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Abstract: In response to the complex characteristics of gearbox vibration signals, including high frequency, high
dimensionality, non-stationarity, non-linearity, and noise interference, this paper proposes a data processing method
based on improved compressed sensing. First, the K-means Singular Value Decomposition (K-SVD) dictionary is
used for sparse representation, ensuring good sparsity in the frequency domain. Next, a random convolution kernel
measurement matrix is employed in place of the traditional Gaussian random matrix, satisfying the equidistant
constraint while enhancing both computational and hardware implementation efficiency. Finally, the Generative Flow
(GLOW) model is introduced, incorporating the measurement matrix, dictionary matrix, and sparse coefficient matrix
into a unified optimization framework for joint solving. Through reversible mapping and probabilistic distribution
modeling, the method effectively addresses noise interference and the challenges posed by complex signal distributions.
Experimental results show that, compared with traditional compressed sensing methods, the proposed method offers
superior signal reconstruction quality and better noise robustness.
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1 Introduction

The gearbox is a critical core component in many mechanical systems and is widely used in aviation, automobiles,
wind power generation, and various industrial equipment. Its operational status directly affects the stability and work
efficiency of the mechanical system [1]. However, due to the complex and variable working conditions, uncertain
loads, and subtle component defects, gearboxes often face various potential issues such as gear damage, bearing
failure, and tooth surface wear [2, 3]. Therefore, real-time and accurate analysis and processing of gearbox vibration
signals are of great significance for early fault prevention and efficient maintenance of gears.

Compressed sensing theory [4] provides a new approach for achieving high-precision signal reconstruction at
lower sampling rates. By leveraging the sparsity of the signal in a certain transformation domain, compressed sensing
can achieve information extraction and reconstruction through undersampling measurements well below the traditional
Nyquist rate, thus reducing the burden of data collection and processing. In recent years, compressed sensing has
achieved significant results in fields such as image reconstruction, feature detection, target localization, and weak
signal extraction. Deng and Tian [5] proposed a compressed sensing image reconstruction network based on inverted
residual blocks, which enhances the network’s ability to capture multi-level image features through an inverted
residual structure and multi-scale attention mechanism, significantly improving PSNR and visual effects. Zhang
and Yu [6] proposed an adaptive sparse dictionary method based on Laplace wavelets to address the redundancy
issue in traditional compressed sensing’s sparse dictionaries, effectively reducing memory usage and improving
fault feature extraction efficiency in noisy environments. Liu et al. [7] designed a SAMNet network based on a
self-attention mechanism, introducing self-attention convolution and bottleneck transformations to improve block
effects and optimize reconstruction quality and time, further enhancing the application effects in image processing.
Wang et al. [8] proposed an improved ISTA algorithm that optimizes the step size through an acceleration operator,
bidirectional search backtracking, and a quadratic approximation model, improving both the accuracy and efficiency
in the reconstruction of rolling bearing vibration signals. Singh and Dandapat [9] introduced a joint compressed
sensing recovery algorithm based on weighted mixed-norm minimization to enhance the reconstruction accuracy
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and compression efficiency of multi-channel electrocardiogram signals. Volaric et al. [10] proposed a data-driven
compressive sensing ambiguity function (AF) area selection method to optimize time-frequency signal reconstruction
and improve convergence speed. Chen [11] presented a compressive sensing signal reconstruction method based
on smooth l p-norm and maximum entropy function, which improved reconstruction accuracy and computational
efficiency. However, directly applying compressed sensing technology to gearbox vibration signal processing still
faces many challenges: the spectral components of gearbox vibration signals are complex, and the sparse assumption
under traditional fixed bases is difficult to fully satisfy, affecting reconstruction accuracy; weak fault features in low
signal-to-noise ratio (SNR) environments are difficult to extract accurately, reducing noise robustness; reconstruction
errors may lead to incomplete fault features, and the coupling of frequency components in multi-fault modes further
complicates fault identification.

To address these issues, this paper proposes an improved compressed sensing method based on the GLOW model, as
shown in Figure 1. First, in the sparse representation phase, K-SVD dictionary sparse representation is used to provide
a reasonable frequency domain sparse expression foundation for vibration signals. Second, a random convolution
kernel measurement matrix is introduced to replace the traditional Gaussian random matrix, satisfying the equidistant
constraint while simplifying hardware implementation and reducing computational costs. Finally, the measurement
matrix, dictionary matrix, and sparse coefficients are incorporated into the unified optimization framework of the
GLOW model. Through reversible mapping and probabilistic distribution modeling, the method effectively improves
the adaptability and reconstruction accuracy for noisy environments and complex signal distributions.

Figure 1. Technical route framework of this paper

2 Compressed Sensing Theory and Related Methods
2.1 Basic Theory of Compressed Sensing

Compressed sensing theory was proposed by Candes, Donoho, and others in 2006, providing a completely new
approach for signal sampling and reconstruction. Its core idea is that if a signal is sparse in some domain, it can be
sampled at a rate much lower than the Nyquist sampling rate, and its precise reconstruction can be achieved through
nonlinear optimization algorithms.

Figure 2 shows the basic flow diagram of compressed sensing algorithm. The basic framework of compressed
sensing theory includes three core parts: sparse representation, compressed sampling, and signal reconstruction.
2.1.1 Sparse representation

Given a signal x ∈ RN , if there exists a basis (or overcomplete dictionary) D ∈ RN×R such that the signal can be
represented as:

x = Dα (1)
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where, α is the sparse vector of the signal in the basis D. If the sparse vector α has only k non-zero (or approximately
non-zero) elements, and k ≪ N , the signal x is said to be k-sparse in the basis D. The existence of sparsity is the
premise of compressed sensing theory and forms the foundation for signal compression and reconstruction.

Figure 2. Schematic diagram of compressed sensing algorithm

2.1.2 Compressed sampling
To compressively sample a sparse signal, a measurement matrix A ∈ RM×N is chosen to perform a linear

projection of the signal x, obtaining the compressed measurement values:

y = Ax = ADα (2)

where, y ∈ RM is the measurement vector after compression, and M ≪ N . At this point, the signal has been
compressed from a high-dimensional space to a lower-dimensional space.

Measurement Matrix Requirements:
(1) Satisfy the Restricted Isometry Property (RIP) condition: To ensure the recoverability of the signal, the

combination of the measurement matrix A and the sparse basis D (i.e., the sensing matrix Φ = AD ) needs to satisfy
the RIP. Specifically, the matrix Φ should satisfy the following condition for all k-sparse vectors α:

(1− δk) ∥α∥22 ≤ ∥Φα∥22 ≤ (1 + δk) ∥α∥22 (3)

where, δk is the RIP constant, and it must satisfy 0 < δk < 1.
(2) Low Cross-Correlation: The cross-correlation between the column vectors of the measurement matrix A

should be as low as possible to avoid information loss and ensure the recoverability of the sparse signal in the
low-dimensional space.
2.1.3 Signal reconstruction

Given the measurement values y and the measurement matrix A, the sparse coefficients α can be reconstructed by
solving an optimization problem to recover the original signal x:

min
α
∥α∥0 subject to ∥y −ADα∥ ≤ ε (4)

where, ∥ · ∥0 represents the l0 norm, and ε is the allowable reconstruction error.
Since directly solving the l0-minimization problem is NP-hard, the l1 norm is often used as a substitute for the l0

norm, and approximate algorithms such as Basis Pursuit (BP), Matching Pursuit (MP), and Orthogonal Matching
Pursuit (OMP) are used for sparse reconstruction.

Limitations of Traditional Compressed Sensing Methods:
(a) Inaccurate Sparse Representation: Fixed sparse bases (e.g., Fourier basis, wavelet basis) have difficulty

representing complex gearbox vibration signals sparsely enough.
(b) High Computational Complexity of Reconstruction Algorithms: Traditional l1-minimization algorithms are

computationally expensive and are not suitable for real-time processing.
(c) Insufficient Noise Robustness: Real-world signals contain noise, and traditional methods are sensitive to noise,

which affects the reconstruction quality.

2.2 Basic Principle of the K-SVD Algorithm

K-SVD [12, 13] is an iterative algorithm used to learn overcomplete dictionaries. The goal is to find a dictionary
D ∈ RN×K and a sparse representation matrix α ∈ RK×M for a given training sample set, such that the reconstruction
error is minimized. The optimization objective function of the K-SVD algorithm is:

min
D,α
∥X −Dα∥2F s.t. ∀i, ∥αi∥0 ≤ s (5)
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where, X = [x1, x2, . . . , xN ] is the training sample matrix, with each column being a signal sample; D ∈ RN×K

is the dictionary matrix to be learned, containing K atoms (column vectors); α = [α1, α2, . . . , αN ] is the sparse
coefficient matrix, with each column being the sparse representation of sample xi; ∥ · ∥F represents the Frobenius
norm; and s is the sparsity constraint, representing the maximum number of non-zero elements in each sparse
coefficient vector.

Algorithm Procedure:
Step 1: Initialization
Dictionary Initialization: Set the number of atoms K in the dictionary, typically K > N (where N is the signal

dimension), making the dictionary overcomplete. Randomly initialize the dictionary D(0) and normalize each atom:

d
(0)
k =

d
(0)
k∥∥∥d(0)k

∥∥∥
2

, k = 1, 2, . . . , K (6)

Sparsity Setting: Set the sparsity s.
Step 2: Sparse Coding Phase
For each signal sample xi, solve for the sparse coefficient matrix αi:

αi = argmin
αi

∥xi −Dαi∥22 + λ ∥αi∥1 (7)

This is solved using the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA).
Step 3: Dictionary Update Phase
For each atom dx, perform the following updates:
(a) Compute the reconstruction error excluding the atom dx:

Ek = X −
∑
j ̸=k

djα
T
j (8)

where, X is the matrix of all training samples, and αj is the corresponding sparse coefficient column vector.
(b) Perform SVD on error matrix Ek:

Ek = U
∑

V T (9)

(c) Update the dictionary atom dk:

dk = U(:, 1) (10)

(d) Normalize the new dictionary atom:

dk =
dk
∥dk∥2

(11)

Step 4: Stopping Criteria
The iteration stops when the reconstruction error reduction is smaller than a threshold ε, or when the maximum

number of iterations is reached:

∥x−Dα∥22 < ε (12)

2.3 Random Convolution Kernel Measurement Matrix

The random convolution kernel measurement matrix is a special structured measurement matrix proposed by
Li et al. [14], which is constructed based on the convolution operation. Compared to traditional Gaussian random
matrices, the random convolution kernel measurement matrix has significant advantages in hardware implementation
and computational efficiency.

Definition of the Random Convolution Kernel Measurement Matrix: Let h ∈ RL be a random convolution kernel
vector of length L, and L≪ N (signal length). The random convolution kernel measurement matrix A ∈ RM×N is
generated by performing a convolution operation on the signal x ∈ RN to obtain the measurement values y ∈ RM :

y = Ax = h∗x (13)
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where, * represents the 1D convolution operation.
Generation of the Convolution Kernel:
(1) Random Kernel Generation:
Generate a random convolution kernel h of length L, where each element hi follows an independent standard

normal distribution:

hi ∼ N(0, 1),∀ ∈ {i = 1, 2, . . . , L} (14)

(2) Normalization of the Convolution Kernel:
Normalize the generated convolution kernel to ensure that its energy is normalized:

h =
h

∥h∥2
(15)

(3) Construction of the Random Convolution Measurement Matrix:
Construct the measurement matrix A by rolling the normalized convolution kernel h to generate the matrix.

Specifically, each row of the measurement matrix corresponds to a window of the convolution kernel h at a certain
position:

Am,n =

{
hn−m+1 if n−m+ 1 ∈ {1, . . . , L}
0 otherwise ,m ∈ {1, 2, . . . ,M}, n ∈ {1, 2, . . . , N} (16)

where, M = N − L+ 1, with each row corresponds to a convolution window of the signal x.
Through this design, the measurement process can be seen as the convolution of the signal x with the random

convolution kernel h. Since convolution operations can be accelerated using the Fast Fourier Transform (FFT),
this design results in a hardware-friendly and computationally efficient compressed sensing process. The randomly
generated convolution kernel, under certain conditions, can ensure that the measurement matrix A satisfies the RIP,
improving the recoverability of the signal in low-dimensional space.

3 GLOW Model and Its Joint Optimization Strategy
3.1 Basic Principle of the GLOW Model

GLOW [15] is a generative model based on flow models, which uses a series of reversible transformations to
generate data. Unlike traditional Generative Adversarial Networks (GANs) or Variational Autoencoders (VAEs),
GLOW maps simple latent distributions (such as standard Gaussian distribution) to complex real data distributions
through a series of reversible, nonlinear transformations. The key advantage of the GLOW model lies in its reversibility
and precise likelihood estimation, which allows for efficient data sample generation, signal reconstruction, and
optimization. The core principles of the GLOW model include the following key components:
3.1.1 Reversible transformations

The GLOW model uses multiple reversible transformation functions (called layers) to map the input data to the
latent space, achieving data generation and reconstruction. Figure 3 below is a schematic of the GLOW model. The
design of these transformation functions ensures that the transformation in each layer is reversible, including reversible
1 × 1 convolutions and affine coupling layers. Let the input data be x ∈ Rd, and through a series of reversible
transformation functions f1, f2, . . . , fL, the input data is transformed into latent space data z ∈ Rd:

z = fL ◦ fL−1 ◦ · · · ◦ f1(x) (17)

To recover the original data, each layer of the flow model has a reverse transformation function f−1
k , which

transforms the latent space data z back to the input data space x, such that:

x = f−1
1 ◦ f−1

2 ◦ · · · ◦ f−1
K (z) (18)

3.1.2 Probability density estimation
The GLOW model can accurately calculate the probability density of the input data. By estimating the data

density in the latent space, a probability value can be assigned to the input data. Assuming z follows a standard
Gaussian distribution, the probability density of the input data x can be calculated using the Jacobian determinant:

log px(x) = log pz(z) +

L∑
l=1

∣∣∣∣det( ∂fl
∂h(l−1)

)∣∣∣∣ (19)

where, pz is the probability density in the latent space, typically assumed to be Gaussian distribution; h(l−1) represents
the input to the transformation at the l-th layer (i.e., the output of the previous layer or the initial input data); ∂fl

∂h(l−1) is
the Jacobian matrix of the transformation function, representing the scale change during the transformation process.
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Figure 3. GLOW model diagram

3.1.3 Training and optimization
The training of the GLOW model is carried out by maximizing the log-likelihood function, with the goal of

learning the model parameters such that the generated data closely matches the distribution of the real data. Let
x1, x2, . . . , xN be the training dataset, and maximize the log-likelihood function of the data, i.e.,

L(θ) =

N∑
i=1

log p (xi) (20)

where, p (xi) is the probability density of the i-th sample. With the help of the backpropagation algorithm, the
parameter θ of the flow model is optimized by adopting the gradient descent method.

3.2 Compressive Sensing Signal Optimization and Reconstruction Based on the GLOW Model

In traditional compressive sensing, the selection of the measurement matrix A and dictionary D is usually done
independently, which may lead to the measurement matrix not fully exploiting the sparsity of the dictionary, thereby
affecting the signal reconstruction performance. In this paper, the dictionary matrix D is learned using the K-SVD
algorithm, which has the advantage of finding sparser representations in high-dimensional and complex spectral
environments.

To further improve reconstruction performance, this paper adopts the GLOW model. By introducing latent space
distribution modeling, the joint optimization of the measurement matrix A, the Gaussian random matrix D, and
the sparse coefficient α is achieved. Under noisy conditions and complex signal distributions, the reversibility and
probability density estimation ability of the GLOW model help obtain better reconstruction results.

The goal of the joint optimization is to simultaneously optimize the measurement matrix A, dictionary matrix
D, and sparse coefficient matrix α, so that the signal can be effectively recovered within the compressive sensing
framework. The joint optimization objective function is:

min
A,D,α

∥y −ADα∥22 + λ1∥α∥1 + λ2∥D∥2F + λ3R(A,D,α) (21)

where, λ1, λ2 and λ3 represent the sparse term and GLOW-related regularization terms, respectively; ∥y −ADα∥22
ensures that the measured signal and the reconstructed signal are close; λ1∥α∥1 is the term that enforces most elements
of the sparse coefficient matrix α to be zero through the l1-norm, ensuring the signal sparsity; λ2∥D∥2F prevents
the dictionary matrix D from overfitting; and λ3R(A,D,α) is the GLOW-related term that uses the flow model to
capture complex data distributions, enhancing the reconstruction stability.

In this paper, R(A,D,α) is selected as the negative log-likelihood (NLL) based on the GLOW model, expressed
as:

R(A,D,α) = − log p(x̂) = − log pGLOW (Dα) (22)

where, pGLOW (x̂) is the probability density of the reconstructed signal x̂ = Dα estimated by the GLOW model. The
GLOW model maps the signal x̂ to the latent space z through a series of reversible transformations and assumes that
z follows a standard Gaussian distribution. Therefore, the probability density of the signal x̂ can be expressed as:

log px̂(x̂) = log pz(z) +

L∑
l=1

∣∣∣∣det( ∂fl
∂x(l−1)

)∣∣∣∣ (23)

This can be further expanded as:

R(A,D,α) =
1

2
zT z −

L∑
l=1

∣∣∣∣det( ∂fl
∂x(l−1)

)∣∣∣∣ (24)

206



Since z is assumed to follow a standard Gaussian distribution N(0, 1), we have:

R(A,D,α) =
1

2
∥z∥22 −

L∑
l=1

∣∣∣∣det( ∂fl
∂x(l−1)

)∣∣∣∣ (25)

Therefore, the expression for R(A,D,α) in the objective function is:

R(A,D,α) =
1

2
∥z∥22 − log

∣∣∣∣det(∂z

∂x̂

)∣∣∣∣ (26)

Figure 4. Joint optimization algorithm flowchart based on flow model

The optimization process of the flow model is shown in Figure 4. To optimize the measurement matrix A and the
sparse matrix α, the gradients of the loss function with respect to these parameters need to be calculated and the
parameters updated. The specific steps are as follows:

Step 1: Calculate Gradients
Calculate the gradients of the loss function with respect to the dictionary matrix D and the measurement matrix A:

∇DJ = 2AT (ADα− y)αT + 2λ2D + λ3
∂R

∂D
(27)

∇AJ = 2(ADα− y)(Dα)T + λ3
∂R

∂D
(28)

Step 2: Update Dictionary Matrix and Measurement Matrix
Update the dictionary matrix D and measurement matrix A using gradient descent:

D ← D − ηD∇DJ (29)
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A← A− ηA∇AJ (30)

where, ηD and ηA are the learning rates for the dictionary matrix and measurement matrix, respectively.
Step 3: Update Sparse Coefficient Matrix α
For each column αj , update using the soft thresholding method:

αi ← Sτ (αi) (31)

where, Sτ (·) represents the soft-threshold function and can be defined as:

Sτ (x) =


x− τ if x > τ

0 if |x| ≤ τ

x+ τ if x < −τ
(32)

where, τ is the soft threshold parameter.
Step 4: Perform Forward Transformation

z = GLOW − Forward(x̂) (33)

The forward transformation of the GLOW model maps the current iteration’s approximated reconstructed signal x̂
to the latent space representation z. The GLOW model consists of multiple reversible functions, and each layer has an
invertible function fl, including reversible convolution 1× 1 and affine coupling layers. Assume the GLOW model
has L layers, and each layer’s transformation is reversible.

Operations for each layer l = 1, 2, 3, ..., L:
(a) Reversible 1× 1 Convolution:

x(l) = W (l)x(l−1) (34)

where, W (l) is the 1× 1 reversible convolution matrix for the l-th layer, and x(l) is the output of the l-th layer.
(b) Affine Coupling Layer:
Split x(l) into two parts x(l)

A and x
(l)
B :

x(l) =
[
x
(l)
A , x

(l)
B

]
(35)

s(l) = ScaleNet(l)
(
x
(l)
A

)
(36)

t(l) = TranslateNet(l)
(
x
(l)
A

)
(37)

y
(l)
B = x

(l)
B ⊙ exp

(
s(l)

)
+ t(l) (38)

y(l) = concat
(
x
(l)
A , y

(l)
B

)
(39)

where, ScaleNet (l) and TranslateNet (l) are the neural networks of the l-th layer, used to generate the scaling
factor s(l) and translation factor t(l);⊙ represents element-wise multiplication, used for affine transformation; y(l) is
the output of the l-th layer. The final output is:

z = y(L) (40)

Step 5: Iterative Update
Each iteration includes updating the measurement matrix, dictionary, sparse coefficients, performing sparse

coefficient thresholding, and evaluating the GLOW forward transformation. By repeatedly following the above steps
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and using GLOW to model the latent distribution of the signal, the reconstruction results are further optimized.
This process continues until the loss function converges (i.e., the change is smaller than the preset threshold) or the
maximum iteration count is reached.

Step 6: GLOW Inverse Transformation
After joint optimization, the inverse transformation in the GLOW model is applied to recover the original signal x̂.
Perform inverse transformation:

x̂ = GLOW −Backward(z) (41)

The inverse transformation of the GLOW model is the reverse operation of the forward transformation. Each
layer’s inverse transformation is the inverse operation of its forward transformation.

Operations for each layer l = L,L− 1, . . . , 1 :
(a) Inverse operation of the affine coupling layer
Split y(l) into two parts y(l)A and y

(l)
B :

x
(l)
A = y

(l)
A (42)

s(l) = ScaleNet(l)
(
x
(l)
A

)
(43)

t(l) = TranslateNet(l)
(
x
(l)
A

)
(44)

x
(l)
B =

(
y
(l)
B − t(l)

)
⊙ exp

(
−s(l)

)
(45)

x(l) = concat
(
y
(l)
A , x

(l)
B

)
(46)

(b) Inverse Operation of Reversible 1× 1 Convolution:

x(l−1) =
(
W (l)

)−1

x(l) (47)

Step 7: Reconstruction Output

x̂ = x(0) (48)

The inverse transformation ensures that the signal can be accurately restored through the latent space mapping of
the GLOW model, maintaining the temporal characteristics and structural integrity of the signal.

3.3 Compressive Sensing Process Based on Adaptive K-SVD and Joint Optimization with GLOW

This paper proposes an improved compressive sensing method, combining K-SVD for dictionary updating to
achieve efficient sparse representation of signals; introducing a random convolution measurement matrix to compress
the signal and reduce its dimensionality; and further integrating the GLOW flow model to jointly optimize the
measurement matrix, dictionary, and sparse coefficients. Through the forward transformation, the reconstructed signal
is mapped to the latent space, iterating to update the parameters, and ultimately, the inverse transformation outputs a
high-precision reconstructed signal.

The GLOW model optimization process is shown in Figure 5. The specific implementation steps are as follows:
Step 1: Use a three-dimensional accelerometer to obtain gear vibration signal data, randomly select a 2000-

dimensional data segment, reduce data redundancy, and retain key features.
Step 2: Initialize the dictionary, use the FISTA algorithm to solve for the sparse coefficient matrix α, and update

the dictionary using the K-SVD algorithm until the maximum number of iterations is reached or the reconstruction
error is smaller than the preset threshold.

Step 3: Construct a random convolution kernel measurement matrix and apply Eq. (6) to compress the collected
raw signal.

Step 4: Introduce the GLOW flow model for joint optimization of the measurement matrix, dictionary matrix, and
sparse coefficient matrix, and construct the joint optimization objective function (14). Iteratively run Eqs. (20) to (26),
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use the backpropagation algorithm to compute the gradients and update the measurement matrix and dictionary matrix,
and use the soft-thresholding function to update the sparse coefficient matrix. Simultaneously, execute the forward
transformation, gradually mapping the compressed signal into the latent space, until the loss function converges or the
maximum number of iterations is reached.

Step 5: Execute the inverse transformation process in the GLOW flow model, step by step executing Eqs. (35) to
(40), recover the signal from the latent space, and output the reconstructed signal.

Figure 5. Flowchart of the improved compressive sensing algorithm

4 Experimental Verification and Results Analysis
4.1 Experimental Data Description

To validate the effectiveness of the proposed algorithm, the publicly available experimental data from reference [16]
is used for verification and analysis. The dataset considers factors such as gear installation and disassembly, and
includes five different operating conditions under various rotational speeds: gear health, gear damage, tooth surface
wear, root fracture, and missing teeth. Table 1 shows the calculation formula of tooth number parameters and fault
characteristic frequency of the planetary gearbox.

This dataset includes five working states of the sun gear at rotational speeds of 20Hz, 25Hz, 30Hz, 35Hz, 40Hz,
45Hz, and 50Hz. The data consists of vibration data from the X, Y, and Z axes, as well as encoder data from the
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planetary gearbox input shaft. The sampling frequency of both the vibration and rotational speed data is 48kHz.

Table 1. Planetary gearbox parameters

Number of Teeth Sun Gear 28
Planet Gear 100
Planet Gears (Quantity)

Meshing Frequency (175/8)fr
Sun Gear Fault Frequency (25/8)fr

Note: fr represents the rotational frequency of the sun gear.

4.2 Experimental Parameter Settings and Evaluation Metrics

In the experiment, vibration signals along the X-axis at a rotational speed of 20Hz were selected, and a
2000-dimensional data segment was randomly extracted. The experimental parameter settings are provided in Table 2.

Table 2. Parameter settings for the proposed improved compressive sensing method

Parameter Symbol Value
Signal sample length N 2000-dimensional

Dictionary matrix atom count K 3000
Dictionary matrix dimensions D 2000× 3000

Sparsity s From 5 to 50, increment by 5
K-SVD algorithm iterations - 50
K-SVD stopping threshold - 1× 10−6

Random convolution kernel length l 100
Measurement matrix dimensions A 2000× 2000 (compression ratio)

GLOW model layers L 10
Sparse regularization parameter λ1 0.1

Dictionary regularization parameter λ2 0.1
GLOW-related regularization parameter λ3 0.1

Dictionary matrix learning rate ηD 0.001
Measurement matrix learning rate ηA 0.001

Soft-threshold parameter τ 0.01
GLOW optimization maximum iterations - 50
GLOW optimization stopping threshold E 1× 10−6

To comprehensively evaluate the performance of different algorithms in compressive sensing, four methods are
designed for comparison with this work:

Method 1: Use the FFT method for dictionary learning, with the dictionary size fixed based on the FFT results.
A Gaussian random measurement matrix is used for data compression, and the OMP algorithm is used for signal
reconstruction.

Method 2: Use the K-SVD method for dictionary learning, with a Gaussian random measurement matrix for data
compression, and the OMP algorithm for signal reconstruction.

Method 3: Use the K-SVD method for dictionary learning, with a Gaussian random measurement matrix for data
compression, and the COSAMP algorithm for signal reconstruction.

Method 4: Use the K-SVD method for dictionary learning, with a random convolution kernel measurement matrix
for data compression, and the COSAMP algorithm for signal reconstruction.

For the above methods, sparsity is set to increase from 5 to 50 with a step size of 5, the reconstruction algorithm
iteration count is set to 50, and the stopping threshold is 1× 10−6. In Methods 2, 3, and 4, the dictionary atom count
is set to 3000.

In the performance evaluation of the compressive sensing algorithm, the three key evaluation metrics are Mean
Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and computation time.

MSE: Represents the average squared error between the original and reconstructed signals. The smaller the MSE,
the closer the reconstructed signal is to the original, indicating better reconstruction quality. The formula is as follows:

MSE =
1

N

N∑
i=1

(xi − x̂i)
2 (49)
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where, xi is the i-th sample point of the original signal, x̂i is the i-th sample point of the reconstructed signal, and N
is the total number of sample points.

PSNR: A logarithmic ratio used to measure the difference between the reconstructed signal and the original signal.
The higher the PSNR, the better the reconstruction quality. The formula is as follows:

PSNR = 10 log10

(
MAX2

MSE

)
(50)

4.3 Comparison of Compressive Sensing Algorithm Reconstruction Performance
4.3.1 Performance comparison under different sparsity levels

With a fixed compression rate of reducing 2000-dimensional data to 1024 dimensions (approximately 51.2%
compression), sparsity increases from 5 to 50 with a step size of 5, and the MSE and PSNR metrics at each sparsity
level are recorded [17–20].

In subgrah (a) of Figure 6, as the sparsity increases, the MSE of all methods decreases. The proposed method
consistently shows the lowest MSE at all sparsity levels, demonstrating its advantage in sparse representation. In
subgrah (b) of Figure 6, as the sparsity increases, the PSNR of all methods rises. The proposed method exhibits the
highest PSNR at all sparsity levels, indicating the best signal reconstruction quality.

(a) (b)

Figure 6. Compressive sensing algorithm performance metrics at different sparsity levels: (a) MSE; (b) PSNR

(a) (b)

Figure 7. Compressive sensing algorithm performance metrics at different compression rates: (a) MSE; (b) PSNR
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4.3.2 Performance comparison under different compression rates
With a fixed sparsity of 10, the compression rate is varied, reducing the signal from 2000 dimensions to different

dimensions (compression rates from 10% to 90%, step size of 10%), to evaluate the MSE and PSNR metrics at
different compression rates.

In subgrah (a) of Figure 7, as the compression rate increases (i.e., the compression dimension decreases), the
MSE of all methods increases. However, the proposed method consistently shows significantly lower MSE across all
compression rates, reflecting its strong resistance to compression. In subgrah (b) of Figure 7, as the compression rate
increases, the PSNR of all methods decreases. The proposed method maintains higher PSNR than the other methods
at all compression rates, indicating its ability to preserve good reconstruction quality even at high compression rates.
4.3.3 Computation time comparison under different sparsity levels

With a fixed compression rate of reducing from 2000 dimensions to 1024 dimensions, the sparsity increases from
5 to 50 with a step size of 5, and the computation time for each algorithm at each sparsity level is recorded. The
results are as follows in Table 3:

Table 3. Computation time of compressive sensing algorithms under different sparsity levels

Sparsity Method 1(s) Method 2(s) Method 3(s) Method 4(s) The Proposed
Method(s)

5 0.063 0.0822 0.104 0.1241 0.1628
10 0.0673 0.0867 0.1069 0.1265 0.1686
15 0.073 0.0919 0.1112 0.1329 0.1729
20 0.0772 0.0973 0.1177 0.1379 0.1771
25 0.0828 0.1031 0.1226 0.1409 0.1843
30 0.0873 0.1065 0.1277 0.1478 0.1867
35 0.0917 0.112 0.1326 0.1534 0.1923
40 0.0959 0.1174 0.1379 0.1558 0.1987
45 0.1024 0.1229 0.1414 0.1611 0.203
50 0.1077 0.1273 0.146 0.1689 0.2053

The computation time of the proposed method is slightly higher than that of the other methods due to the
introduction of the GLOW model’s joint optimization process. Despite the increased computation time, the significant
improvement in reconstruction accuracy and noise resistance makes it more practical for real-world applications.

The experimental results indicate that the proposed method consistently achieves lower MSE and higher PSNR
across different sparsity levels and compression rates. This is because the K-SVD dictionary finds a sparser
representation in higher-dimensional and complex spectral environments, thus reducing information loss; the random
convolution kernel measurement matrix maintains the validity of information during signal compression; and the
GLOW flow model, through latent distribution modeling and probability density estimation, enables the system to
effectively distinguish signal and noise components in low-dimensional space, achieving stable reconstruction results
even under low SNR and high compression rates. In contrast, traditional methods lose their ability to accurately
capture signal features under high compression rates and noisy conditions, leading to a more noticeable increase in
MSE and decrease in PSNR.

Therefore, the improvements in the proposed method result not from a single element, but from the synergistic
effects of enhanced sparse representation, optimized measurement matrices, and latent space probability modeling.

5 Conclusion

This paper proposes an improved compressive sensing method for gearbox vibration signals with high frequency,
high dimensionality, non-stationarity, and non-linearity, as well as noise interference and real-time processing
requirements [21–23]. The method combines K-SVD dictionary learning, random convolution kernel measurement
matrix design, and GLOW flow model joint optimization strategy. The main conclusions are as follows:

(1) Improved Sparse Representation Ability: By using K-SVD dictionary learning, the sparsity of the signal in the
frequency domain is enhanced, enabling effective extraction of key features from complex, non-stationary gearbox
vibration signals and significantly improving reconstruction accuracy in low-dimensional space.

(2) Enhanced Compression and Reconstruction Efficiency: The design of a random convolution kernel mea-
surement matrix, combined with convolution operations and fast Fourier transforms, significantly reduces hardware
implementation and computational complexity, while satisfying the RIP condition to ensure signal recoverability in
low-dimensional space.

(3) Improved Noise and Complex Signal Processing Capability: The introduction of the GLOW flow model,
through latent distribution modeling and joint optimization, unifies the measurement matrix, dictionary matrix, and
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sparse coefficient matrix in a single framework. The forward transformation captures the complex distribution of
signals, while the inverse transformation enables precise signal reconstruction, significantly improving the stability
and accuracy of signal reconstruction in noisy environments.
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