs. expected system behavior and estimate maintenance needs by using detected anomalies vs. predicted
behavior from operational dynamic models. Finally, the progress toward a greater degree of development of more
sophisticated models of dynamics is paramount not only for helping to better understand but also constantly to
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provide improvements in control capabilities in terms of energetic efficiencies of HVAC systems in a breadth of
applications starting from residential buildings to industrial processes, ultimately aiding well-defined sustainability
criteria established in the context of worldwide climate awareness [6, 9, 12, 22, 23].

ODE is used in dynamic modeling to explain how system variables like temperature, pressure, and flow rate
change over time. Dynamic models are frequently used in HVAC systems to model temperature variations in thermal
storage systems or AHUs. As an illustration of ODE in HVAC systems, the heat balance equation for a basic model
that depicts how a room’s temperature changes over time can be expressed as a first-order ODE:

dT 1
¥ = 6 (Qin - Qout - Qloss) (9)

dt

where, T is the temperature of the room (°C or K), ¢ is the time (seconds), C' is the heat capacity of the room (J/K),
Qin is the heat input into the room (W), Qo is the heat output (e.g., heat loss to the environment) (W), and Qo 1S
the heat loss to the surroundings (W). This equation is constructed based on the heat gained, lost, and transferred
out of the room, and it models the variation of room temperature over time. The right side of the equation has the
heat input (Q;,) from HVAC systems or other sources, the heat output (Qoy), and the heat loss to the surroundings
(usually by conduction, convection or radiation). As for the annotated variables for ODE, T’ is the dependent variable
representing the room temperature. In addition, Qj,, Qou, and Q)ess are the terms that represent heat flow into, out
of, and lost by the room, respectively, and are typically functions of external conditions, HVAC settings, or time.

The partial differential equation (PDE) is used to characterize the behavior of increasingly complicated systems,
including fluid dynamics, or simulate heat transfer over multiple dimensions (e.g., within ducts or between zones).
For example, as for heat transfer in an air duct, the temperature distribution varies over time along the duct’s length
and cross-sectional area. For this situation, the heat conduction equation (in one-dimensional form) is a frequently
used PDE:

OT (z,t) 0T (x,t)
ot T 02

(10)

where, T'(z,t) is the temperature distribution in the duct as a function of position z and time ¢ (°C or K), « is the
thermal diffusivity of the air (m2/s), x is the position along the length of the duct (m), and ¢ is the time (s). This
is a mathematical model that represents the temperature variation with time at any point  on the length of duct by
taking into account the process of heat diffusion. The second derivative in  models the change in temperature in
the spatial direction along the duct and the first derivative in t models the change in temperature with time.

As for the annotated variables for PDE, T'(x, t) is the dependent variable representing the temperature at position
x along the duct and at time ¢; «v is the thermal diffusivity of the air, a material property that determines how quickly
heat spreads through the air in the duct; and x, t is the spatial position and time, respectively, indicating where and
when the temperature is being evaluated.

ODE is commonly encountered when the system under consideration varies with time in one dimension (e.g.,
temperature in a room or pressure in a pipe). Its applications are common in models such as room temperature
control or fan control in the HVAC system. PDE is more usually applied to multi-dimensional systems, e.g., the
distribution of temperatures in an air duct or throughout a building zone. It is necessary in spatially distributed
systems such as in heat transfer in walls or the air flow in ducts.

The empirical implementation of dynamic models has two examples. As for the first example, dynamic models of
AHUE s can be used to optimize fan speed and heating/cooling loads based on real-time conditions. The temperature or
humidity that decreases/increases with time in an AHU can be modeled as an ODE, taking into consideration the heat
input (external sources) and the cooling/heating process efficiency. As for the second example, dynamic models, such
as ODE and PDE, are commonly used in energy management systems in buildings to forecast energy consumption
given occupancy patterns, outdoor weather, and system operation. This would enable the best energy-saving measures
to be implemented, particularly in commercial buildings, as shown in Table 2.

The comparison highlights the distinction between the steady state and dynamic models in the system design,
performance analysis, and application. Steady-state models are more realistic when conditions are constant or
near constant, e.g., an HVAC system at steady load, whereas dynamic models are more realistic in the real world
where conditions are continually changing, e.g., when occupancy or the external temperature changes. Steady-state
models are also computationally efficient, since they assume that there is no temporal change and can rapidly provide
predictions. They are, however, computationally costly because they require solutions of the differential equations
that consider the changes of the system with time. They are also quite simplified with a smaller amount of input
parameters and can be solved using simple energy balance equations.

Dynamic models are sophisticated, of which time-varying changes must be dealt with, and multiple state variables
and more complex numerical procedures are likely to be encountered. They are most suitable in system design and
performance analysis where the operating conditions are constant or in load calculations when the system is likely
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to be fairly stable. They had also better lend themselves to real-time simulations (e.g., predictive control, energy
management systems, or any system that must respond to time-varying inputs). Steady-state models are applied
in the system sizing and load calculations, the long-term performance estimation at constant conditions and the
rapid analysis where time is not a primary concern. Dynamic models find application in simulations under varying
environmental conditions, real-time control systems and insight into transient behaviors of HVAC systems, as shown

in Figure 7.
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Figure 7. An adapted simplified schematic of the investigated paintshop [22]

Table 2. Comparison of the model application scope

Factor

Steady-State Models

Dynamic Models

Accuracy

Computational
cost

Complexity

Time dependency

Application
scope

System behavior

Use case example

Validation

Model calibration

Provides accurate predictions under
constant conditions.

Low computational cost and fast to

solve (especially for large systems).

Simple and requires fewer parameters
and simpler boundary conditions.

No time dependency and assumes a
steady operational state.
Suitable for system design, steady load
conditions and optimization under
fixed parameters.

Models only the steady-state
performance (e.g., average temperature
or pressure).

Steady-state energy analysis, system
sizing and load calculations.

Easier to validate due to the simplicity
of conditions.

Less sensitive to small parameter
changes.

Provides more accurate predictions
under varying conditions.

High computational cost and requires
solving time-dependent equations.
Complex and involves multiple
variables (e.g., time and space) and
complex boundary conditions.
Time-dependent and models how the
system evolves over time.
Suitable for real-time simulation and
transient operations and systems with
changing inputs/outputs.
Models dynamic system behavior
under varying loads, temperatures or
other operational changes.
Transient analysis of HVAC systems
during varying occupancy or
environmental conditions.
More challenging to validate due to its
time-varying nature and complexity.
Sensitive to initial conditions and
system dynamics, requiring careful
calibration.
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3.2 Model Validation Techniques

Validation techniques of models are crucial to ensure the accuracy and reliability of mathematical frameworks
used in HVAC systems. This verification is integral to the development of the model as it confirms that the physical
system to be simulated is correct. Several methodologies can be used to validate whether these models meet different
needs. Empirical validation method is one important way where the model prediction is compared to the existing
system performance metrics with effective metrics. Typically, researchers have to conduct this process through
systematic data collection during normal operation to see how well the model’s results match with the real-world
behavior. Such empirical datasets may be collected from HVAC systems, for example, to measure temperature,
humidity, power consumption, and other relevant variables. The difference between observed and predicted values
points out the limits of the process or the assumptions in the process itself.

Validation is another important one that involves sensitivity analysis. This study tries to find what changes in
input parameters result in changes in output parameters. Research can analyze each of the model parameters like
efficiency ratings or environmental conditions to see which are most important to the results. With this understanding,
specific changes can be made, which adjust model accuracy and mark to prevent or at least highlight areas that may
need better tools to measure. Cross-validation techniques are also advantageous. In particular, this approach takes
models created with one dataset and tests them against independent datasets to check that predictions are robust
across various conditions and operation scenarios. If a model is able to generalize findings from one dataset to
another, it means that it is not particularly applied to specific instances, but rather that it is functioning as a reliable
tool in any context.

To validate models, it is necessary to have qualitative evaluations by experienced professionals. In practice, these
are assessments of consensus between experts on whether a listed model shows adequate representation of known
phenomena associated with HVAC systems. Knowledge from an expert may make models appealing if there is scarce
empirical data and can help ensure that models incorporate the right physical principles. The addition of ML has
been an excellent method of validating an HVAC model. Tons of datasets are needed for algorithm training using
data-driven approaches, and once trained, such models can be tested with backtesting against historical operating
data or simulated scenarios meant to replicate real-world conditions. ANNs or Support Vector Machines (SVMs)
have been shown in studies to have good potential in imitating the behavior of a system based on past performance
records.

Furthermore, the use of hybrid or gray-box modeling strategies that integrate, among other things, physical laws
along with statistical correlations based on system performance can enhance validation efficiency by combining
theory and statistical correlations of system performance observed in practice. These models give flexibility while
maintaining what should be the typical physical characteristics of HVAC systems with precise input adjustments
based on observational inputs. Continuing monitoring of the productiveness of validated models is achieved through
advanced building automation systems (BAS). Depending on the temporal nature of the model, these systems can
be valuable in establishing valuable feedback loops and operational metrics that inform real-time adjustments and
refinements of models based on incremental data over time.

Robust validation processes require complex calculations and simulations that are otherwise a very tiresome task
to manually complete, which computational tools such as MATLAB greatly simplify. In these platforms, efficient
iterated tests can be used against different conditions with parameter optimization by using integrated optimization
solvers like GA or particle swarm optimizers. Validation is a continuing process that is dependent on the participation
of both researchers and practitioners and is sustained in all the stages of the modeling effort directed at improving
energy efficiency in HVAC systems while maintaining adequate convenience in an array of conditions.

It can be summed up by stating that appropriate model validation methods guarantee close similarities between
the real-world dynamics of an HVAC system and those represented mathematically. By using empirical comparisons,
experienced evaluations, and innovative ML techniques along with developer-created robust frameworks, operational
efficiencies can be improved while maintaining the user expectations on the grounds of different facilities across the
globe [1, 18, 20, 24].

4 Optimization Techniques in HVAC Systems
4.1 Classical Optimization Methods

Mathematical strategies employed in classical optimization techniques improve the efficiency and reduce energy
expenditure in HVAC systems by optimizing performance in line with the goals such as maximum energy consumption
or thermal comfort. With this regard, this study explores different classical methods that have been used in air
conditioning. LP is a great technique due in part to its simplicity and the small degree to which such relations may
occur to effectively deal with linear relationships among the variables. In many cases (especially applied to HVAC),
variable relationships may be linear, meaning that LP can optimize aspects like airflow rates, temperature settings
and energy costs. LP is extended to integer programming to cater to component selection optimization problems
like the number of heating or cooling units required for a building given load profiles and constraints.
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Dynamic programming (DP) is a flexible framework to break the complex problems into simpler sub-problems
solved recursively. Its use is particularly relevant when decisions at one stage affect the results at the next one, i.e., for
optimizing multi-stage operations in HVAC systems. For example, in some instances, thermostat settings through the
day can be adjusted dynamically, based on historical usage data and predictions of those. GA is based on principles
of evolutionary biology and may serve to cope with complex optimization objectives with nonlinear constraints that
the traditional methods cannot deal with so efficiently. However, in the GA, this study simulates natural selection
and iteratively improves the solutions based on the provided fitness value.

SA is inspired by thermodynamic principles and is designed to explore solution spaces effectively, helping
to avoid local minima commonly encountered in complex optimization domains. It can help to identify optimal
equipment configurations that optimize backup energy service and performance under variable operating conditions.
In fuzzy logic systems, the elements of classical optimization and the existence of uncertainty and imprecision are
accommodated in the real-world applications. Using fuzzy sets for the input parameters like temperature setting and
occupant preference, fuzzy logic offers a more flexible approach for optimization than the binary logic. The classical
techniques of these are difficult as it concerns model accuracy and computational efficiency. In order to produce
meaningful results from optimization, accurate mathematical models are critical for modeling the behavior of HVAC
components. As complexity of the system increases with the features, such as demand response and renewable
energy integration, computational burden becomes large.

Classical methods are combined with modern ML techniques to create hybrid strategies in the name of using
modern improvements in predictive capabilities while maintaining the traditional way of optimization. For instance,
the integration of ANNs with LP to get more appropriate modeling for the nonlinear behavior and the reliability
of LP. Classical methods that are static are complemented by real-time adjustments of occupancy patterns and
environmental changes through BMS that incorporates sensor data. These large historical performance metrics can
bring further calibration of optimization models by creating extensive databases.

When the system configuration complexity grows, simplistic methods prove tough, and for dealing with both
discrete and continuous decision variables in HVAC design, advanced techniques like mixed-integer nonlinear
programming could be required. Classical approaches have been adapted to contemporary HVAC systems that involve
simultaneous optimizations which are under multiple objectives like cost reduction and emissions control, which
can be modeled using high-dimensional spaces typical of HVAC applications. In particular, classical optimization
methods are very important when designing and operating HVAC systems. By evolving along with the emerging
technologies, their efficiency is expected to improve as these methods continue to evolve, particularly in balancing
occupant comfort with increasing energy demands [1, 2, 5, 25].

LP is best used in solving linear problems in HVAC systems, including optimum component configuration under
a fixed condition. It is computationally economical and can be applied to large-scale optimization. DP applies to
temporal optimization, multi-stage decision-making, and problems involving nonlinearities. HVAC optimization
with DP applies to time scheduling or temperature control at various times. The computational cost of DP is,
however, greater than that of LP. Table 3 shows when each of the algorithms is most largely applicable and what the
trade-offs are when applying them in various HVAC optimization cases.

Table 3. Algorithm comparison: LP vs. DP

Algorithm LP DP
. . Problems with linear constraints and Problems that can be broken into
Applicable scenarios . .
objective functions. stages or sub-problems.
Problem type Linear objective function. Complex, multi-stage decision
problems.

Computational Relatively low, especially for smaller Computationally expensive for large

complexity problems. state spaces or stages.

Optimizing energy consumption under
fixed conditions (e.g., determining the
optimal operating point for HVAC
system components).

Multi-stage optimization problems,
such as HVAC scheduling under
time-varying conditions.

Example use case

Highly flexible, can handle nonlinear
systems by breaking them into smaller
sub-problems.

Limited to linear relationships; cannot

Flexibility handle nonlinear systems.

4.2 Heuristic and Metaheuristic Approaches

The use of heuristic and metaheuristic strategies has become the standard way of optimizing HVAC systems
because they are efficient at taking into account the complexity and multi-sided character of the problem that often
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slip outside common optimization theories. These approaches are inspired by natural phenomena and behaviors that
flow over vast solution spaces with ease. Because heuristic methods are not exhaustive searches, but rather based on
practical rules or educated guesses, they are invaluable when time is so critical that exhaustive searches are not an
option or there are so many possibilities to try. With heuristics, engineers can design pragmatic solutions that are
not perfect but sufficiently effective for their use in everyday operations. Thus, GA, for just one example, makes use
of principles of natural selection and genetics in an iterative refinement of solutions. It has been successfully applied
to optimize the variables like the energy consumption and operational efficiency in the HVAC sector.

However, this approach has been improved using metaheuristic techniques that provide more advanced strategies
than others to migrate other heuristics towards better results subject to the search space. Some notable applications
of PSO, Ant Colony Optimization (ACO) and SA in HVAC optimization activities have been provided. It is based
on social dynamics of nature, i.e., bird flocks or fish schools, using personal experience and collective intelligence
to update potential solutions similar to PSO models. The synergy of PSO makes it an efficient convergent method to
get optimal configurations. Similar to this, ACO takes inspiration from the food seeking of ants and uses pheromone
trails as a guiding marker to direct the future searches to lead to better trails over time. ACO has hence demonstrated
the ability to tackle system configuration modeling problems for HVAC scenarios that seek to achieve a balance
between thermal comfort and energy consumption.

The combination of different algorithms in various problems is an interesting aspect of heuristic and metaheuristic
methods, termed as hybrid strategies, which take advantage of the strengths of different algorithms. For instance, the
integration of GA with the local search technique enhances the convergence rate while keeping the exploration ability
on a large solution landscape. There are some such combinations that can greatly increase system responsiveness
and operational efficiency when facing such complex HVAC environments. Being an active field of algorithmic
development, there are bio-inspired methods such as the Deep Ant Colony Optimizer (DeepACO) which comprises
DL manners of ACO frameworks. Improvements in these areas make it possible for algorithms to solve static
problems and adapt to dynamic environments informed by real-time performance and user interest data.

Furthermore, the fusion of ML techniques with heuristic optimization has great potential to improve HVAC
system performance. The contribution of ML is to bring predictive capabilities to optimize efforts enriched with
the ability to anticipate critical operational parameters necessary for control strategies. For instance, a type of
ML known as RL has demonstrated benefits of dynamically optimizing commercial building energy use based
on observed user behavior patterns. Recent research has shown how these optimization methods work well at
joint optimization of multiple objectives, including, for example, occupant comfort and energy use of complex
HVAC systems. The interplay of sophisticated mathematical models and heuristic approaches allows for sufficiently
comprehensive evaluation at the beginning of the design not only of individual components but also of the complete
dynamics of system operation in different settings.

In addition, algorithmic design is starting to be driven appreciably by bionic-inspired design principles that are
inspired by biological processes with demonstrated exceptional efficiency and adaptability, which are desirable in
modern HVAC applications that are subjected to varying demands due to changes in the environment or occupancy.
For example, a bionic-based multi-objective optimization methodology and other such features have been employed
for air conditioning and purification with a compact unit formed by an advanced parrot optimizer algorithm prior, for
example, to other algorithms like the Slime Mold Algorithm (SMA) and Beluga Whale Optimization (BWO). Making
use of these innovations enables improvements in airflow, thermal efficiency, energy consumption, carbon dioxide
and noise emissions while meeting strict energy constraints and outperforming traditional standalone systems in
terms of the indoor environmental quality. Therefore, it can be concluded that heuristic and metaheuristic techniques
indicate a transition towards extra-flexible optimization paradigms able to handle current industry difficulties related
to HVAC systems. Specifically, these techniques aim to meet performance requirements without compromising
environmental responsibility, offering integrated, usage-based solutions inspired by nature and grounded in adaptive
problem-solving methodologies [2, 3, 26-28].

PSO is an optimization algorithm inspired by bird flocking or fish schooling, in which particles fly within a
solution space and update their positions depending upon their own experience and that of their neighbors. One of
the techniques of optimizing the HVAC systems is the PSO algorithm. It consists of random initialization of a swarm
of particles, where each particle is a candidate solution to the optimization problem. The fitness of each particle is
measured according to the objective function, and in case it leads to the improvement of fitness, the position of the
particle is modified. Each particle is then moved through the velocity updating depending on the previous position,
personal best position, and global best position, guiding them to move to potentially good regions of the solution
space. The algorithm is repeated until it converges, and in case it does, the optimal solution is yielded.

GA is an HVAC optimization method that entails initializing a population with random solutions, assessing the
fitness of these solutions with an objective function, selecting parents based on their fitness to reproduce offspring,
crossing over two parents to create offspring, mutating with a given probability, and updating the generation. This is
repeated through a fixed number of generations or until convergence. GA is especially profitable on complicated and
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nonlinear constraints or the high-dimensional solution space. It has found utility in optimizing HVAC, especially in
cases where the solution space is high-dimensional.

5 Thermofluid Performance in HVAC Systems
5.1 Heat Transfer Analysis

The analysis of heat transfer in HVAC systems is an essential issue for improving performance, increasing energy
saving and providing good occupant wellbeing. Design and operation of HVAC units rely on conduction, convection
and radiation. Thus, the knowledge of heat transfer dynamics is necessary. Heat transfer within HVAC components
is mostly accomplished through conduction of thermal energy from solids like metal casings on evaporators and
condensers. The thermal conductivity of materials is very important for the engineers as the material is picked up
for the large change in the system. For instance, higher thermal conductivity of metal can improve heat exchange
rates between refrigerant and air.

There are other main vital mechanisms affecting heat transfer in these systems, of which one is convection,
which is divided into natural and forced convection. Buoyancy-driven flow from temperature differences is a
natural convection process, and forced convection is from external forces like fans pushing milk over coil surfaces.
The goal of an effective design is to maximize the cooling effectiveness through higher values of convective heat
transfer coefficients. Designed airflow patterns around evaporators improve their ability to draw heat from indoor
environments. Radiation is a minor heat transfer mechanism in HVAC systems, although it contributes to heat
transfer. A key use occurs in cases in which surfaces contribute considerably to the energy content of the building,
especially for large glass surfaces or reflective surfaces and solar gains in architectural designs.

Advanced techniques like CFD simulation enable the analysis of airflow patterns and temperature distribution
in the ductwork and cooling coils, which in turn affects the efficiency of the HVAC system. CFD can also identify
problems that relate to uneven temperature distribution or poor airflow paths that can cause suboptimal performance.
Hybrid nanofluids affect current thermal performance management by providing a thermal conductivity enhancement
of the conventional refrigerants being used in the HVAC systems, thus allowing for a better thermal performance. It
is known that the integration of nanoparticles into traditional fluids can be highly effective in improving heat transfer
rates that are beneficial to energy efficiency efforts and cost savings of operation. In addition, phase change materials
(PCMs) are used with a focus on thermal energy storage during maximum loads or best conditions, releasing energy
during peak loads or when less renewable energy is available. Using PCMs helps stabilize temperature fluctuations
without additional energy once the initial charging phase has been completed, decreasing operational costs linked
with existing cooling techniques such as the chiller.
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Figure 8. Key considerations related to CFD [§]

Emerging real-time monitoring technologies have been incorporated into advanced modeling like Al and ML.
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They enable momentary adaptations according to present operating situations or an observed end-user behavior and
offer feedback on how much the system has performed and what the future may need. Proactively managing this can
reduce unneeded energy use and help steer the organization towards more sustainable operation. In addition, external
environmental factors such as seasonal variations of humidity across the different climates must be considered in
comprehensive analysis techniques for designing the HVAC unit size in the design phase. It guarantees achieving
the best capacity that balances the capacity with actual demands, helping occupants stay comfortable all year round.
Lastly, careful heat transfer analysis is the key to improving the effectiveness of HVAC systems while minimizing the
inefficiencies brought about by a lack of proper modeling or maintenance practice of HVAC systems [7, 8, 29, 30].
Figure 8 shows the key considerations related to CFD. Figure 9 shows the applications of the proposed model.
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Figure 9. Applications of the proposed model [29]

The Nusselt number (Nwu) is a non-dimensional parameter that is used to correlate the convective heat transfer
with the conductive heat transfer of a fluid. It plays an important part in determining the capacity of fluids to transfer
heat in HVAC.
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(11)
where, h is the convective heat transfer coefficient (W/ (m?:K)), L is the characteristic length (m), and ¥ is the
thermal conductivity of the fluid (W/ (m-K)).

The Prandtl number (Pr) is another dimensionless number that helps characterize the relative thickness of the
momentum and thermal boundary layers. It is defined as:

pr=2" (12)
[0

where, v is the kinematic viscosity (m?/s), and « is the thermal diffusivity (m?/s).

A high Nusselt number implies the enhanced heat transfer in HVAC systems, which leads to the increased
efficiency of heat exchange in such components as condensers and evaporators. The significance of convection and
diffusion in heat transfer depends on the Prandtl number, and fluids with large Prandtl numbers (such as a thick
thermal boundary layer) influence the rate of heat transfer. The analysis of heat transfer taking into account these
relations provides a deeper insight into the influence of fluid properties on the performance of HVAC.

5.2 Fluid Flow Dynamics

Air conditioners are fluid flow systems since efficiency has a direct relationship with fluid flow dynamics. To
achieve the best performance in HVAC applications, how the air circulates through ducts and on components needs
to be understood. The dynamics also affect energy use, thermal comfort, system reliability, and exercise IAQ. The
fluid flow dynamics in HVAC systems depend on effective audit control of airflow. Significantly, depending on how
air travels through ducts, air has the ability to reach different areas in a building or vehicle cabin, and this alters the
path that it takes in ducts. Velocity profiles and pressure losses are dependent on the duct type and these can cause a
waste of energy if not optimized.
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Maintaining an adequate airflow rate of the fluid flow in HVAC systems is a critical aspect of these systems.
Therefore, the fluid flow rate must balance its heating and cooling needs with energy use. In order to prevent
uncomfortable temperatures, there is not enough airflow, while too much can cause higher operational costs. Hence,
there is a need to precisely calculate duct dimensions, shapes, and vent placements. CFD has greatly advanced the
understanding of fluid flow in HVAC systems. Engineers can use CFD to model complicated airflow patterns under
different operating scenarios and obtain information on indicators of performance such as pressure distribution and
temperature uniformity. Turbulence effects on airflow characteristics near component parts such as evaporators and
fans, crucial to increasing thermal efficiency, can also be tested with CFD.

Additionally, CFD can aid the visualization of temperature gradients and assess the rate of equating cool air from
vents to assist in predicting any good mixture fractions in vent placements or blending ratios. Another important
factor is pressure loss that occurs across different system components; pressure drops of any significance indicate
increased resistance and higher energy consumption. Knowing these areas helps an engineer re-design the system or
select a less resistant material part to overcome the performance without increasing resistance. To properly calculate
the thermal loads, which will be subsequently used to size the HVAC equipment, the fluid dynamics behind how heat
travels must be understood. Proper-sized systems do not cycle frequently: oversized units cycle too frequently, and
undersized ones run constantly and are uncomfortable and inefficient.

In particular, dynamic modeling techniques are starting to be more common, given that occupancy loads in
commercial buildings are dynamic (fluctuating). The second approach is a thermally driven one, considering
shifting thermal loads and taking into account the real-time data of occupancy sensors in order to enable automatic
adjustment so that the performance orients itself towards the users’ needs instead of averaging historical values.
Integration of these technologies with dynamic simulations enables responsive controls in indoor environments,
which are designed to be more comfortable, conserve resources, and decrease long-term operational costs. That is in
the spirit of current design philosophies seeking to be sustainable and have a lower carbon footprint. Similarly, the
development of new technologies, such as hybrid renewable integration and photovoltaic-thermal (PVT) collectors,
also benefits from the advances in fluid flow dynamics. Such innovations can support the achievement of net-zero
energy goals in the context of growing urban populations, necessitating novel strategies for enhancing building
efficiency.

Summarily, studying fluid dynamics encourages collaboration between architects, engineers, contractors and
other decision-makers to design schemes that support the health and productiveness of these buildings. By building
trust and mutual respect-based relationships, the industry can adjust to the changing challenges, improving the quality
of life of communities as we move towards the common visions of progress [8, 9, 13, 30, 31].

The Reynolds number (Re) is a non-dimensional parameter that defines whether the flow is laminar or turbulent,
which affects the pressure drop and energy losses in HVAC systems.
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Re (13)

where, p is the density of the fluid (kg/ m?), v is the velocity of the fluid (m/s), L is the characteristic length (m), and
1 s the dynamic viscosity of the fluid (Pa-s). Laminar flow (low Re) is smooth, and the pressure drop is proportional
to the flow rate. At high Re in turbulent flow, the flow is chaotic and pressure drop is increased. Turbulent flow
in HVAC, where the Reynolds number is greater than 4,000, results in high-energy losses because of the additional
pressure drop. The knowledge of this relation is important in the design of an efficient air and fluid distribution
system in HVAC.

Nanofluids normally exhibit higher thermal conductivity than their base fluids. Such nanoparticles (e.g., Cu and
Al;O3) suspended in a base fluid (such as water or ethylene glycol) provide this enhancement in thermal conductivity.
The chart quantitatively compares these improvements, which illustrate the efficiency improvement in heat transfer
applications such as HVAC systems, as shown in Table 4.

Table 4. Nanofluid thermal conductivity comparison

Nanofluid Type Base Fluid Thern;;l] /((:l;):.ll?)l)cuwty Improver;ill::dover Base
Al,O3-water Water 0.67 +20-30%
CuO -water Water 0.93 +40-50%
SiO5-ethylene glycol  Ethylene Glycol 0.42 +15-20%
Cu-water Water 0.92 +60-80%

The flow velocity field distribution chart and the results of the CFD simulation show regions of high turbulence
and smooth flow within a duct or pipe. They can also be used to display temperature field distribution, especially in
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a heat exchanger or in a conditioned room, in order to visualize the efficiency of the heat transfer and locate hot and
cold areas so that the heat exchange process can be optimized. The two charts are necessary in comprehending and
maximizing the performance of the system.

6 Challenges in Mathematical Modeling and Optimization
6.1 Complexity of Real-World Systems

Various complexities of HVAC systems in the real world result in a variety of coupled issues that present huge
difficulties in deriving sound mathematical models and optimization strategies. These systems operate under a wide
range of variable conditions, including ambient temperature and humidity fluctuations, changes in occupancy and
any others. These systems are characterized by a very important feature, namely the Multiple-Input and Multiple-
Output (MIMO) structure in which many inputs, such as the temperature and humidity of the incoming air and how
much energy goes to different components, must be well and efficiently managed to achieve the desired outcomes of
thermal comfort and TAQ. It is difficult to develop simple modeling techniques that faithfully give a description of
actual operating scenarios because it is inherently complex.

In practice, a number of HVAC units have been integrated into complex BMSs, which subsequently influences
their performance. These types of interactions would lead to unpredictable system behaviors that can be rarefied by
the conventional modeling methods. For example, it may be inefficient or even lead to more energy being used to
optimize a cooling system without taking into consideration the impacts of the components on heating or ventilation.
The addition of operational constraints like equipment limitations and scheduled maintenance further complicates
the issues. The largest problem of HVAC optimization is the gap between the theory and the practice. Most of these
existing models assume phenomena that are idealized and not found in real-world situations. Simulation models
may reproduce the performance accurately for the steady states but lack accuracy in using them when environmental
factors or user demands change instantly. Such large discrepancies can result in large inaccuracies of projected
performance metrics.

For the understanding of the complexities of real-world HVAC systems, data availability is also essential. A
persistent issue encountered in the training of ML algorithms to perform in predictive modeling and optimization
is insufficient quality or consistency of the data provided from the operational environment. Data inaccuracies
(i.e., sensor malfunctions or inconsistent calibration standards) are factors that factor into data untrustworthiness,
which in turn does not make the model reliable. Moreover, there is a lack of comprehensive datasets to enable
algorithms to generalize across different operating contexts. The integration challenges involve different subsystems
of the HVAC systems. An ideal HVAC system needs to have no disruptions while providing efficient performance
with the humidification and filtration processes. Additionally, energy efficiency is often compromised, and cross-
functional integration between subsystems is not seamless. This is frequently due to legacy infrastructure or
incompatibility between newer technologies and existing systems. Achieving energy efficiency at acceptable IAQ
requires a compromise among the various objectives that can be pursued during an HVAC system’s design and
operation. Designers often find themselves in circumstances where improvements in one make a trade-off in another.
For example, improving humidity control may require increased energy input, which can compromise overall energy
efficiency.

The existing HVAC setups are more complex and even real-time adaptability further complicates the tasks; HVAC
systems should respond quickly to any change in environmental parameters while keeping the occupants comfortable.
It is often difficult to quickly adapt traditional optimization methods to changes that occur quickly, without substantial
costs of computation. In addition, the empirical validation methods for creating reliable simulations based on real
operational conditions instead of purely theoretical issues identified a research gap that indicates a continued need
for the field data collection initiative to assess real performance metrics on the operational bases.

Finally, to deal with these complexities, an approach based on an integrated set of advancing mathematical
modeling techniques with the capability to solve the dynamic interactions between variables is necessary. Improving
collaboration across interdisciplinary teams is also important for linking HVAC operations with other building
management objectives. At the same time, methodologies, both robust and integrated, to incorporate these data into
traditional engineering should strive to develop robust solutions that can maintain optimal performance in the face
of ever-changing environmental challenges [2, 10, 32, 33].

6.2 Data Availability and Accuracy Issues

Mathematical models for predictive analytics and control based on data lie at the heart of throughput optimization
of HVAC systems for which the data availability and precision are critical for the performance of the mathematical
models. How effective these models are is based on the quality and diversity of the data collected from various
components on a building’s HVAC infrastructure. Unfortunately, a lot of obstacles arise against continuous high-
quality data acquisition for effective modeling. Use of sensor data is a major hurdle, as it is seldom completed or
consistent. However, integration of modern technologies like smart sensors or Internet of Things (IoT) devices in
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HVAC systems causes the generated data to increase several times, making it more difficult to handle. Nevertheless,
without carefully validating this data, the interpretation and understanding of the data can be impeded, resulting in
suboptimal optimization strategies. Furthermore, different performance metrics reported across studies make the
rightful data to prioritize at training time uncertain.

The complexity of HVAC systems exacerbates data issues. Due to the nonlinear behaviors and dynamic interac-
tions among the components and the lack of enough empirical datasets, it is difficult to have a quantitative evaluation
of these systems without incurring extensive study. Researchers have invested efforts to understand trends of energy
consumption based on occupant behavior. Though it has proven difficult to capture occupant behavior through
conventional modeling techniques, the trends clearly reveal how much energy is consumed with activity or without
it. However, most of the existing models make such oversimplifying assumptions regarding occupancy levels or
environmental conditions, while actual data that changes as per the changing of human activity in the buildings is
missing. However, the promising future of ML, driven by ongoing advancements, could lead to the development
of more effective models. These types of algorithms should be trained on unfair data. In general, ML algorithms
typically struggle to extrapolate beyond the data on which they were trained so that models constructed from limited
historical data are destined to fail when deployed against other seasons or different environmental conditions.

Data gathering overlooks such time-dependent variables as outdoor temperature and seasonal humidity that have
an effect on system performance. There are many operating conditions for which datasets are needed to develop
robust predictive models that can meet and change with new scenarios.

Diverse operational input streams (e.g., weather forecasts and indoor environmental quality metrics) need to be
integrated in optimization algorithms while there could be a mismatch between real-time conditions and the historical
averages. Such a disconnection can negatively affect energy management strategies that assume static conditions and
cannot benefit from insights from the current, dynamic nature of HVAC systems. To address these limitations, novel
solutions need to be developed to enhance both data collection systems and standards in reporting of performance
metrics on a study-by-study basis. The sharing of high-resolution datasets that truly represent the system operation
over long periods of time can be encouraged if academic institutions, industry professionals, users, and technology
developers collaborate.

Advanced simulation techniques and empirical research can validate theoretical predictions on actual outcomes.
That is, a digital twin allows researchers to experiment with theories of component interaction development and
refinement of broader system integration informed by true usage patterns. During model development, robust
parameter identification methods can improve accuracy and remain flexible enough to adjust to changes in building
design or unexpected occupant behavior. Now, especially in light of the recent hybrid office environments with
varying occupancy, the flexibility is particularly useful. To summarize, resolution of challenges in the availability
and accuracy of the data needs includes working together with the stakeholders involved in optimizing HVAC
operation, which encompasses comfort considerations and variable demand in systems designed and programmed
by people [1-3, 8, 10, 14, 27, 32, 34, 35]. Figure 10 shows the HVAC optimization.

Figure 10. HVAC optimization [35]

7 Recent Advances and Innovations

Earned by the integration of Al in various operational aspects, the recent advancement in the optimization of
an air-conditioning system has played a major role. Fundamentally, the technologies of ML and DL have profound
impacts on the functions of an HVAC system and greatly improve energy efficiency, occupant comfort and the
ability of the HVAC system to respond to real-time variables. The latest frameworks take advantage of abundant
data from sensors and previous performance metrics with methods to make the control strategies increasingly better.
Supervised learning algorithms analyzing past data are a good development in this area, setting the optimal operating
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parameters. It not only helps increase the energy efficiency but also greatly cuts down on carbon emissions. RL
techniques are of particular value for the use of control strategies in uncertain situations for more effective, better
results for energy saving. Integrating DL models with IoT devices helps manage indoor climates efficiently while
maintaining a balance between comfort and energy use.

Most of the current research is devoted to refining HVAC systems using occupant behavior and preference for
thermal comfort. Researchers, however, have integrated different algorithms with real-time inputs such as occupancy
rates and environmental conditions to come up with intelligent control strategies that respond responsively to the
dynamics within the space. For instance, such systems using some region-based convolutional neural networks
(R-CNN) for occupancy detection can use the actual usage pattern to modulate the ventilation rate and gain higher
comfort while conserving energy. In addition, technology advancements of digital twins hold the potential to provide
a holistic way to model HVAC systems accurately. Digital twins allow simulating the environment and the operational
scenario in the real world so that faults and the opportunities for optimization could be identified before they affect
the actual equipment performance. ML algorithms are added to these simulations to further create the ability to
predict potential failures in time based on trends seen over time.

There is a rising niche within this landscape as the health-focused control for HVAC rises. Researchers have been
exploring ways to increase IAQ as it pertains to thermal comfort, as well as creating systems that can vary ventilation
rates as a function of sensor inputs regarding pollutants or pathogens in the environment. In addition to safeguarding
occupant health, this comprehensive strategy also improves system efficiency as a whole. One other promising area
is the development of multifunctional bionic-based units involved with combining the operations of cooling, heating,
humidity regulation and air purification within a single framework. All of these innovations simulate a complex
set of environmental factors simultaneously and optimize the performance of individual system components with
advanced algorithmic techniques.

With increasing need for holistic optimization of multiple building operations, BMSs are gaining importance.
BMSs can achieve peak performance across all areas while reducing wasteful practices typically found in traditional
systems by using centralized automation platforms that integrate diverse subsystems like lighting and security.
Another frontier in the use of the Graph Attention Networks (GATs) combined with ensemble learning methodologies
is to further understand complex sensor interactions inside smart buildings. These advanced models analyze
dependence among the several sensors dispersed in a facility to provide more precise predictive profits on exactly
where to allocate resources and power burden patterns.
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Figure 11. Application of Al technologies in the HVAC field [3]

Additionally, hierarchical DRL approaches are applied toward year-round operational optimization problems
encountered by HVAC systems. The innovative structures deliver robust solutions of flexible operation modes
with adjusting operations according to seasonal changes or special usage scenarios without sacrificing indoor
environmental quality and overall energy efficiency. Amid the ongoing shift toward the adoption of automated
smart building technologies, the industry’s commitment to sustainability is evolving toward more modern goals.
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The rise of automatic smart building technologies underscores the fact that the industry is keen on fast-tracking
research and development to add value to HVAC functions with cutting-edge Al-derived solutions. Overall, as
detailed in the recent advances, smart algorithms not only increase system performance but also, more importantly,
follow responsive design principles (interacting with the occupant wellbeing of built environments through their
functionality and sustainability) while pursuing their functionality and sustainability [2-5, 28, 32, 36]. Figure 11
shows the application of Al technologies in the HVAC field.

8 Case Studies and Applications

There has been significant progress in HVAC systems that are necessary for energy management in both commer-
cial and residential premises. Various case studies have proved that the application of the optimization techniques
can yield large energy savings and improve the operational efficiency. For example, in the optimization of combined
cooling, heating, and power (CCHP) systems with a multi-objective optimization strategy, many of these key metrics
were improved. Lu et al. [3] studied the optimal CCHP-linked multi-energy systems to minimize the resource
scarcity in urban environments. In a commercial building in Tianjin bestowed with state-of-the-art methods such as
sequential quadratic programming, a 36.2% reduction of annual operating costs was achieved.

The optimization of HVAC systems is greatly affected by Al across different contexts. In the review by Lu et
al. [24], these Al technologies facilitated the development and evaluation of various methods to improve HVAC
efficiency through real-time data processing. To minimize the carbon emissions and energy usage of the renovated
office spaces, Gao et al. [14, 15] used nonlinear autoregressive models with PSO to optimize thermal comfort.

Air conditioning algorithms that provide intelligent solutions need to undergo development by advanced simula-
tion tools like GT-SUITE by Gamma Technologies. A multiphysics component library with validated components has
been provided on this platform to assist engineers in addressing sustainability issues while ensuring human comfort
using the customized localized comfort zone modeling. The research by Sukhanov et al. [5] on data-driven cooling
optimizations in commercial buildings demonstrates that data-driven control strategies improve energy efficiency
of the buildings but, more importantly, increase the lifespan of their equipment by reducing wear on components
across a wide range of climates. An example is the Shenzhen Qianhai Smart Community, wherein GATs enabled
15% energy savings with improved occupant satisfaction through adaptive controls of HVAC systems based on
environmental data in real time.
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Taken collectively, these case studies illustrate creative means of further refining air conditioning systems,
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lowering operational costs while supporting environmental sustainability in response to the global crises of climate
change and resource depletion [3, 5, 27, 32, 37-39]. Table 5 shows the current applications of the multi-objective
optimization in system operation.

The systems selected in the study were the Central Cold Water Heat Pump (CCHP) systems because they have the
potential to integrate cooling, heating, and electricity generated by the same energy source that leads to high-level
energy savings and system efficiency. VREF systems are efficient in terms of zone control (individual) and smaller
spaces, but they are better suited to residential or light commercial structures. CCHP systems are selected when the
application is larger and heating and cooling are needed in high load factors, where power generation integration
is useful. They satisfy the multi-faceted energy demand of tall buildings, supplying thermal comfort and power.
The economic viability of CCHP systems, especially those related to large commercial or industrial installations, is
frequently more attractive because of the recovery of waste heat and onsite generation of electricity.

The CCHP systems in a large-scale commercial project were selected as the case study, where thermal energy
(heating and cooling) and electricity had to be produced in an integrated fashion. The size of the building and the
requirement of high-efficiency thermal and electrical systems led to the conclusion that CCHP would be the most
possible system. The VRF system, in its turn, was not chosen because it could not offer integrated power generation
and it was primarily suited to smaller-scale projects where the zone-level control was the most important requirement.
The CCHP systems were selected based on their efficiency as well as their capacity to decrease the total amount of
energy use by using waste heat to supply cooling, which is highly suitable in large buildings with complicated energy
grocery lists.

Applications of the VRF systems are commonly found in buildings that require individual control of zones, e.g.,
hotels, offices, or (multi-story) apartment buildings. They are flexible because they enable each area to be controlled
in terms of temperature and thus enhance comfort and energy savings. Where simultaneous heating and cooling is
needed, however (e.g., in large industrial plants), CCHP is more efficient because it combines power generation and
recovery in the same system, achieving better energy savings. Conversely, VRF systems lack this level of integration
and are better suited to buildings where space heating or cooling requirements per zone may be different, but do not
need to occur at the same time. The Qianhai Community HVAC System Layout entails a schematic drawing that
shows the arrangement of the HVAC equipment in the community, such as the position of heat exchangers, centralized
control units, piping paths, and air distribution in the ducts or ventilation system. This pictorial presentation assists
in the comprehension of the management of energy distribution and makes use of optimization techniques such as
predictive control in the overall design, as shown in Figure 12 and Figure 13.
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Table 5. Current applications of the multi-objective optimization in system operation

Ref. Year Technology Findings
(1] 2021 Demand Control Ventilation (DCV) DCV reduces HVAC energy use by
regulating airflow based on occupancy.
Bionic-Based Multi-Objective Opt%mi.zes compact HYAC sygtems
[2] 2025 oL with integrated functions using
Optimization Lo .
biomimetic strategies.
Comprehensive review on Al
[3] 2025 Artificial Intelligence applications for HVAC operation
optimization.
BMS optimizes comfort and energy by
[4] 2023 BMS Air Conditioning System integrating building management
technologies.
Highlights benefits and challenges in
[5] 2024 Data-Driven Cooling Optimization optimizing commercial building
cooling using data-driven methods.
Hierarchical Deep Reinforcement Optimizes HVAC operation fqr better
[6] 2025 . air quality and energy savings
Learning
throughout the year.
- Energy-efficient control design for
7] 2018 Sliding Mode Control multiz%))rlle VAV systems in buigldings.
R . Overview of sustainability practices
[8] 2022 HVAC Sustainability Overview and advancements in HVAC systems.
Surveys computational models for
[9] 2025 Numerical Modeling thermal management and
environmental impact assessment.
Model development and optimization
[10] 2001 Vehicle Air Conditioning System for transient vehicle air conditioning
systems.
. . Optimizes water footprint in
[11] 2023 Deep Learning Al for Desiccant desiccaI;lt-based air conditiponing using
Systems
Al frameworks.
Sustainable indoor climate regulation
[12] 2024 Thermoelectric Wall Systems using thermoelectric wall system
performance analysis.
[13] 2024 Thermal Exchange Modeling EU project on optimization modeling
) (TEMPO) for energy and thermal exchange.
Optimization study for cooling
[14] 2018 Parametric Optimization heat-loaded rooms using parameter
adjustments.
Optimizes central HVAC systems
[15] 2023 AFUCB-DQN Control Strategy usinz doop Q-network base ditrategy.
[16] 2024 Configuration Optimization Review on optimization ap prqaches for
thermal system configurations.
. Outlines five actionable steps for
[17] 2024 HVAC Best Practices improving HVAC e fﬁcier?cy.
Describes operations and maintenance
[18] 2021 VAV System Maintenance practices for efficient VAV HVAC
systems.
. L Strategies for air conditioning in hot
[19] 2008 Operational Strategy Optimization and humid climates for energy savings.
Mathematical models used for
[20] 2022 Chiller System Modeling optimizing energy use in chiller-based

systems.
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9 Future Directions in HVAC System Optimization

Advanced technologies and strategies for energy efficiency and user comfort enhance the optimization of the
HVAC system towards a great leap. With climate change and urbanism pressures increasing, future optimization will
be about integrating Al, continued refining of predictive modeling, and improvements in the integration of system
adaptability and sustainable practices. Just like everything else, Al will be essential to optimizing the provisions of
HVAC operation. Real-time data analysis and energy demand prediction based on historical trends associated with
weather, occupancy and system performance can be made possible by ML algorithms with predictive maintenance,
thus giving operators the opportunity to anticipate future demand. With an adjustment of operational parameters
dynamically, Al-driven systems can drastically reduce energy consumption while providing the best indoor comfort.

Future possible optimizations are exciting with the use of the digital twin technology. It generates live virtual
images of HVAC systems. Therefore, building managers can test out different scenarios and see what a change might
mean for the systems without influencing service. The added benefit is that it makes understanding much easier and
can be used as a system design and performance decision support. Next to the emergence of the needed sophisticated
mathematical models, which are able to describe the highly complex interactions in HVAC systems, an additional
need for Al advancements can be seen. These traditional models fail to include nuances around the behavior of a
multi-zone structure in a transient state for differing conditions. These models need to be improved in the future
through more advanced computational methods such as finite element methods or CFD simulations along with Al
for higher forecasting accuracy.

This can lead to adaptive demand control strategies, which are useful to optimize HVAC systems. IoT device
occupancy data are used to respond to real-time variations in occupancy behavior and environmental factors in
these strategies. This allows for adjusting heating and cooling outputs based on actual use patterns, preventing
energy waste in case of space inoccupation and providing high comfort when the space is full. The optimization
practices will be shaped by sustainability. It is no surprise that people have gotten increasingly aware of their
carbon footprints. Moreover, researchers are increasingly trolling the earth for geothermal cooling solutions and
energy-efficient refrigerants. In this line of work, the integration of renewable energy into HVAC applications is of
importance to decrease the dependence on fossil fuels and create greener buildings.

Federated learning-based collaborative methodologies are possible solutions to the privacy problem and take
advantage of widely distributed datasets from multiple sources to optimize HVAC system performance. The
decentralized approach gives organizations a way to share insights without losing details, which is helpful for the
growth of the predictive algorithms. Modular designs will be critical to scalability, fitting into residential spaces
but scalable to commercial spaces. Future innovations may choose to integrate the subsystems—an example being
an existing ventilation control or humidification unit with a management platform capable of handling fluctuating
demands from a single unified platform. With the advancements in technologies, HVAC systems will become
more and more complex and interdisciplinary work will be needed among the engineers who specialize in analytics,
material science, thermal dynamics, and building design. This will allow these teams to come up with comprehensive
frameworks to deal with the multiphase problems associated with modern HVAC applications.

Table 6. The total savings achieved and the percentage of savings for each component [1]

Time of Day Zonel Zone2 Zone3 Zoned4 ZoneS5 Assumptions

8:00-9:00 10% 10% 10% 10% 10% Beginning of the workday, gradually
9:00-10:00 30% 30% 30% 30% 30% Beginning of the workday, gradually
10:00-11:30 95% 95% 0% 0% 95% Close to a full working staff
11:30-13:00 50% 50% 50% 50% 50% Lunch break period
13:00-16:00 100% 100% 95% 95% 95% Close to a full working staff
16:00-17:00 50% 50% 50% 50% 50% End of workday, gradually
17:00-18:00 10% 10% 10% 10% 10% End of workday, gradually

8:00-9:00 10% 10% 10% 10% 10% Beginning of the workday, gradually

However, for the design engineers who are constrained by the budget when they are deploying the technologies
like AI and digital twins, open-source software platforms offer accessible alternatives at significantly lower costs
than proprietary licenses, thereby fostering innovation within the engineering community. Finally, the development
of education that produces professionals with the ability to work in the area of modern computational methods and
traditional engineering principles will produce professionals who are ready to serve the future optimization needs
in an optimal manner. In terms of these developments, it expresses a promising trajectory where HVAC is being
optimized towards reduced energy consumption and better occupant experiences and becomes a vital channel in
making smarter cities with sustainable solutions tailored for the specific context [1-4, 11, 20, 40—43]. Table 6 shows
the total savings achieved and the percentage of savings for each component. Figure 14 shows the input-output model
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of an air conditioning system.
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Figure 14. Input-output model of an air conditioning system [3]

10 Conclusions

Fueled by the improvement of HVAC systems, energy efficiency and the promotion of sustainable practices in
buildings are among the key factors for the enhancement. With the increasing demand for good thermal management,
new ideas can be developed to remedy the shortcomings of present HVAC systems in residential and commercial
settings. Advanced technologies, including AI, ML, and RL, facilitate the integration of new opportunities for
improving HVAC performance and efficiency, either simultaneously and/or independently. As in all technologies,
HVAC systems have been traditionally based on well-established thermodynamics and fluid dynamics. However, the
need to use dynamic modeling techniques is needed for progressively improving system responsiveness to altered
environmental conditions. Modern systems are made to use real-time data coming from sensors and smart controls
that help adapt exceptional efficiency to changing demands. In addition, this also offers considerable energy savings
for the facility. As IoT technologies are being increasingly applied in buildings, the interconnected feature of these
devices provides the complete picture with regard to energy consumption patterns to completely control HVAC
systems.

Dynamic HVAC solutions are a significant advance from static solutions that are in current use in building
management practice. MPC is a cutting-edge methodology that anticipates future needs based on occupancy patterns
and environmental variations, making decision-making capabilities better. More accurate operation adjustments
mean less energy waste and better indoor climate conditions using such predictive analytics. Additionally, the
discussion concerning building design is integrating renewable energy sources into HVAC systems, which is now
more prevalent. Furthermore, hybrid systems, including solar panel or geothermal heat pump technologies, decrease
reliance on fossil fuels and increase redundancy in light of the unpredictability of energy markets. Recent research
provides proof that such integrations increase efficiencies. For example, HVAC systems with multiple renewable
energy sources have shown significant reduction in electricity and natural gas requirements compared to conventional
systems. Numerous case studies show how such advanced HVAC technologies have been successfully implemented
when engineers work in close collaboration with architects and environmental scientists to achieve the design goals in
terms of both performance and sustainability. When frameworks can be created to enable communications between
different building systems, significant enhancements in overall operational efficiency can be achieved.

While much has been achieved in developing integrated systems, especially on the pipeline and in the field,
questions persist about its data availability and accuracy in these integrated systems; regular sensor calibration is
essential to reach reliable results. There is also a large need for research on low-cost approaches that can broaden the
use of such sophisticated optimization techniques to a larger set of economic contexts. However, in this field, it is
important to have a forward-looking approach to take user experience alongside technical innovations. Users need to
be informed of the advantages and functionalities of their HVAC systems to make educated decisions on how to use the
systems, and encouraging proactive use of system settings can result in even more overall efficiency gains. Sustainable
practice is not only a responsibility of the maintenance and repair but also of the policy; regulatory structures that
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promote sustainable practices within the HVAC industry are going to provide the catalyst and obligation for the
industry to innovate and for manufacturers and service providers to hold themselves accountable. The way to have
widespread adoption of best practices across many different sectors is to establish clear guidelines of performance
standards.

For progress to be achieved, it will require a collective effort from all stakeholders—from policymakers driving
towards greener initiatives to engineers creating the most advanced technologies to increase HVAC standardization
with a minimal effect on the environment. Technological advancements coupled with regulatory support point to a
plausible route for developing actuating air conditioners that can deliver what contemporary society is demanding
without abdicating ecological responsibility. Meaningful efforts can be made to improve indoor comfort levels while
making global sustainability attempts—a worthy task in a more resource-climbed world.

Though this review gives an in-depth literature review on the HVAC optimization methods, it is notable that
some gaps have not been addressed. In particular, small residential systems are outside the scope of this research
and their peculiar issues and optimization methods can greatly differ compared to those that can be applied to bigger
commercial or industrial systems. In addition, the review concentrates on well-known optimization techniques and
does not go into the details of the investigation of newer technologies, which could be at the research or experiment
stage. The next generation of HVAC optimization will be rooted in inter-disciplinary cooperation. Increasingly,
the HVAC systems are being linked with smart building technologies and sustainability efforts, which means that
architects, energy engineers, and computer scientists will need to work closely. The architects have expertise in
building design and energy needs, whereas energy engineers have expertise on the performance and effectiveness
of the systems. Instead, computer scientists offer ML, Al, and predictive control knowledge that can greatly benefit
optimization of the systems. It is out of such joint efforts that HVAC solutions shall be developed, which are not just
energy efficient but also capable of keeping up with the changes taking place within the environment and those that
are user-driven.

In conclusion, this review has outlined the great potential that exists in the optimization of HVAC systems using
mathematical models, optimization algorithms and the emerging technologies, including ML and prediction control.
Although significant advances have occurred, issues relating to availability of data, computational complexity, and
the requirement of adaptive and real-time systems still exist. In addition, it is necessary to note the limitations
of such a review, such as the absence of small residential systems and new experimental technologies. In the
future, cross-disciplinary collaboration will become more and more important in the optimization of HVAC systems.
The collaboration of architects, energy engineers, and computer scientists is necessary to develop more efficient,
sustainable, and flexible HVAC solutions capable of responding to the complicated and ever-changing demands of
present-day buildings.
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