
Precision Mechanics & Digital Fabrication
https://www.acadlore.com/journals/PMDF

Formulation of Stiffness and Strength Characteristics of Flexible Wire
Ropes and Their Application in Photovoltaic Support Structures
Chuangju Zhang* , Leige Xu , Pengshuai Liu

School of Civil Engineering and Transportation, North China University of Water Resources and Electric Power,
450045 Zhengzhou, China

* Correspondence: Chuangju Zhang (zhangchuangju@stu.ncwu.edu.cn)

Received: 04-18-2024 Revised: 06-15-2024 Accepted: 06-23-2024

Citation: C. J. Zhang, L. G. Xu, and P. S. Liu , “Formulation of stiffness and strength characteristics of flexible wire
ropes and their application in photovoltaic support structures,” Precis. Mech. Digit. Fabr., vol. 1, no. 2, pp. 66–74,
2024. https://doi.org/10.56578/pmdf010202.

  2024 by the author(s). Published by Acadlore Publishing Services Limited, Hong Kong. This article is available for free download
and can be reused and cited, provided that the original published version is credited, under the CC BY 4.0 license.

Abstract: The safety and functionality of flexible photovoltaic (PV) racking systems critically depend on understanding
the force and deformation behavior of wire ropes. This study establishes mechanical equilibrium equations to
derive the deformation curve, maximum displacement, and maximum tension of wire ropes subjected to loading.
Analytical dimensionless equations indicate that variations in the orientation of PV modules do not affect the structural
stiffness or forces exerted on the wire ropes. Engineering calculations of maximum displacement and tension are
compared with results from finite element simulations, revealing less than a 1% discrepancy between the analytical
and numerical outcomes. Analysis of characteristic parameter curves in relation to prestress demonstrates that the
maximum deflection span ratio decreases as prestress increases, while the maximum tensile stress rises with increasing
prestress. The proposed formulas are validated as both accurate and practical, effectively reflecting the changes in
wire rope forces with varying prestress levels. This study provides valuable insights for the mechanical analysis and
structural design of flexible PV mounting systems, offering a robust reference for future engineering applications.
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1 Introduction

Solar energy represents a clean and renewable source of power, essential for achieving sustainable development
goals [1, 2]. PV modules can generate electricity from solar energy [3, 4]. To ensure the safe and efficient operation
of PV power generation systems, the design of racking systems with substantial spans and effective load-bearing
capacities is critical. Although research on traditional rigid PV mounting systems is well-established [5–8], such
systems are limited by their small span and inability to adapt to complex terrains. In contrast, flexible PV mounts,
which utilize prestressed steel cables, can span larger distances and adjust to varying terrain conditions without
requiring extensive support structures [9–11]. Steel cables make effective use of the mechanical properties of the
material [12], which have been widely applied in bridge structures [13, 14].

By applying prestress to the steel wire ropes, flexible PV brackets can enhance load distribution and improve
stiffness. To fully utilize the wire rope’s strength while ensuring the safety and reliability of the structural system, it
is crucial to understand the force characteristics of the wire ropes. The force behavior of wire ropes is inherently
nonlinear, influenced by various factors such as prestress, rope length, and other parameters. Accurate formula
derivation for calculating the structural safety of flexible PV brackets is therefore of significant importance.

Previous studies have contributed to the understanding of wire rope mechanics and PV mounting systems. Aly and
Bitsuamlak [15] systematically investigated the sensitivity of ground-mounted solar photovoltaic panels to wind loads
through wind tunnel tests. He et al. [16, 17] introduced a new flexible PV racking system and assessed its load-bearing
capacity under various loads, including self-weight, wind, and snow loads. Kim et al. [18] investigated the impact of
different panel shapes on wind-induced vibrations of flexible PV mounts through wind tunnel tests. Zhang et al. [19]
analyzed the aerodynamic instability characteristics of single-axis solar trackers, revealing differences in wind-induced
torsional vibrations at various inclination angles. Ceferino and Lin [20] proposed a probabilistic framework to predict
the power generation performance of solar infrastructure during hurricanes. Liu et al. [21] investigated the wind
response of flexible PV mounting structures through wind tunnel tests and found that changing the module size affects
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the aerodynamic characteristics and structural frequency of the structure, which in turn affects the wind vibration of
the structure. Despite these advancements, the impact of prestress magnitude on the characteristic parameters of wire
ropes remains underexplored.

This study aims to address this gap by establishing mechanical equilibrium equations for wire ropes and deriving
the deflection curve equations, considering the wire rope cross-section angle. Relationships between variables
such as the deflection-to-span ratio and internal forces post-deformation are explored in relation to prestress force.
Example analyses reveal that stiffness and strength conditions in the support system are interrelated and sometimes
contradictory. The formulas proposed in this study aim to resolve these contradictions, ensuring both structural safety
and economic efficiency. The findings provide a valuable reference for the static analysis and structural design of
flexible PV support systems.

2 Derivation of Formula
2.1 Wire Rope Deformation Curve Equation

The wire rope is subjected to the gravity, snow load, and wind load of the solar module. As the distance between
the panels is very close, if the gap is ignored, the external force on the wire rope is simplified to a uniform load, which
includes the self-weight of the wire rope. The force sketch of the wire rope is shown in Figure 1.

Figure 1. Deformation of prestressed wire rope subjected to uniform load q

Figure 2. Rope force sketch
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The wire rope suspended between the two columns of the curve can be expressed by mathematical equations.
Assuming that the wire rope is a flexible rope that can only be subjected to tension and cannot withstand bending
action, the deformation curve of the wire rope after being subjected to force is deduced. The effect of geometric
nonlinearity should be considered in the analysis of cable structures. After the deformation of the midpoint of the
wire rope as the origin to establish a coordinate system, take the x-axis from 0 to x of a section of the isolation body.
The force is shown in Figure 2.

The deformation of the wire rope in both the vertical and horizontal directions, under the combined force, is zero.

T sin θ = qx, T cos θ = T0 (1)

where, T is the tension, θ is the angle between the wire rope cross-section normal and the horizontal plane, q is the
uniform load, x is the length of the wire rope, and T0 is the tension value at the midpoint of the wire rope span.

By comparing the above two equations, the slope of the wire at any point can be determined:

tan θ =
dy

dx
=

qx

T0
(2)

Using differential calculus, the derivative at any point on the curve represents the tangent slope. The equation
above represents the differential equation for the wire rope deformation curve. By integrating this equation over the
endpoints, the deformation curve can be determined.

y = C0 +
q

2T0
x2 (3)

Let C0 be the integration constant. According to Figure 2 and the coordinate system construction, where x = 0
when y = 0, substituting these values yields C0 = 0. Consequently, the deformation curve of the wire rope is given by:

y =
q

2T0
x2 (4)

As the midpoint tension value T0 increases, the displacement y decreases, indicating an inverse relationship
between the two. In the coordinate system established in this study, the maximum displacement of the wire rope
occurs at x=L/2. Therefore, there are:

ymax =
qL2

8T0
(5)

From Eqs. (1) and (2), we can get:

T (x) =
T0

cos θ
=

T0

cos
[
arctan

(
qx
T0

)] (6)

Tension T reaches its maximum at x=L/2, indicating that there is:

Tmax =
T0

cos
[
arctan

(
qL
2T0

)] (7)

Tension T reaches its minimum at x = 0, and there is:

Tmin = T0 (8)

The strain in the wire rope at the cross-section x is given by:

ε(x) =
T (x)

EA
=

T0

EAcos
[
arctan

(
qx
T0

)] (9)

where E is the modulus of elasticity of the wire rope and A is the cross-sectional area. From the above equation, the
total elongation of the wire rope, which includes both the elongation caused by the prestress force and the additional
load q, is given by:

∆L =

∫ L/2

−L/2

ε(x)dx =

∫ L/2

−L/2

T0

EAcos
[
arctan

(
qx
T0

)]dx (10)
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The length of the curve after deformation of the wire rope is:

S =

∫ L/2

−L/2

√
1 + tan2 θdx =

∫ L/2

−L/2

√
1 +

(
qx

T0

)2

dx (11)

It can be seen that the elongation of the wire rope due to the load q is S-L, and the elongation of the curve due to
prestress is ∆L− (S − L), so the prestress is:

σinitial = E
∆L− (S − L)

L
(12)

As the temperature increases, the wire rope expands, resulting in a negative equivalent prestress. It is necessary to
ensure that the maximum temperature rise still satisfies the stiffness conditions. Conversely, when the temperature
decreases, the wire rope contracts, leading to a positive equivalent prestress. The design must ensure that the
maximum temperature drop continues to meet the strength conditions. If the structure undergoes deformation due to a
temperature rise of ∆T from its installation state, and the corresponding coefficient of linear expansion is α, then the
equivalent prestress force to be added is given by:

σeq = −Eα∆T (13)

2.2 Dimensionless

Flexible racking systems can be configured to place solar modules either longitudinally or horizontally, corre-
sponding to long-span and short-span solutions, respectively. To assess the advantages and disadvantages of these two
span lengths, it is essential to theoretically examine how span length affects the key design control parameters. For
ease of analysis, each formula derived from the above calculations has been made dimensionless.

Let ∆ = y/L, by substituting it into Eq. (5), we get:

∆max =
qL

8T0
(14)

The above formula represents the maximum deflection-to-span ratio for the wire rope, which characterizes the
deformation stiffness of the wire rope. To satisfy the stiffness conditions, it is necessary to ensure that:

∆max ≤ ∆allow (15)

where, ∆allow is the permissible deflection ratio, which is 1/30 in this case.
Let η = x/L, by substituting it into Eqs. (10)-(11), we get:

∆L = L

∫ 1/2

−1/2

T0

EAcos
[
arctan

(
qL
T0

η
)]dη (16)

S = L

∫ 1/2

−1/2

√
1 +

(
qL

T0
η

)2

dη (17)

Substituting Eqs. (18) and (19) into Eq. (14) yields:

σinitial = E

∫ 1/2

−1/2

T0

EAcos
[
arctan

(
qL
T0

η
)]dη −

∫ 1/2

−1/2

√
1 +

(
qL

T0
η

)2

dη − 1

 (18)

From the above equation, when the cross-section area A and the sum of loads qL remain constant, the initial stress
σintial is a single-valued function of the minimum tension T0 after deformation. Similarly, Eq. (14) shows that the
wire rope stiffness value is a function of the sum of loads qL and minimum tension T0. When qL remains constant,
the stiffness value is a single-valued function of the minimum tension T0. Therefore, it can be seen that when the
cross-sectional area A and the sum of the loads qL remain constant, the stiffness value ∆max is a function of the
initial stress σinitial.

The two span lengths differ only in the direction of placement of the solar modules, and the sum of the loads qL
remains constant. Therefore, when the cross-sectional area A is constant, the stiffness value ∆max is a function of the
initial stress σinitial, independent of the span length.
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Similarly, nondimensionalizing Eqs. (2) and (6) yields:

tan θ =
qL

T0
η (19)

T (η) =
T0

cos
(
arctan qL

T0
η
) (20)

From the above two equations, it can be seen that for both span lengths, since qL is the same, when the
cross-sectional area A is unchanged, at any η-coordinate point, the turning angle θ and the tension T are only functions
of T0. And because T0 is a univariate function of the initial stress σinitial at this time, the corner θ and tension T are
univariate functions of the initial stress σinitial. That is, when the initial stress σinitial is determined, for both span
lengths, the values of angle and tension at the span end (η = ±1/2) are equal. For example, if the starting stress
for both span lengths is the same, the wire rope’s force on the end column is the same, so the anchorage and end
column strength requirements are the same at the same prestress value. The two arrangements may have different
force characteristics and instability modes under wind vibration forces.

Note that the change in cross-sectional area A is not considered in the derivation of this section, and the conclusions
apply only to the case where the cross-sectional area A is consistent. After changing the crosssection, it is necessary
to recalculate the structural displacements for the case of different initial prestresses.

3 Formula Validation

During the derivation of the theoretical solution, the external force acting on the wire rope was simplified to a
uniform load, which may introduce some error. To verify the accuracy of the derived theoretical equations and to
determine the potential error range, this section compares and analyzes the theoretical solution against the numerical
solution obtained from ABAQUS.

3.1 Algorithm

In the example, the flexible bracket has two spans, one span is 21.04 m long, the wire rope cross-sectional area is
70.88 mm2, the modulus of elasticity is 1.95×1011 Pa, the prestress force is 1638 MPa, the wire rope and the PV
module’s self-weight equivalent mean force is 66.9 N/m, and the self-weight + snow load equivalent mean force is
520.3 N/m. Calculate the maximum displacement and maximum tensile force of the wire rope in the PV module
under the action of the module’s self-weight and after snowing. Calculate the maximum displacement and maximum
tension of the single-span wire rope under the self-weight of the PV module and after snowfall.

3.2 Static Calculation

(1) Considering only the wire rope and the self-weight of the PV module q = 66.9 N/m

σinitial = E

L/2∫
−L/2

T0

EA cos
[
arctan

(
66.9x
T0

)]dx−

(
L/2∫

−L/2

√
1 +

(
66.9x
T0

)2
dx− L

)
L

= 1.638× 109N/m2 (21)

By substituting E,A, and L into the above equation and performing integration using MATLAB software, the
solution T0 = 116185N is obtalined:

ymax =
66.9× 21.042

8× 116185
= 0.0319m (22)

Tmax =
116185

cos
[
arctan

(
66.9×21.04
2×116185

)] = 116187N (23)

(2) Considering self-weight + snow load q = 520.3 N/m, solve for T0 = 120789N

ymax =
520.3× 21.042

8× 120788
= 0.2384m (24)

Tmax =
120788

cos
[
arctan

(
520.3×21.04
2×120788

)] = 120913N (25)
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(a) (b)

(c) (d)

Figure 3. ABAQUS calculation results: (a) q=66.9 N/m, Wire rope deflection; (b) q=66.9 N/m, Wire rope tension;
(c) q=520.3 N/m, Wire rope deflection; (d) q=520.3 N/m, Wire rope tension

Table 1. Comparison with finite element calculation results

Prestress/MPa Formula
Solution

Numerical
Solution Discrepancy

1638
ymax /m

q = 66.9 N/m 0.03186 0.03170 0.50%
q = 520.3 N/m 0.23836 0.23729 0.45%

Tmax /N
q = 66.9 N/m 116187 116180 0.01%
q = 520.3N/m 120913 120870 0.04%

1404 ymax /m
q = 66.9 N/m 0.03716 0.03696 0.54%
q = 520.3 N/m 0.27251 0.27129 0.45%

Tmax /N
q = 66.9 N/m 99637 99631 0.01%
q = 520.3 N/m 105791 105737 0.05%

1170
ymax /m

q = 66.9 N/m 0.04455 0.04429 0.59%
q = 520.3 N/m 0.31578 0.31441 0.44%

Tmax /N
q = 66.9 N/m 83099 83095 0.01%
q = 520.3 N/m 91337 91269 0.07%

936
ymax /m

q = 66.9 N/m 0.05558 0.05521 0.67%
q = 520.3 N/m 0.37053 0.36891 0.44%

Tmax /N
q = 66.9 N/m 66603 66600 0.01%
q = 520.3 N/m 77894 77802 0.12%

3.3 Comparative Analysis of Theoretical and Numerical Solutions

In this section, a model was created in ABAQUS, with concentrated loads of 66.9 N and 520.3 N applied at equal
intervals of 1 meter. The theoretical solutions obtained from the derived equations were compared with the results
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from ABAQUS to evaluate the error introduced by the simplification to a uniform load.
Truss elements were used for modeling the wire rope, with three translational displacements and axial rotations

constrained at both ends. Geometric nonlinearity was incorporated into the calculation model, although the effects of
deformation and displacement at the span ends and columns were excluded. The coefficient of linear expansion of the
wire rope was set at 1.2× 10−5/◦C, and a prestressing force of 1638 MPa was applied to the wire rope using the
“cooling method.” The finite element analysis provided the deflection and tension at the upper point of the wire rope,
as illustrated in Figure 3 (the transverse axis represents points on the wire rope at 1-meter intervals).

Table 1 presents the errors between the theoretical and numerical solutions for various wire rope prestresses.
The maximum error observed between the theoretical solutions and the finite element results for the maximum
displacement and tension of the wire rope is less than 1%. This indicates that the simplifications applied to the
theoretical formula are scientifically and reasonably justified, allowing for continued study based on the derived
theoretical formula.

4 Variation of Characteristic Parameters with Prestress

The key characteristic parameters are the deflection-to-span ratio and the maximum tensile stress of the wire rope.
Prestress plays a crucial role in ensuring the structural safety, and analyzing how these characteristic parameters vary
with prestress under a uniform load of 520.3 N/m can provide valuable insights for engineering applications.

4.1 Maximum Deflection Ratio

Figure 4 illustrates that the maximum deflection-to-span ratio of the wire rope decreases as the prestress increases.
Initially, the reduction in the deflection-to-span ratio is more pronounced, but as prestress continues to increase, this
reduction becomes less significant, indicating a clear nonlinear relationship. Specifically, the maximum deflection-to-
span ratios of the wire rope were 0.0334, 0.0277, 0.0122, and 0.0104 for prestress values of 0 MPa, 300 MPa, 1500
MPa, and 1800 MPa, respectively. The deflection-to-span ratio decreased by 0.0057 as prestress increased from 0 MPa
to 300 MPa, and by 0.0018 when prestress increased from 1500 MPa to 1800 MPa. The rate of decrease was notably
reduced, with the average reduction rate dropping to approximately 0.32 times that observed in the initial stage.

Figure 4. Variation curve of wire rope deflection span ratio with prestress

4.2 Maximum Stress

According to Figure 5, the maximum tension of the wire rope in each working condition reaches the strength limit
required to ensure structural safety. The curve indicates that the maximum stress increases slowly at first, but the rate
of increase accelerates with higher prestress. Specifically, the maximum stress values of the wire rope were 583 MPa,
701 MPa, 1579 MPa, and 1857 MPa for prestress levels of 0 MPa, 300 MPa, 1500 MPa, and 1800 MPa, respectively.
The maximum stress increased by 118 MPa when the prestress rose from 300 MPa to 600 MPa and by 278 MPa when
it increased from 1500 MPa to 1800 MPa, reflecting a significant rise. The average increase rate of maximum stress
increased to approximately 2.36 times that observed in the initial stage.
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Figure 5. Variation curve of maximum stress with prestress

5 Conclusions

(1) The deformed wire rope was investigated, and a coordinate system was established to account for the
cross-sectional angle after deformation. Mechanical equilibrium equations were formulated to derive expressions for
the maximum displacement and maximum tensile force. The theoretical solutions for these parameters, as calculated
from the derived formulas, exhibit a maximum deviation of less than 1% compared to the numerical solutions obtained
from finite element analysis. This confirms that the derived formulas, based on the simplifications employed, are
scientifically sound and reliable for practical applications.

(2) Theoretical analyses reveal that, when comparing long-span and short-span schemes with identical wire rope
diameters and permissible deflection-span ratios, both schemes require equivalent prestress and the same force on the
end columns. Thus, under identical strength and stiffness conditions, the choice between long-span and short-span
schemes should be guided by the specific characteristics and constraints of the site. It should be noted that while these
conclusions are based on static calculations, the impact of dynamic forces such as wind-induced vibrations on force
characteristics and instability modes warrants further investigation.

(3) ∆max = qL/8T0 represents the formula for the maximum deflection-to-span ratio of the wire rope, which
characterizes the deformation stiffness. This formula is utilized to ascertain whether the wire rope meets the required
stiffness criteria. Tmax = T0/cos [arctan (qL/2T0)] is used to calculate the maximum tension in the wire rope,
thereby determining its compliance with strength requirements. The prestress value T0 can be identified by substituting
the relevant parameters from Eqs. (10) and (11) into Eq. (12).

(4) Analysis of the characteristic parameters as functions of wire rope prestress reveals that, beyond a certain
prestress value, the rate of decrease in the maximum deflection-to-span ratio diminishes, while the rate of increase in
maximum tension accelerates. The curves indicate that the minimum prestress value required to satisfy both stiffness
and strength criteria can be identified. This insight aids in optimizing construction costs while ensuring structural
safety and provides valuable guidance for the static analysis and design of similar engineering applications.
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