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Abstract: The accurate determination of the conduit water starting time constant (Tw) is critical for optimizing
hydro turbine performance and dynamic control in hydropower plants. Instead of relying on conventional calculation
methods, machine learning (ML) techniques, specifically long short-term memory (LSTM) networks and multilayer
perceptron (MLP) models, have been employed to identify Tw. The dataset used for model training and validation
comprises real operational data collected from two hydropower plants. The effectiveness of both algorithms in Tw

identification has been evaluated through simulation, with Python serving as the primary programming environment.
The findings indicate that, despite its more complex architecture, LSTM does not necessarily yield superior results.
In contrast, MLP, as a relatively simpler model, demonstrates greater accuracy in estimating Tw, suggesting that
intricate network structures are not always required for precise identification. Additionally, an optimization function
(Fopt) has been utilized to assess the reliability of the identified Tw values by comparing them with actual hydro
turbine responses. The results underscore the practicality of MLP in hydropower system modeling, providing a
computationally efficient alternative for conduit water starting time constant identification. These insights contribute
to improving real-time turbine control and enhancing the efficiency of hydropower generation.

Keywords: Time constant identification; Hydropower systems; Machine learning (ML); Long short-term memory
(LSTM); Multilayer perceptron (MLP); Optimization function

1 Introduction

In engineering and physics, system identification (SI) is a crucial technique for developing accurate models and
control strategies [1]. Based on experimental data, SI involves finding out the mathematical model of a dynamics
system. In this paper, the available dataset is for the hydro power plant control system, especially for parameters
such as guide vane blade position, active mechanical power, and angular velocity. These data are further used for the
identification of the water starting time constant of the conduit – Tw.

The crucial parameter when modeling the hydro power plant is Tw, especially in the Francis turbine and other
reaction turbines. This parameter is related to the water inertia in the penstocks and the turbine system. It is important
because it influences the plant’s dynamic response to load changes, meaning the position of the guide vane blade.
Usually, large values for the Tw mean slower response due to the delayed action of the water flow, but smaller values
for the Tw mean faster adjustment and stabilization in a steady-state position but increase the possibility of an easy
control [2]. Sari et al. [3] examined various turbine technologies and their application on how the initiation of the
water flow impacts the system efficiency of the penstock. If penstock dynamics of a hydropower plant are compared,
Janevska et al. [4] represented the importance of the Tw. If the Tw is large value, it especially means that the PID
controller will require more aggressive tunning. Other control strategies, instead of PID, according to the study
conducted by Zoby and Yanagihara [5], could be PI, or combination of PI-PD. Also, in the study conducted by
Gangi [6], in a small hydropower plant, where the Tw=0.25 which is a small value makes turbines respond quickly but
there are possibilities of overshoots and oscillation. As represented, the control type of the governor is PID. Other
than the PID, another control strategies such presented in references [7, 8], involving ML based control that can adapt
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to different Tw values based on past experiences and responses. As reported by Khaliel and Karrar [9], the importance
of the optimal hydropower plant operation through PID tuning for the governor system controlling the guide vane
mechanism is presented. Ensuring grit stability and efficiency frequency control, means accurate determination of
the Tw constant. It is also important coefficient when it comes to the prediction of the system’s behavior during the
transient conditions and design of the control strategies. Some standard mandates that Tw must be less or equal to 4
seconds to align with IEC 60308 and IEC 61362, ensuring compatibility with turbine-generator inertia, otherwise
some advanced control strategies must be implying design modification, according to the technical guideline [10].
Pérez-Dı́az et al. [11] presented another way of determining the Tw constant. In this paper it is calculated by adding
two additional elements, tail-race tunnel and penstock. The control type in that case was PI controller.

Saarinen et al. [12] presented standard methods, the prediction-error minimization and MATLAB system
identification toolbox technique for system identification of the Tw in various size hydropower plant. System identified
are represented with a linear mathematical differential equation. Some hybrid deep learning models such as Temporal
Convolutional Networks (TCN), residual LSTM, and Gated Recurrent Unit (GRU) as demonstrated by Ma et al. [13]
are used for prediction the operation status of the hydropower plant units, also Wang et al. [14] presented adaptive
learning model, recursive least squares (RLS) for modeling the hydropower turbine which is directly connected to
Tw identification by determining the state-space and the transfer function model. In this paper, LSTM as a ML
method has been used because it successfully captures and processes the time-series data [15]. MLP as a ML method
according to the research by Hagan et al. [16], is used for control systems analysis. As reported by Xiong et al. [17],
LSTM is presented as a method for turbine operation using time series data. MLP and LSTM methods are selected to
be used since both have completely different computational methods.

2 Mathematical Modeling of a Hydro Power Plant

The hydropower plant represented in Figure 1 consists of a few subsystems such as hydraulic, electrical, and
control subsystem. The control subsystem in this case is PID.

Figure 1. Block diagram of hydropower plant

Based on the analysis presented by Babunski [18], hydro power plant model that includes the guide vane
mechanism, the hydraulic turbine, and the electrical subsystem is mathematically represented in this paper according
to the equation below.

Eq. (1) gives the water starting time constant of the conduit Tw, and its value depends on several parameters, the
length of the pipeline L, the flow through the turbine at a fully open guide vane mechanism qbase, the pressure hbase,
the cross-section of the pipeline A, and the acceleration due to gravity g. Eq. (2) represents the relationship between
the generated mechanical power ∆Pm and the guide vane position ∆c, which represents the linear model of a hydro
turbine. Theoretically, the Tw is defined as the time required for the flow in the pipeline to go from zero qbase to when
the pressure in front of the turbine will reach a value hbase.
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Tw =
L · qbase

A · g · hbase
(1)

∆Pm

∆c
=

1− Tws

1 + Tw

2 s
(2)

The equation for the turbine mechanical power is represented by Eq. (3), where ht is the dimensionless unit
pressure, qt is the dimensionless unit flow, qnl is the flow through a turbine when there is no load, At is the amplifier
factor, D is the turbine damping coefficient, and ∆ω is the difference between the reference and actual angular velocity
of the hydraulic turbine generator.

Pm = Atht (qt − qnl)−Dc∆ω (3)

The electrical subsystem consists of a power system, a generator, the power transferred between them and the
changes in the load on the network. It is represented by Eqs. (4)-(6).

·
ω =

1

Tmω
(Pm − Pe) (4)

Pe = Pl +D (ω − 1) (5)

Pm − Pe = Tm · s+Df (6)

In these equations, ω is the angular velocity at which the generator rotates, Pl is the load on the network, i.e., the
disturbance, Pe is the generated electrical energy, Tm is the mechanical time constant whose value depends on the
number of generator revolutions per minute, but is calculated according to the equations defined in reference [19].
Also Tm (mechanical time constant) is represented in Eq. (7), where G ·D2 is the moment of inertia, nr is the number
of revolutions per minute, and Pr is the generated power in megawatts (MW).

Tm =
2.74 ·G ·D2(10−3nr)

Pr
(7)

The model for the servo mechanism is represented in formula (8) where TA is the time constant of the servo
mechanism.

1

(1 + s · TA)
2 (8)

Because in this paper, two real hydropower plants are going to be of research interest, in Table 1 some details
about them are represented.

Table 1. Hydro power plant parameters value

Parameters Mark Plant 1 Plant 2 Unit
Water starting time

constant of the conduit Tw 1.434 0.479 s

Generator mechanical time
constant Tm 8.3 5.420142 s

Proportional constant Kp 2 3.4 /
Integral constant Ki 0.465 0.465 /

Derivative constant Kd 1.06 3.6 /

The optimization function is also important because it quantifies the accuracy of the turbine model, particularly
when identifying the Tw. The more minimal the value for Fopt, the more the Tw is optimal, which means that the
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system’s dynamics is better represented. Fopt is represented with Eq. (9). In this equation, ω is the angular velocity at
which the generator rotates and the ωref is the referent angular velocity, c guide vane position and cd is requested
guide vane position. The weighting coefficients k1 and k2 determine the influence of the corresponding terms in Fopt.
The influence of the speed error is greater because the main objective of the speed controller is speed regulation, i.e.,
ensuring a stable output frequency of the generated energy, which is why the weighting coefficient k1=0.7, i.e., the
speed error has an influence of 70%, while the weighting coefficient k2=0.3, which means that the influence of the
second term is 30%.

Fopt = 0.7 ·
t∫

0

|ωref − ω| dt+ 0.3 ·
t∫

0

|cd − c| dt (9)

3 LSTM and MLP Network Modeling and Identification

In this paper, LSTM and MLP have been used as ML methods for Tw identification. The general structure of the
LSTM method is represented in Figure 2 and its equations of the signal flow are represented by Deva Sarma et al. [20].

Figure 3 from the study of Salim et al. [21] shows the MLP network architecture and its mathematical representation.

Figure 2. LSTME network architecture [14]

Figure 3. MLP network architecture [21]

Because Python has been used as a programing language, the algorithm for Tw identification is represented
through the following order:
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1. Definition of the required libraries to perform the calculation.
2. Definition of the inputs (input data set).
3. Definition of the target outputs (target output data set).
4. Definition of the type of ANN with which the data will be processed.
5. Definition of the number of hidden layers and the number of neurons in each layer.
6. Definition of the activation function (AF) for each layer separately.
7. Definition of the type of optimizer.
8. Making a percentage distribution of the data for validation, testing and training.
9. Training the model.
10. Defining the upper and lower bounds of the value of Tw that needs to be obtained.
11. The generated values for the time constant of water are extracted.
12. The obtained values are placed in a simulation model.
13. The obtained outputs are compared with the outputs of the model before applying ML by applying MLP and

LSTM.
Because there are going to be represented results from two power plants, the input data set for Plant 1 is the

position of the guide vane blades and the output is generated power from Power Plant 1, and the dataset for the Plant 2
is active mechanical power from the second power plant (data taken from supervisory control and data acquisition
(SCADA) system) and active mechanical power of the first, referent power plant. The structure of the network for
both LSTM and MLP networks used for Tw identification are represented in Figure 4 and Figure 5.

According to Figure 4, the network architecture has one input layer; next is the LSTM architecture, and then is the
MLP with three hidden layers. The first one is with 258 nodes, the second one is with 128 nodes and the third one is
with 24 nodes and an output layer. The AF are sigmoid, sigmoid and tanh; the learning rate is 0.01, and ADAM is
used as an optimizer.

According to Figure 5, the network architecture has one input layer, 2 hidden layers (the first one has 10 nodes and
the second one has 4 nodes) and an output layer. The AF is tanh for both hidden layers, and ADAM is used as an
optimizer.

Figure 4. LSTM network architecture
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Figure 5. MLP network structure

4 Results and Discussion

According to Table 1, Tw=1.434 (s) for Power Plant 1, while for Power Plant 2, Tw=0.479 (s). The obtained values
for Tw by using MLP and LSTM are defined in Table 2 if the available dataset is a guide vane blade position and
active mechanical power.

Another Tw identification is done by using a different dataset. It is a combination of a dataset of mechanical power
inputs whose values (static parameters) are taken from the SCADA system of the hydro power plant itself, while the
output dataset is experimental measurements made by the referent plant, Power Plant 1 (dynamic parameters). The
reason for such a dataset is that when the identification for the Tw coefficient is in process, the dynamics of Power
Plant 2 are to be approximted to the dynamics of Power Plant 1 as a fast response and stable system. The network
structure remains the same as in Figure 5 and the results are represented in Table 3.

Table 2. Identified Tw coefficients and its Fopt for the data set of guide vane blade position and active mechanical
power (Power plant 1)

Guide Vane Blade Position and Active Mechanical Power RMSE (%) Fopt

0.6322 (nonlinear model of the hydro turbine) 0.4%
0.02858

0.02586

MLP 0.76774798 (nonlinear model of the hydro turbine) 0.4%
0.02563

0.02564

0.8791 (nonlinear model of the hydro turbine) 0.4%
0.02552

0.02553

0.1571 (nonlinear model of the hydro turbine) 0.3%
0.02622

0.02626

0.5822 (nonlinear model of the hydro turbine) 0.7%
0.02221

0.02443

LSTM 0.93149 (nonlinear model of the hydro turbine) 0.9%
0.02187

0.02409

0.2753 (linear model of the hydro turbine) 0.07%
0.00355

0.00357
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Table 3. Identified Tw coefficient and its Fopt for the data set of active mechanical power form SCADA and active
mechanical power from the referent power plant (Power plant 2)

Active Mechanical Power from Second Power Plant (Data
Taken from SCADA) and Active Mechanical Power of the

First, Referent Power Plant
RMSE (%) Fopt

0.195 (nonlinear model of the hydro turbine) 0.3%
0.02644

0.02649

MLP 0.52615 (nonlinear model of the hydro turbine) 0.3%
0.026107

0.026123

0.60458 (nonlinear model of the hydro turbine) 8%
0.49587

0.02617

0.829 (nonlinear model of the hydro turbine) 76%
0.00238

0.00457

LSTM 0.8602 (nonlinear model of the hydro turbine) 0.9%
0.02195

0.02417

0.87875963 (nonlinear model of the hydro turbine) 0.9%
0.02193

0.024149

If the values obtained are analyzed for root-mean squared error (RMSE) and for the Fopt, the results for points 1 to
4 of Table 2, by applying the MLP method, the datasets for the guide vane blade position and the active mechanical
power are combined; it could be noted that the closer the predicted value of Tw is to the real one, the lower the RMSE
is. As the value of Tw increases, the RMSE increases, which is expected because it moves away from the value of the
already existing Tw. At the same time, if the Fopt is analyzed, it could be noted that the difference appears in the
fourth or fifth decimal place if the Fopt value is compared for the existing Tw (first value) and the ML predicted one
(second value), which means that the predicted Tw values are close to the real ones and identify the new system with
the requested dynamics.

If the values of Tw obtained by ML are analyzed (values for no. 5 do 13), it could be noted that when applying the
MLP method, obtained results are also closer to the real one, and are with a lower RMSE, compared to the results
obtained when applying the LSTM method. MLP as a method is far simpler compared to the LSTM method, therefore,
from Table 2 and Table 3, it could be noted that the RMSE value when applying the MLP method as a simpler
method is smaller compared to the LSTM method. That is expected because data processing does not require large
computational power where the information moves in one direction without considering the influence of previous
information. It could be concluded that it is not always necessary to use the strongest ML method or a complicated
NN (neural network) consisting of more than one hidden layer or a huge number of neurons because it does not always
guarantee the calculation of the best solution to the given problem.

Figure 6. MLP for Tw identification - Tw=0.6322, Tw=0.76774798, Tw=0.8791, Tw=0.1571 obtained with ML
(Power Plant 1)
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Figure 7. LSTM for Tw identification - Tw=0.5822, Tw=0.93149, Tw=0.2753obtained with ML (Power Plant 1)

Figure 8. MLP for Tw identification - Tw=0.195, Tw=0.52615, Tw=0.60458 obtained with ML (Power Plant 2)

Figure 9. LSTM for Tw identification - Tw=0.829, Tw=8602, Tw=87875963 obtained by applying ML (Power Plant
2)

In Figure 6, a summary diagram is presented for different values of Tw obtained by applying the MLP method
for the first real hydropower facility where the real value of Tw=1.1434 and the green line represents the grid load.
According to the simulation results for the generated mechanical power, angular velocity, RMSE and Fopt, it can be
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noted that if the value of Tw as part of the hydraulic subsystem is 0.175, the lowest value of RMSE=0.3% is obtained,
but the value of Fopt is also in the middle between the highest and lowest. If the responses for the turbine power are
analyzed, it can be said that for Tw=0.157, a response without oscillations is provided, and the speed of reaching
a steady state is identical with the remaining values of Tw. According to the results, in the design process, hydro
turbines with Tw=0.8791 should be taken into consideration.

If responses from Figure 7 are analyzed, the hydraulic subsystem with Tw=0.5822 is considered, the generated
mechanical power at a steady state approaches the requested value (in this case, the step function that represents the
network load – blue line) will be slower, but with smaller dumping compared to the real value, Tw=1.434, and also
with the smallest Fopt.

The responses shown in Figure 8 refer to Power Plant 2, where the same ML methods, MLP and LSTM, have
been applied. For Power Plant 2, the real Tw=0.479. Figure 8 shows the responses from the MLP method. When
analyzing, it could be noted that for Tw=0.195, a response with the smallest error is obtained, without oscillations
when approaching, and at the same time for stabilizing the system in a steady state compared to the responses with
other values of Tw. For Tw=0.60458, where the RMSE is as much as 8% and is the largest of the given values, it gives
a response with the largest oscillations and the same time for achieving the steady state as for all other values of Tw.

If the results in Figure 9 are analyzed, for all new Tw values, similar responses are obtained, from which Tw=0.8602
or Tw=0.87875963 can be chosen as the most appropriate because they generate a similar response, but slightly faster
in approaching the steady state, and the time for settling the oscillations is similar to that of the existing value for Tw.
From Table 3, it could be noted that for Tw=0.829, RMSE=76%, which means that the response constantly oscillates
around a steady state with a tendency for the oscillations to decrease, but after a very long period of time.

If all identified values for Tw are analyzed, it could be noted that the values obtained by applying MLP and LSTM
are in the range of the real value, which is 0.479. This is also a good example from which we can say that not always
the most powerful method and network will give the best results, sometimes a simpler method such as MLP is quite
enough to obtain satisfactory results that will introduce improved dynamic characteristics of the control system.

According to the results in Figure 6, Figure 7, Figure 8 and Figure 9, could be noted that reverse power of the
active power signal is still present after Tw coefficient identification which means that using ML algorithm does not
idealize the signal or neglect some physical conditions, because in some cases, ML can try to eliminate that part of
the signal making it to look like it does not exist, which is not correct. According to references [8, 18], the reverse
power should exist when analyzing the mechanical power and is experimentally verified.

5 Conclusions

This paper represented the importance of two ML algorithms, MLP and LSTM, in the SI purpose. These two
were chosen because they are processing the signal/dataset in a completely different way. The model that has been
worked on was two different hydro power plants. Because the Tw – water starting time constant of the conduit is an
important parameter for the hydro turbine definition, instead of its calculation, based on the available dataset, learning
rate value, and optimizer type, the identification of the Tw has been done by using MLP and LSTM.

According to the results represented in the figures above, it could be concluded that ML can do SI using different
algorithms, meaning that its algorithms can be used in the systems design process. It should be noted that not every
time the complicated and big network will give better results compared to a simpler network. In this paper, MLP has
appeared as an algorithm whose capacities are enough for obtaining results that introduce improved dynamics of the
controlled system. Another important part is that the results obtained by using the ML algorithm represent the signal
with all its characteristics, such as reverse power, which means that the represented signals from the simulation could
be compared with the measured and experimentally verified results.

Further work is needed for the laboratory measurement results to be represented. Also, to be presented is how ML
methods are affecting the system control and how the problem is solved.
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